Resource and infrastructure challenges on the RESIST-2 Trial: an implementation study of drug resistance genotype-based algorithmic ART switches in HIV-2-infected adults in Senegal

Dana N Raugi, Khardiata Diallo, Mouhamadou Baïla Diallo, Dominique Faye, Ousseynou Cisse, Robert A Smith, Fatima Sall, El Hadji Ibrahima Sall, Khadim Faye, Jean Philippe Diatta, Binetou Diaw, Jacques Sambou, Jean Jacques Malomar, Stephen E Hawes, Moussa Seydi, Geoffrey S Gottlieb, University of Washington-Senegal HIV-2 Study Group, Dana N Raugi, Khardiata Diallo, Mouhamadou Baïla Diallo, Dominique Faye, Ousseynou Cisse, Robert A Smith, Fatima Sall, El Hadji Ibrahima Sall, Khadim Faye, Jean Philippe Diatta, Binetou Diaw, Jacques Sambou, Jean Jacques Malomar, Stephen E Hawes, Moussa Seydi, Geoffrey S Gottlieb, University of Washington-Senegal HIV-2 Study Group

Abstract

Background: Second-line treatment of HIV-2 in resource-limited settings (RLS) is complicated by a lack of controlled trial data, limited availability of HIV-2-active antiretroviral drugs, and inadequate access to drug resistance testing. We conducted an implementation trial of a dried blood spot- (DBS) based, drug resistance genotype-informed antiretroviral therapy (ART) switching algorithm for HIV-2-infected patients in Senegal.

Methods: HIV-2-infected adults initiating or receiving ART through the Senegalese national AIDS program were invited to participate in this single-arm trial. DBS from participants with virologic failure (defined as viral load (VL) > 250 copies/mL after > 6 months on the current ART regimen) were shipped to Seattle for genotypic drug resistance testing. Participants with evidence of drug resistance in protease or reverse transcriptase were switched to new regimens according to a pre-specified algorithm. Participant clinical and immuno-virologic outcomes were assessed, as were implementation challenges.

Results: We enrolled 152 participants. Ten were initiating ART. The remainder were ART-experienced, with 91.0% virologically suppressed (< 50 copies/mL). Problems with viral load testing capability resulted in obtaining VL results for only 227 of 613 (37.0%) participant-visits. Six of 115 participants (5.2%) with VL available after > 6 months on current ART regimen experienced virologic failure, with per-protocol genotypic testing attempted. One additional test was performed for a participant with a VL of 222 copies/mL. Genotypes from three participants showed no evidence of major drug resistance mutations, two showed nucleoside reverse transcriptase inhibitor (NRTI) resistance, one showed both NRTI and protease inhibitor resistance, and one test failed. No integrase inhibitor resistance was observed. Five of six successfully-tested participants switched to the correct regimen or received additional adherence counseling according to the algorithm; the sixth was lost to follow-up. Follow-up VL testing was available for two participants; both of these were virally suppressed (< 10 copies/mL). The trial was terminated early due to the COVID-19 pandemic (which prevented further VL and genotypic testing), planned rollout of dolutegravir-based 1st-line ART, and funding.

Conclusions: The RESIST-2 trial demonstrated that a DBS-based genotypic test can be used to help inform second-line ART decisions as part of a programmatic algorithm in RLS, albeit with significant implementation challenges.

Trial registration: ClinicalTrials.gov NCT03394196 . Registered on January 9, 2018.

Keywords: Antiretroviral therapy; COVID-19; HIV treatment; HIV-2; Point-of-care; Viral suppression.

Conflict of interest statement

SEH has received research grants and research support from the US National Institutes of Health, the University of Washington, and the Bill & Melinda Gates Foundation. MS has received grant funds and clinical support from the ANRS, Glaxo-Smith Kline, and Gilead Sciences. GSG has received research grants and research support from the US National Institutes of Health, the University of Washington, the Bill & Melinda Gates Foundation, Gilead Sciences, Alere Technologies, Merck & Co., Janssen Pharmaceutica, Cerus Corporation, ViiV Healthcare, Bristol-Myers Squibb, Roche Molecular Systems, Abbott Molecular Diagnostics, and THERA Technologies/TaiMed Biologics, Inc. All other authors declare no competing interests.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Algorithm for HIV-2 care in the RESIST-2 Trial for genotype-informed second-line therapy in Senegal. Bracketed steps are ISAARV Standard of Care for HIV-2 infection. Steps in gray box represent RESIST-2 Trial of DBS-based drug resistance genotyping to guide second-line therapy decisions. NRTI nucleoside reverse transcriptase inhibitor; PI protease inhibitor; 3TC lamivudine; AZT zidovudine; DRV/r ritonavir-boosted darunavir; LPV/r ritonavir-boosted lopinavir; RAL raltegravir; TDF tenofovir disoproxil fumarate. *Indicates twice-daily dosing
Fig. 2
Fig. 2
Virologic and drug resistance testing performed in RESIST-2 Trial. *One additional participant had a genotypic test performed with a viral load of 222, which did not meet criteria for virologic failure

References

    1. Gottlieb GS, Raugi DN, Smith RA. 90-90-90 for HIV-2? Ending the HIV-2 epidemic by enhancing care and clinical management of patients infected with HIV-2. Lancet HIV. 2018;5(7):e390–e3e9. doi: 10.1016/S2352-3018(18)30094-8.
    1. Simon F, Matheron S, Tamalet C, Loussert-Ajaka I, Bartczak S, Pepin JM, et al. Cellular and plasma viral load in patients infected with HIV-2. AIDS. 1993;7(11):1411–1417. doi: 10.1097/00002030-199311000-00002.
    1. Adjorlolo-Johnson G, De Cock KM, Ekpini E, Vetter KM, Sibailly T, Brattegaard K, et al. Prospective comparison of mother-to-child transmission of HIV-1 and HIV-2 in Abidjan. Ivory Coast JAMA. 1994;272(6):462–466. doi: 10.1001/jama.1994.03520060062033.
    1. Kanki PJ, Travers KU, Marlink RG, Essex ME, MBoup S, Gueye-Ndiaye A, et al. Slower heterosexual spread of HIV-2 than HIV-1. Lancet. 1994;343(8903):943–946. doi: 10.1016/S0140-6736(94)90065-5.
    1. Marlink R, Kanki P, Thior I, Travers K, Eisen G, Siby T, Traore I, Hsieh CC, Dia MC, Gueye EH, Hellinger J, Guèye-Ndiaye A, Sankalé JL, Ndoye I, Mboup S, Essex M. Reduced rate of disease development after HIV-2 infection as compared to HIV-1. Science. 1994;265(5178):1587–1590. doi: 10.1126/science.7915856.
    1. Gottlieb GS, Sow PS, Hawes SE, Ndoye I, Redman M, Coll-Seck AM, Faye-Niang MA, Diop A, Kuypers JM, Critchlow CW, Respess R, Mullins JI, Kiviat NB. Equal plasma viral loads predict a similar rate of CD4+ T cell decline in human immunodeficiency virus (HIV) type 1- and HIV-2-infected individuals from Senegal. West Africa J Infect Dis. 2002;185(7):905–914. doi: 10.1086/339295.
    1. Schim van der Loeff MF, Jaffar S, Aveika AA, Sabally S, Corrah T, Harding E, et al. Mortality of HIV-1, HIV-2 and HIV-1/HIV-2 dually infected patients in a clinic-based cohort in The Gambia. AIDS. 2002;16(13):1775–1783. doi: 10.1097/00002030-200209060-00010.
    1. Esbjornsson J, Mansson F, Kvist A, da Silva ZJ, Andersson S, Fenyo EM, et al. Long-term follow-up of HIV-2-related AIDS and mortality in Guinea-Bissau: a prospective open cohort study. Lancet HIV. 2018;6(1):e25–e31. doi: 10.1016/S2352-3018(18)30254-6.
    1. World Health Organization. Guidelines: HIV. 2017. . Accessed 18 Mar 2018.
    1. Menendez-Arias L, Alvarez M. Antiretroviral therapy and drug resistance in human immunodeficiency virus type 2 infection. Antiviral Res. 2014;102:70–86. doi: 10.1016/j.antiviral.2013.12.001.
    1. US Department of Health and Human Services. Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents. 2018. . Accessed 27 Apr 2019.
    1. Gilleece Y, Chadwick DR, Breuer J, Hawkins D, Smit E, McCrae LX, Pillay D, Smith N, Anderson J, on behalf of the BHIVA Guidelines Subcommittee British HIV Association guidelines for antiretroviral treatment of HIV-2-positive individuals 2010. HIV Med. 2010;11(10):611–619. doi: 10.1111/j.1468-1293.2010.00889.x.
    1. France Recherche Nord & Sud Sida-HIV Hepatites. Prise en charge medicale des personnes vivant avec le VIH, Infection HIV-2; Diversite des VIH-1. 2016. . Accessed 27 Apr 2019.
    1. Raugi DN, Nixon RS, Leong S, Faye K, Diatta JP, Sall F, Smith RA, Sall EHI, Malomar JJ, Seydi M, Gottlieb GS. HIV-2 Drug Resistance Genotyping from Dried Blood Spots. J Clin Microbiol. 2020;59(1):e02303–e02320. doi: 10.1128/JCM.02303-20.
    1. Raugi DN, Ba S, Cisse O, Diallo K, Tamba IT, Ndour C, et al. Long-term experience and outcomes of programmatic antiretroviral therapy for HIV-2 infection in Senegal, West Africa. Clin Infect Dis. 2020;72(3):369–378. doi: 10.1093/cid/ciaa277.
    1. Chang M, Gottlieb GS, Dragavon JA, Cherne SL, Kenney DL, Hawes SE, Smith RA, Kiviat NB, Sow PS, Coombs RW. Validation for clinical use of a novel HIV-2 plasma RNA viral load assay using the Abbott m2000 platform. J Clin Virol. 2012;55(2):128–133. doi: 10.1016/j.jcv.2012.06.024.
    1. Raugi DN, Smith RA, Ba S, Toure M, Traore F, Sall F, Pan C, Blankenship L, Montano A, Olson J, Dia Badiane NM, Mullins JI, Kiviat NB, Hawes SE, Sow PS, Gottlieb GS, University of Washington-Dakar HIV-2 Study Group Complex patterns of protease inhibitor resistance among antiretroviral treatment-experienced HIV-2 patients from Senegal: implications for second-line therapy. Antimicrob Agents Chemother. 2013;57(6):2751–2760. doi: 10.1128/AAC.00405-13.
    1. Charpentier C, Camacho R, Ruelle J, Kaiser R, Eberle J, Gurtler L, et al. HIV-2EU: supporting standardized HIV-2 drug resistance interpretation in Europe. Clin Infect Dis. 2013;56(11):1654–1658. doi: 10.1093/cid/cit104.
    1. Tzou PL, Descamps D, Rhee SY, Raugi DN, Charpentier C, Taveira N, Smith RA, Soriano V, de Mendoza C, Holmes SP, Gottlieb GS, Shafer RW. Expanded Spectrum of Antiretroviral-Selected Mutations in Human Immunodeficiency Virus Type 2. J Infect Dis. 2020;221(12):1962–1972. doi: 10.1093/infdis/jiaa026.
    1. Smith RA, Anderson DJ, Pyrak CL, Preston BD, Gottlieb GS. Antiretroviral drug resistance in HIV-2: three amino acid changes are sufficient for classwide nucleoside analogue resistance. J Infect Dis. 2009;199(9):1323–1326. doi: 10.1086/597802.
    1. Smith RA, Raugi DN, Pan C, Coyne M, Hernandez A, Church B, Parker K, Mullins JI, Sow PS, Gottlieb GS, University of Washington-Dakar HIV-2 Study Group Three Main Mutational Pathways in HIV-2 Lead to High-Level Raltegravir and Elvitegravir Resistance: Implications for Emerging HIV-2 Treatment Regimens. PLoS One. 2012;7(9):e45372. doi: 10.1371/journal.pone.0045372.
    1. Weinberg JL, Kovarik CL. The WHO Clinical Staging System for HIV/AIDS. Virtual Mentor. 2010;12(3):202–206. doi: 10.1001/virtualmentor.2010.12.3.cprl1-1003.
    1. Lippman SA, Mooney AC, Puren A, Hunt G, Grignon JS, Prach LM, Gilmore HJ, Truong HHM, Barnhart S, Liegler T. The role of drug resistance in poor viral suppression in rural South Africa: findings from a population-based study. BMC Infect Dis. 2020;20(1):248. doi: 10.1186/s12879-020-4933-z.
    1. Kwon EH, Musema GMA, Boelter J, Townsend S, Tshala-Katumbay D, Kayembe PK, West J, Wood C. HIV-1 subtypes and drug resistance mutations among female sex workers varied in different cities and regions of the Democratic Republic of Congo. PLoS One. 2020;15(2):e0228670. doi: 10.1371/journal.pone.0228670.
    1. Zhang G, DeVos J, Medina-Moreno S, Wagar N, Diallo K, Beard RS, Zheng DP, Mwachari C, Riwa C, Jullu B, Wangari NE, Kibona MS, Ng'Ang'A LW, Raizes E, Yang C. Utilization of dried blood spot specimens can expedite nationwide surveillance of HIV drug resistance in resource-limited settings. PLoS One. 2018;13(9):e0203296. doi: 10.1371/journal.pone.0203296.
    1. Dow DE, Schimana W, Nyombi BM, Mmbaga BT, Shayo AM, Bartlett JA, Massambu CG, Kifaro EG, Turner EL, DeMarco T, Cai F, Cunningham CK, Buchanan AM. HIV Resistance and Prevention of Mother-to-Child Transmission Regimen in HIV-Infected Infants in Northern Tanzania. AIDS Res Hum Retrovir. 2017;33(11):1107–1113. doi: 10.1089/aid.2017.0025.
    1. Bennett SJ, Chunda-Liyoka C, Poppe LK, Meinders K, Chileshe C, West JT, Wood C. High NNRTI resistance levels in HIV-1 infected Zambian mother-infant pairs. AIDS. 2020;34(12):1833–1842. doi: 10.1097/QAD.0000000000002614.
    1. Diouara AA, Ndiaye HD, Guindo I, Bangoura N, Cissé M, Edmond T, et al. Antiretroviral treatment outcome in HIV-1-infected patients routinely followed up in capital cities and remote areas of Senegal, Mali and Guinea-Conakry. J Int AIDS Soc. 2014;17(1):19315. doi: 10.7448/IAS.17.1.19315.
    1. Ba S, Raugi DN, Smith RA, Sall F, Faye K, Hawes SE, Sow PS, Seydi M, Gottlieb GS, University of Washington–Dakar HIV-2 Study Group. Traore F, Pierre Sy M, Diaw B, Ndoye M, Bale Diop A, Fadam Diome M, Niang A, Jacques Malomar J, Ibrahima Sall EH, Cisse O, Tito Tamba I, Philippe Diatta J, Sambou J, Bakhoum R, Gomis J, Benzekri N, Lin J, Kiviat N, Leong S, Masoum S, Wu V, Gallardo C, Espinosa E, Chang M, Coombs B. A Trial of a Single-tablet Regimen of Elvitegravir, Cobicistat, Emtricitabine, and Tenofovir Disoproxil Fumarate for the Initial Treatment of Human Immunodeficiency Virus Type 2 Infection in a Resource-limited Setting: 48-Week Results From Senegal. West Africa Clin Infect Dis. 2018;67(10):1588–1594. doi: 10.1093/cid/ciy324.
    1. Avettand-Fenoel V, Damond F, Gueudin M, Matheron S, Melard A, Collin G, Descamps D, Chaix ML, Rouzioux C, Plantier JC, for the ANRS-CO5 HIV-2 and the ANRS-AC11 Quantification Working Group New sensitive one-step real-time duplex PCR method for group A and B HIV-2 RNA load. J Clin Microbiol. 2014;52(8):3017–3022. doi: 10.1128/JCM.00724-14.
    1. Boillot F, Serrano L, Muwonga J, Kabuayi JP, Kambale A, Mutaka F, Fujiwara PI, Decosas J, Peeters M, Delaporte E. Implementation and Operational Research: Programmatic Feasibility of Dried Blood Spots for the Virological Follow-up of Patients on Antiretroviral Treatment in Nord Kivu, Democratic Republic of the Congo. J Acquir Immune Defic Syndr. 2016;71(1):e9–15. doi: 10.1097/QAI.0000000000000844.
    1. Drain PK, Dorward J, Bender A, Lillis L, Marinucci F, Sacks J, et al. Point-of-Care HIV Viral Load Testing: an Essential Tool for a Sustainable Global HIV/AIDS Response. Clin Microbiol Rev. 2019;32(3):e00097–e00018. doi: 10.1128/CMR.00097-18.

Source: PubMed

3
Abonnieren