The antioxidant effect of ubiquinone and combined therapy on mitochondrial function in blood cells in non-proliferative diabetic retinopathy: A randomized, double-blind, phase IIa, placebo-controlled study

Adolfo Daniel Rodríguez-Carrizalez, José Alberto Castellanos-González, Esaú César Martínez-Romero, Guillermo Miller-Arrevillaga, Luis Miguel Román-Pintos, Fermín Paul Pacheco-Moisés, Alejandra Guillermina Miranda-Díaz, Adolfo Daniel Rodríguez-Carrizalez, José Alberto Castellanos-González, Esaú César Martínez-Romero, Guillermo Miller-Arrevillaga, Luis Miguel Román-Pintos, Fermín Paul Pacheco-Moisés, Alejandra Guillermina Miranda-Díaz

Abstract

Objectives: To evaluate the effect of ubiquinone and combined antioxidant therapy on mitochondrial function in non-proliferative diabetic retinopathy (NPDR) in a randomized, double-blind, phase IIa, placebo-controlled, clinical trial. Three groups of 20 patients were formed: Group 1, ubiquinone; Group 2, combined therapy; and Group 3, placebo (one daily dose for 6 months).

Methods: Fluidity of the submitochondrial membrane in platelets was determined by examining intensity of fluorescence between the monomer (Im) and excimer (Ie). Hydrolytic activity of the mitochondrial F0F1-ATPase was evaluated with the spectrophotometric method.

Results: Normal, baseline submitochondrial membrane fluidity, 0.24 ± 0.01 Ie/Im, was significantly diminished in the three study groups vs. normal values (P < 0.0001); placebo, 0.14 ± 0.01 Ie/Im; ubiquinone, 0.14 ± 0.01 Ie/Im; and combined therapy, 0.13 ± 0.00 Ie/Im. Afterward, it increased significantly (P < 0.0001), the ubiquinone group 0.22 ± 0.01 Ie/Im, combined therapy group, 0.19 ± 0.01 Ie/Im; with no changes the placebo group. Baseline hydrolytic activity of the F0F1-ATPase enzyme increased in the three study groups vs. normal values (184.50 ± 7.84 nmol PO4), placebo, 304.12 ± 22.83 nmol PO4 (P < 0.002); ubiquinone, 312.41 ± 25.63 nmol PO4 (P < 0.009); and combined therapy, 371.28 ± 33.50 nmol PO4 (P < 0.002). Afterward, a significant decrease the enzymatic activity: ubiquinone, 213.25 ± 14.19 nmol PO4 (P < 0.001); and combined therapy, 225.55 ± 14.48 nmol PO4 (P < 0.0001).

Discussion: Mitochondrial dysfunction significantly improved in groups of NPDR patients treated with antioxidants.

Keywords: Antioxidants; Co-enzime Q10; Diabetes mellitus; Diabetic retinopathy; Mitochondrial function; Oxidative stress.

References

    1. Moreno A, Lozano M, Salinas P. Diabetic retinopathy. Nutr Hosp 2013;28(2):53–6.
    1. Gholamhossein Y, Behrouz H, Asghar Z. Diabetic retinopathy risk factors: plasma erythropoietin as a risk factor for proliferative diabetic retinopathy. Korean J Ophthalmol 2014;28(5):373–8. doi: 10.3341/kjo.2014.28.5.373
    1. Antonetti DA, Klein R, Gardner TW. Diabetic retinopathy. N Engl J Med 2012;366(13):1227–1239. doi: 10.1056/NEJMra1005073
    1. Fong DS, Aiello L, Gardner TW, King GL, Blankenship G, Cavallerano JD, et al. . Retinopathy in diabetes. Diabetes Care 2004;27(1):S84–7. doi: 10.2337/diacare.27.2007.S84
    1. Demir M, Oba E, Sensoz H, Ozdal E. Retinal nerve fiber layer and ganglion cell complex thickness in patients with type 2 diabetes mellitus. Indian J Ophthalmol 2014;62(6):719–20. doi: 10.4103/0301-4738.136234
    1. Pareja-Ríos A, Serrano-García M, Quijada-Fumero E, Marrero MD, Cabrera-López F, Abreu-Reyes P, et al. . Review of the protocol for the treatment of diabetic retinopathy. Arch Soc Esp Oftalmol 2009;84(2):65–74. doi: 10.4321/S0365-66912009000200004
    1. Crawford TN, Alfaro DV, Kerrison JB, Jablon EP. Diabetic retinopathy and angiogenesis. Curr Diabetes Rev 2009;5(1):8–13. doi: 10.2174/157339909787314149
    1. Gündüz K, Bakri SJ. Management of proliferative diabetic retinopathy. Compr Ophthalmol Update 2007;8(5):245–56.
    1. Chen S, Khan Z, Barbin Y, Chakrabarti S. Pro-oxidant role of heme oxigenase in mediating glucose-induced endothelial cell damage. Free Radic Res 2004;38:1301–10. doi: 10.1080/10715760400017228
    1. Miranda M, Muriach M, Roma J, Bosch-Morell F, Genovés JM, Barcia J, et al. . Oxidative stress in a model of experimental diabetic retinopathy: the utility of peroxynitrite scavengers. Arch Soc Esp Oftalmol 2006;81(1):27–32. doi: 10.4321/S0365-66912006000100007
    1. Ates O, Bilen H, Keles S, Alp HH, Keleş MS, Yıldırım K, et al. . Plasma coenzyme Q10 levels in type 2 diabetic patients with retinopathy. Int J Ophthalmol 2013;6(5):675–9.
    1. Santos JM, Tewari S, Goldberg AF, Kowluru RA. Mitochondrial biogenesis and the development of diabetic retinopathy. Free Radic Biol Med 2011;51(10):1849–60. doi: 10.1016/j.freeradbiomed.2011.08.017
    1. Kanwar M, Chan PS, Kern TS, Kowluru RA. Oxidative damage in the retinal mitochondria of diabetic mice: possible protection by superoxide dismutase. Invest Ophthalmol Vis Sci 2007;48(8):3805–11. doi: 10.1167/iovs.06-1280
    1. Eshaq RS, Wright WS, Harris NR. Oxygen delivery, consumption, and conversion to reactive oxygen species in experimental models of diabetic retinopathy. Redox Biol 2014;2:661–6. doi: 10.1016/j.redox.2014.04.006
    1. Ostman B, Sjödin A, Michaëlsson K, Byberg L. Coenzyme Q10 supplementation and exercise-induced oxidative stress in humans. Nutrition 2012;28(4):403–17. doi: 10.1016/j.nut.2011.07.010
    1. Ernster L, Dallner G. Biochemical, physiological and medical aspects of ubiquinone function. Biochim Biophys Acta 1995;271(1):195–204. doi: 10.1016/0925-4439(95)00028-3
    1. Bartlett HE, Eperjesi F. Nutritional supplementation for type 2 diabetes: a systematic review. Ophthalmic Physiol Opt 2008;28(6):503–23. doi: 10.1111/j.1475-1313.2008.00595.x
    1. Jurado AS, Almeida LM, Madeira VC. Fluidity of bacterial membrane lipids monitored by intramolecular excimerization of 1,3 di (2-pyrenyl)propane. Biochem Biophys Res Comm 1991;176:356–63. doi: 10.1016/0006-291X(91)90932-W
    1. Ortiz GG, Pacheco-Moisés F, El Hafidi M, Jiménez-Delgado A, Macías-Islas MA, Rosales Corral SA, et al. . Detection of membrane fluidity in submitochondrial particles of platelets and erythrocyte membranes from Mexican patients with Alzheimer disease by intramolecular excimer formation of 1,3 dipyrenylpropane. Dis Markers 2008;24(3):151–6. doi: 10.1155/2008/642120
    1. Baracca A, Barogi S, Carelli V, Lenaz G, Solaini G. Catalytic activities of mitochondrial ATP synthase in patients with mitochondrial DNA T8993G mutation in the ATPase 6 gene encoding subunit a. J Biol Chem 2000;275(6):4177–82. doi: 10.1074/jbc.275.6.4177
    1. Drozda J Jr, Messer JV, Spertus J, Abramowitz B, Alexander K, Beam CT, et al. . ACCF/AHA/AMA-PCPI 2011 performance measures for adults with coronary artery disease and hypertension: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Performance Measures and the American Medical Association-Physician Consortium for Performance Improvement. Circulation 2011;124(2):248–70. doi: 10.1161/CIR.0b013e31821d9ef2
    1. Tsuda K. Oxidative stress and membrane fluidity of red blood cells in hypertensive and normotensive men: an electron spin resonance investigation. Int Heart J 2010;51(2):121–4. doi: 10.1536/ihj.51.121
    1. Singh M, Shin S. Changes in erythrocyte aggregation and deformability in diabetes mellitus: a brief review. Indian J Exp Biol 2009;47:7–15.
    1. Shin S, Ku Y, Babu N, Singh M. Erythrocyte deformability and its variation in diabetes mellitus. Indian J Exp Biol 2007;45:121–8.
    1. Saxena S, Srivastava P, Khanna VK. Antioxidant supplementation improves platelet membrane fluidity in idiopathic retinal periphlebitis (Eales’ disease). J Ocul Pharmacol Ther 2010;26(6):623–6. doi: 10.1089/jop.2010.0075
    1. Bosch M, Marí M, Herms A, Fernández A, Fajardo A, Kassan A, et al. . Caveolin-1 deficiency causes cholesterol-dependent mitochondrial dysfunction and apoptotic susceptibility. Curr Biol 2011;21(8):681–6. doi: 10.1016/j.cub.2011.03.030
    1. Martínez-Cano E, Ortiz-Genaro G, Pacheco-Moisés F, Macías-Islas MA, Sánchez-Nieto S, Rosales-Corral SA. Functional disorders of FOF1-ATPase in submitochondrial particles obtained from platelets of patients with a diagnosis of probable Alzheimer's disease. Rev Neurol 2005;40(2):81–5.
    1. Littaru GP, Langsjoen P. Coensyme Q10 and statins: biochemical and clinical implications. Mitochondrion 2007;7:S168–74. doi: 10.1016/j.mito.2007.03.002
    1. Chinnery P, Majamaa K, Turnbull D, Thorburn D. Treatment for mitochondrial disorders. Cochrane Database Syst Rev 2006;(1):CD004426.

Source: PubMed

3
Abonnieren