Adjuvant Therapies in Diabetic Retinopathy as an Early Approach to Delay Its Progression: The Importance of Oxidative Stress and Inflammation

Ricardo Raúl Robles-Rivera, José Alberto Castellanos-González, Cecilia Olvera-Montaño, Raúl Alonso Flores-Martin, Ana Karen López-Contreras, Diana Esperanza Arevalo-Simental, Ernesto Germán Cardona-Muñoz, Luis Miguel Roman-Pintos, Adolfo Daniel Rodríguez-Carrizalez, Ricardo Raúl Robles-Rivera, José Alberto Castellanos-González, Cecilia Olvera-Montaño, Raúl Alonso Flores-Martin, Ana Karen López-Contreras, Diana Esperanza Arevalo-Simental, Ernesto Germán Cardona-Muñoz, Luis Miguel Roman-Pintos, Adolfo Daniel Rodríguez-Carrizalez

Abstract

Diabetes mellitus (DM) is a progressive disease induced by a sustained state of chronic hyperglycemia that can lead to several complications targeting highly metabolic cells. Diabetic retinopathy (DR) is a multifactorial microvascular complication of DM, with high prevalence, which can ultimately lead to visual impairment. The genesis of DR involves a complex variety of pathways such as oxidative stress, inflammation, apoptosis, neurodegeneration, angiogenesis, lipid peroxidation, and endoplasmic reticulum (ER) stress, each possessing potential therapeutic biomarkers. A specific treatment has yet to be developed for early stages of DR since no management is given other than glycemic control until the proliferative stage develops, offering a poor visual prognosis to the patient. In this narrative review article, we evaluate different dietary regimens, such as the Mediterranean diet, Dietary Pattern to Stop Hypertension (DASH) and their functional foods, and low-calorie diets (LCDs). Nutraceuticals have also been assessed in DR on account of their antioxidant, anti-inflammatory, and antiangiogenic properties, which may have an important impact on the physiopathology of DR. These nutraceuticals have shown to lower reactive oxygen species (ROS), important inflammatory factors, cytokines, and endothelial damage biomarkers either as monotherapies or combined therapies or concomitantly with established diabetes management or nonconventional adjuvant drugs like topical nonsteroidal anti-inflammatory drugs (NSAIDs).

Conflict of interest statement

All authors of this review article declare no conflict of interest.

Copyright © 2020 Ricardo Raúl Robles-Rivera et al.

Figures

Figure 1
Figure 1
Diabetic retinopathy physiopathology pyramid. This is a representation of DR's pathophysiology on how every step leads to the next upper one. Hyperglycemic state is the first step, followed by neurodegeneration and endothelial dysfunction, underlying oxidative stress, endoplasmic reticulum (ER) stress, lipid metabolism abnormalities, apoptosis, and autophagy as a complex interconnected pathophysiology leading to retinal damage in DR.
Figure 2
Figure 2
DR's physiopathology and biomarkers for each intervention. Hyperglycemia induces a variety of biochemical responses derived in angiogenesis (as shown by VEGF and endothelial damage), apoptosis, and retinal dysfunction; here, we describe where each intervention acts in these complex pathways by inhibiting the shown biomarker. Abbreviations: VEGF: vascular endothelial growth factor; G3P: glyceraldehyde 3-phosphate; DAG: diacylglycerol; AGEs: advanced glycation end products; RAGE: receptor for advanced glycation end products; PKC: protein kinase C; NOX: NADPH (nicotinamide adenine dinucleotide phosphate) oxidase; ROS: reactive oxygen species; SOD: superoxide dismutase; MnSOD: manganese superoxide dismutase; GPx: glutathione peroxidase; GR: glutathione reductase; ICAM-1: intercellular adhesion molecule-1; VCAM-1: vascular cell adhesion molecule-1; MCP-1: monocyte chemoattractant protein-1; TNF-α: tumor necrosis factor-alpha; IL-6: interleukin-6; IL-8: interleukin-8; IL-1β: interleukin-1β; PUFAs: polyunsaturated fatty acids; AIF-1: apoptosis-inducing factor-1; Bax: Bcl-2-associated X protein; LEAM: leukocyte-endothelium adhesion molecules; DASH: Dietary Pattern to Stop Hypertension.
Figure 3
Figure 3
A model of nontraditional therapies focused for diabetic retinopathy to diminish its progression from early to proliferative stages. Represents the two main topics focusing on diet and nutraceuticals either alone or combined, both as an alternative adjuvant therapy for DR. Abbreviations: DR: diabetic retinopathy; DASH: Dietary Approaches to Stop Hypertension; LCD: low-calorie diet; VLCD: very low-calorie diet; NSAIDs: nonsteroidal anti-inflammatory drugs.

References

    1. Cecilia O.-M., José Alberto C. G., José N. P., et al. Oxidative stress as the main target in diabetic retinopathy pathophysiology. Journal Diabetes Research. 2019;2019, article 8562408:21. doi: 10.1155/2019/8562408.
    1. Maniadakis N., Konstantakopoulou E. Cost effectiveness of treatments for diabetic retinopathy: a systematic literature review. PharmacoEconomics. 2019;37(8):995–1010. doi: 10.1007/s40273-019-00800-w.
    1. Heng L. Z., Comyn O., Peto T., et al. Diabetic retinopathy: pathogenesis, clinical grading, management and future developments. Diabetic Medicine. 2013;30(6):640–650. doi: 10.1111/dme.12089.
    1. Zhang H. W., Zhang H., Grant S. J., Wan X., Li G. Single herbal medicine for diabetic retinopathy. Cochrane Database of Systematic Reviews. 2018 doi: 10.1002/14651858.cd007939.pub2.
    1. Stratton I. M., Kohner E. M., Aldington S. J., et al. UKPDS 50: risk factors for incidence and progression of retinopathy in type II diabetes over 6 years from diagnosis. Diabetologia. 2001;44(2):156–163. doi: 10.1007/s001250051594.
    1. Sayin N., Kara N., Pekel G. Ocular complications of diabetes mellitus. World Journal of Diabetes. 2015;6(1):92–108. doi: 10.4239/wjd.v6.i1.92.
    1. Whitehead M., Wickremasinghe S., Osborne A., van Wijngaarden P., Martin K. R. Diabetic retinopathy: a complex pathophysiology requiring novel therapeutic strategies. Expert Opinion on Biological Therapy. 2018;18(12):1257–1270. doi: 10.1080/14712598.2018.1545836.
    1. Kern T. S., Antonetti D. A., Smith L. E. H. Pathophysiology of diabetic retinopathy: contribution and limitations of laboratory research. Ophthalmic Research. 2019;62(4):196–202. doi: 10.1159/000500026.
    1. Semeraro F., Morescalchi F., Cancarini A., Russo A., Rezzola S., Costagliola C. Diabetic retinopathy, a vascular and inflammatory disease: therapeutic implications. Diabetes & Metabolism. 2019;45(6):517–527. doi: 10.1016/j.diabet.2019.04.002.
    1. Oguntibeju O. O. Type 2 diabetes mellitus, oxidative stress and inflammation: examining the links. International Journal of Physiology, Pathophysiology and Pharmacology. 2019;11(3):45–63.
    1. Kowluru R. A., Kowluru A., Mishra M., Kumar B. Oxidative stress and epigenetic modifications in the pathogenesis of diabetic retinopathy. Progress in Retinal and Eye Research. 2015;48:40–61. doi: 10.1016/j.preteyeres.2015.05.001.
    1. Schlotterer A., Kolibabka M., Lin J., et al. Methylglyoxal induces retinopathy-type lesions in the absence of hyperglycemia: studies in a rat model. The FASEB Journal. 2019;33(3):4141–4153. doi: 10.1096/fj.201801146rr.
    1. Rübsam A., Parikh S., Fort P. E. Role of inflammation in diabetic retinopathy. International Journal of Molecular Sciences. 2018;19(4):p. 942. doi: 10.3390/ijms19040942.
    1. Eid S., Sas K. M., Abcouwer S. F., et al. New insights into the mechanisms of diabetic complications: role of lipids and lipid metabolism. Diabetologia. 2019;62(9):1539–1549. doi: 10.1007/s00125-019-4959-1.
    1. Sankrityayan H., Oza M. J., Kulkarni Y. A., Mulay S. R., Gaikwad A. B. ER stress response mediates diabetic microvascular complications. Drug Discovery Today. 2019;24(12):2247–2257. doi: 10.1016/j.drudis.2019.08.003.
    1. Wong M. Y. Z., Man R. E. K., Fenwick E. K., et al. Dietary intake and diabetic retinopathy: a systematic review. PLoS One. 2018;13(1, article e0186582) doi: 10.1371/journal.pone.0186582.
    1. Orwell G. Introduction:standards of medical care in diabetes—2018. Diabetes Care. 2018;41(Supplement 1):S1–S2. doi: 10.2337/dc18-sint01.
    1. Goday A., Bellido D., Sajoux I., et al. Short-term safety, tolerability and efficacy of a very low-calorie-ketogenic diet interventional weight loss program versus hypocaloric diet in patients with type 2 diabetes mellitus. Nutrition & Diabetes. 2016;6(9, article e230) doi: 10.1038/nutd.2016.36.
    1. Baker S., Jerums G., Proietto J. Effects and clinical potential of very-low-calorie diets (VLCDs) in type 2 diabetes. Diabetes Research and Clinical Practice. 2009;85(3):235–242. doi: 10.1016/j.diabres.2009.06.002.
    1. Capstick F., Brooks B. A., Burns C. M., Zilkens R. R., Steinbeck K. S., Yue D. K. Very low calorie diet (VLCD): a useful alternative in the treatment of the obese NIDDM patient. Diabetes Research and Clinical Practice. 1997;36(2):105–111. doi: 10.1016/s0168-8227(97)00038-7.
    1. Sasaki M., Kawasaki R., Rogers S., et al. The associations of dietary intake of polyunsaturated fatty acids with diabetic retinopathy in well-controlled diabetes. Investigative Opthalmology & Visual Science. 2015;56(12, article 7473) doi: 10.1167/iovs.15-17485.
    1. Moss S. E., Klein R., Klein B. E. K. Alcohol consumption and the prevalence of diabetic retinopathy. Ophthalmology. 1992;99(6):926–932. doi: 10.1016/s0161-6420(92)31872-x.
    1. Fenwick E. K., Xie J., Man R. E. K., et al. Moderate consumption of white and fortified wine is associated with reduced odds of diabetic retinopathy. Journal of Diabetes and its Complications. 2015;29(8):1009–1014. doi: 10.1016/j.jdiacomp.2015.09.001.
    1. Moss S. E., Klein R., Klein B. E. K. The association of alcohol consumption with the incidence and progression of diabetic retinopathy. Ophthalmology. 1994;101(12):1962–1968. doi: 10.1016/s0161-6420(94)31076-1.
    1. Lee C. C., Stolk R. P., Adler A. I., et al. Association between alcohol consumption and diabetic retinopathy and visual acuity-the AdRem Study. Diabetic Medicine. 2010;27(10):1130–1137. doi: 10.1111/j.1464-5491.2010.03080.x.
    1. Cundiff D. K., Nigg C. R. Diet and diabetic retinopathy: insights from the Diabetes Control and Complications Trial (DCCT) MedGenMed: Medscape General Medicine. 2005;7(1):p. 3.
    1. Roy M. S., Janal M. N. High caloric and sodium intakes as risk factors for progression of retinopathy in type 1 diabetes mellitus. Archives of Ophthalmology. 2010;128(1):33–39. doi: 10.1001/archophthalmol.2009.358.
    1. Engelen L., Soedamah-Muthu S. S., Geleijnse J. M., et al. Higher dietary salt intake is associated with microalbuminuria, but not with retinopathy in individuals with type 1 diabetes: the EURODIAB Prospective Complications Study. Diabetologia. 2014;57(11):2315–2323. doi: 10.1007/s00125-014-3367-9.
    1. Horikawa C., Yoshimura Y., Kamada C., et al. Dietary sodium intake and incidence of diabetes complications in Japanese patients with type 2 diabetes: analysis of the Japan Diabetes Complications Study (JDCS) The Journal of Clinical Endocrinology & Metabolism. 2014;99(10):3635–3643. doi: 10.1210/jc.2013-4315.
    1. Horikawa C., Yoshimura Y., Kamada C., et al. Is the proportion of carbohydrate intake associated with the incidence of diabetes complications?—an analysis of the Japan Diabetes Complications Study. Nutrients. 2017;9(2):p. 113. doi: 10.3390/nu9020113.
    1. Martínez-González M. A., Salas-Salvadó J., Estruch R., et al. Benefits of the mediterranean diet: insights from the PREDIMED Study. Progress in Cardiovascular Diseases. 2015;58(1):50–60. doi: 10.1016/j.pcad.2015.04.003.
    1. Díaz-López A., Babio N., Martínez-González M. A., et al. Mediterranean diet, retinopathy, nephropathy, and microvascular diabetes complications: a post hoc analysis of a randomized trial. Diabetes Care. 2015;38(11):2134–2141. doi: 10.2337/dc15-1117.
    1. Chew E. Y. Dietary intake of omega-3 fatty acids from fish and risk of diabetic retinopathy. JAMA. 2017;317(21):2226–2227. doi: 10.1001/jama.2017.1926.
    1. PREDIMED Study Investigators. Intake of total polyphenols and some classes of polyphenols is inversely associated with diabetes in elderly people at high cardiovascular disease risk. The Journal of Nutrition. 2016;146(4):767–777. doi: 10.3945/jn.115.223610.
    1. Guasch-Ferré M., Merino J., Sun Q., Fitó M., Salas-Salvadó J. Dietary polyphenols, Mediterranean diet, prediabetes, and type 2 diabetes: a narrative review of the evidence. Oxidative Medicine and Cellular Longevity. 2017;2017:16. doi: 10.1155/2017/6723931.6723931
    1. Pall M. L., Levine S. Nrf2, a master regulator of detoxification and also antioxidant, anti-inflammatory and other cytoprotective mechanisms, is raised by health promoting factors. Acta Physiologica Sinica. 2015;67(1):1–18. doi: 10.13294/j.aps.2015.0001.
    1. Boeing H., Bechthold A., Bub A., et al. Critical review: vegetables and fruit in the prevention of chronic diseases. European Journal of Nutrition. 2012;51(6):637–663. doi: 10.1007/s00394-012-0380-y.
    1. Beidokhti M. N., Jäger A. K. Review of antidiabetic fruits, vegetables, beverages, oils and spices commonly consumed in the diet. Journal of Ethnopharmacology. 2017;201:26–41. doi: 10.1016/j.jep.2017.02.031.
    1. Zafra-Stone S., Yasmin T., Bagchi M., Chatterjee A., Vinson J. A., Bagchi D. Berry anthocyanins as novel antioxidants in human health and disease prevention. Molecular Nutrition & Food Research. 2007;51(6):675–683. doi: 10.1002/mnfr.200700002.
    1. Millen A. E., Klein R., Folsom A. R., Stevens J., Palta M., Mares J. A. Relation between intake of vitamins C and E and risk of diabetic retinopathy in the Atherosclerosis Risk in Communities Study. The American Journal of Clinical Nutrition. 2004;79(5):865–873. doi: 10.1093/ajcn/79.5.865.
    1. Tanaka S., Yoshimura Y., Kawasaki R., et al. Fruit intake and incident diabetic retinopathy with type 2 diabetes. Epidemiology. 2013;24(2):204–211. doi: 10.1097/ede.0b013e318281725e.
    1. Finicelli M., Squillaro T., di Cristo F., et al. Metabolic syndrome, Mediterranean diet, and polyphenols: evidence and perspectives. Journal of Cellular Physiology. 2019;234(5):5807–5826. doi: 10.1002/jcp.27506.
    1. Lee J. H., Oh M. K., Lim J. T., Kim H. G., Lee W. J. Effect of coffee consumption on the progression of type 2 diabetes mellitus among prediabetic individuals. Korean Journal of Family Medicine. 2016;37(1):7–13. doi: 10.4082/kjfm.2016.37.1.7.
    1. Kumari N. Is coffee consumption associated with age-related macular degeneration and diabetic retinopathy? The All Results Journals: Biol. 2014;5(2):7–13.
    1. Maugeri G., D'Amico A. G., Rasà D. M., et al. Caffeine prevents blood retinal barrier damage in a model, in vitro, of diabetic macular edema. Journal of Cellular Biochemistry. 2017;118(8):2371–2379. doi: 10.1002/jcb.25899.
    1. Sharma Y., Saxena S., Mishra A., Saxena A., Natu S. M. Nutrition for diabetic retinopathy: plummeting the inevitable threat of diabetic vision loss. European Journal of Nutrition. 2017;56(6):2013–2027. doi: 10.1007/s00394-017-1406-2.
    1. Rossino M. G., Casini G. Nutraceuticals for the treatment of diabetic retinopathy. Nutrients. 2019;11(4):p. 771. doi: 10.3390/nu11040771.
    1. DASH Eating Plan. .
    1. Jayedi A., Mirzaei K., Rashidy-Pour A., Yekaninejad M. S., Zargar M. S., Akbari Eidgahi M. R. Dietary approaches to stop hypertension, mediterranean dietary pattern, and diabetic nephropathy in women with type 2 diabetes: a case-control study. Clinical Nutrition ESPEN. 2019;33:164–170. doi: 10.1016/j.clnesp.2019.05.021.
    1. Lopes H. F., Martin K. L., Nashar K., Morrow J. D., Goodfriend T. L., Egan B. M. DASH diet lowers blood pressure and lipid-induced oxidative stress in obesity. Hypertension. 2003;41(3):422–430. doi: 10.1161/01.hyp.0000053450.19998.11.
    1. de Carvalho G. B., Dias-Vasconcelos N. L., Santos R. K. F., Brandão-Lima P. N., da Silva D. G., Pires L. V. Effect of different dietary patterns on glycemic control in individuals with type 2 diabetes mellitus: a systematic review. Critical Reviews in Food Science and Nutrition. 2019:1–12. doi: 10.1080/10408398.2019.1624498.
    1. Medina-Remón A., Kirwan R., Lamuela-Raventós R. M., Estruch R. Dietary patterns and the risk of obesity, type 2 diabetes mellitus, cardiovascular diseases, asthma, and neurodegenerative diseases. Critical Reviews in Food Science and Nutrition. 2017;58(2):262–296. doi: 10.1080/10408398.2016.1158690.
    1. Kawashima M., Ozawa Y., Shinmura K., et al. Calorie restriction (CR) and CR mimetics for the prevention and treatment of age-related eye disorders. Experimental Gerontology. 2013;48(10):1096–1100. doi: 10.1016/j.exger.2013.04.002.
    1. Kamuren Z. T., Mcpeek C. G., Sanders R. A., Watkins J. B., III Effects of low-carbohydrate diet and Pycnogenol® treatment on retinal antioxidant enzymes in normal and diabetic rats. Journal of Ocular Pharmacology and Therapeutics. 2006;22(1):10–18. doi: 10.1089/jop.2006.22.10.
    1. Most M. M. Estimated phytochemical content of the Dietary Approaches to Stop Hypertension (DASH) diet is higher than in the control study diet. Journal of the American Dietetic Association. 2004;104(11):1725–1727. doi: 10.1016/j.jada.2004.08.001.
    1. Karanja N., Erlinger T. P., Pao-Hwa L., Miller E. R., Bray G. A. The DASH diet for high blood pressure: from clinical trial to dinner table. Cleveland Clinic Journal of Medicine. 2004;71(9):745–753. doi: 10.3949/ccjm.71.9.745.
    1. Vasilopoulou E., Georga K., Joergensen M., Naska A., Trichopoulou A. The antioxidant properties of Greek foods and the flavonoid content of the Mediterranean menu. Current Medicinal Chemistry: Immunology, Endocrine & Metabolic Agents. 2005;5(1):33–45. doi: 10.2174/1568013053005508.
    1. Bach-Faig A., Berry E. M., Lairon D., et al. Mediterranean diet pyramid today. Science and cultural updates. Public Health Nutrition. 2011;14(12A):2274–2284. doi: 10.1017/s1368980011002515.
    1. Last A., Stephen A. Low-carbohydrate diets. American Family Physician. 2006;73(11):1942–1948.
    1. Hussain T. A., Mathew T. C., Dashti A. A., Asfar S., al-Zaid N., Dashti H. M. Effect of low-calorie versus low-carbohydrate ketogenic diet in type 2 diabetes. Nutrition. 2012;28(10):1016–1021. doi: 10.1016/j.nut.2012.01.016.
    1. Grotto D., Zied E. The standard American diet and its relationship to the health status of Americans. Nutrition in Clinical Practice. 2010;25(6):603–612. doi: 10.1177/0884533610386234.
    1. van Wyk H., Daniels M. The use of very low calorie diets in the management of type 2 diabetes mellitus. South African Journal of Clinical Nutrition. 2016;29(2):96–102. doi: 10.1080/16070658.2016.1216514.
    1. Steven S., Taylor R. Restoring normoglycaemia by use of a very low calorie diet in long- and short-duration type 2 diabetes. Diabetic Medicine. 2015;32(9):1149–1155. doi: 10.1111/dme.12722.
    1. Bain S. C., Klufas M. A., Ho A., Matthews D. R. Worsening of diabetic retinopathy with rapid improvement in systemic glucose control: a review. Diabetes, Obesity & Metabolism. 2019;21(3):454–466. doi: 10.1111/dom.13538.
    1. Kijlstra A., Tian Y., Kelly E. R., Berendschot T. T. J. M. Lutein: more than just a filter for blue light. Progress in Retinal and Eye Research. 2012;31(4):303–315. doi: 10.1016/j.preteyeres.2012.03.002.
    1. le Goff M., le Ferrec E., Mayer C., et al. Microalgal carotenoids and phytosterols regulate biochemical mechanisms involved in human health and disease prevention. Biochimie. 2019;167:106–118. doi: 10.1016/j.biochi.2019.09.012.
    1. Su C. C., Chan C. M., Chen H. M., et al. Lutein inhibits the migration of retinal pigment epithelial cells via cytosolic and mitochondrial Akt pathways (lutein inhibits RPE cells migration) International Journal of Molecular Sciences. 2014;15(8):13755–13767. doi: 10.3390/ijms150813755.
    1. Chao S.-C., Vagaggini T., Nien C. W., Huang S. C., Lin H. Y. Effects of lutein and zeaxanthin on LPS-induced secretion of IL-8 by uveal melanocytes and relevant signal pathways. Journal of Ophthalmology. 2015;2015:7. doi: 10.1155/2015/152854.152854
    1. Silván J. M., Reguero M., de Pascual-Teresa S. A protective effect of anthocyanins and xanthophylls on UVB-induced damage in retinal pigment epithelial cells. Food & Function. 2016;7(2):1067–1076. doi: 10.1039/c5fo01368b.
    1. Murillo A. G., Fernandez M. L. Potential of dietary non-provitamin A carotenoids in the prevention and treatment of diabetic microvascular complications. Advances in Nutrition. 2016;7(1):14–24. doi: 10.3945/an.115.009803.
    1. Ambati R. R., Phang S. M., Ravi S., Aswathanarayana R. Astaxanthin: sources, extraction, stability, biological activities and its commercial applications—a review. Marine Drugs. 2014;12(1):128–152. doi: 10.3390/md12010128.
    1. Cui L., Xu F., Wang M., et al. Dietary natural astaxanthin at an early stage inhibits N-nitrosomethylbenzylamine–induced esophageal cancer oxidative stress and inflammation via downregulation of NFκB and COX2 in F344 rats. OncoTargets and Therapy. 2019;12:5087–5096. doi: 10.2147/OTT.S197044.
    1. Yeh P. T., Huang H. W., Yang C. M., Yang W. S., Yang C. H. Astaxanthin inhibits expression of retinal oxidative stress and inflammatory mediators in streptozotocin-induced diabetic rats. PLoS One. 2016;11(1, article e0146438) doi: 10.1371/journal.pone.0146438.
    1. Neelam K., Goenadi C. J., Lun K., Yip C. C., Au Eong K. G. Putative protective role of lutein and zeaxanthin in diabetic retinopathy. British Journal of Ophthalmology. 2017;101(5):551–558. doi: 10.1136/bjophthalmol-2016-309814.
    1. Gong X., Rubin L. P. Role of macular xanthophylls in prevention of common neovascular retinopathies: retinopathy of prematurity and diabetic retinopathy. Archives of Biochemistry and Biophysics. 2015;572:40–48. doi: 10.1016/j.abb.2015.02.004.
    1. Zhou X., Zhang F., Hu X., et al. Inhibition of inflammation by astaxanthin alleviates cognition deficits in diabetic mice. Physiology & Behavior. 2015;151:412–420. doi: 10.1016/j.physbeh.2015.08.015.
    1. Baccouche B., Benlarbi M., Barber A. J., Ben Chaouacha-Chekir R. Short-term administration of astaxanthin attenuates retinal changes in diet-induced DiabeticPsammomys obesus. Current Eye Research. 2018;43(9):1177–1189. doi: 10.1080/02713683.2018.1484143.
    1. Dong L. Y., Jin J., Lu G., Kang X. L. Astaxanthin attenuates the apoptosis of retinal ganglion cells in db/db mice by inhibition of oxidative stress. Marine Drugs. 2013;11(12):960–974. doi: 10.3390/md11030960.
    1. Medjakovic S., Jungbauer A. Pomegranate: a fruit that ameliorates metabolic syndrome. Food & Function. 2013;4(1):19–39. doi: 10.1039/c2fo30034f.
    1. Konstantinidi M., Koutelidakis A. E. Functional foods and bioactive compounds: a review of its possible role on weight management and obesity’s metabolic consequences. Medicine. 2019;6(3):p. 94. doi: 10.3390/medicines6030094.
    1. Padayatty S. J., Levine M. Vitamin C: the known and the unknown and Goldilocks. Oral Diseases. 2016;22(6):463–493. doi: 10.1111/odi.12446.
    1. Braakhuis A., Raman R., Vaghefi E. The association between dietary intake of antioxidants and ocular disease. Diseases. 2017;5(1):p. 3. doi: 10.3390/diseases5010003.
    1. Kundu D., Mandal T., Nandi M., Osta M., Bandyopadhyay U., Ray D. Oxidative stress in diabetic patients with retinopathy. Annals of African Medicine. 2014;13(1):p. 41. doi: 10.4103/1596-3519.126951.
    1. Park S. W., Ghim W., Oh S., et al. Association of vitreous vitamin C depletion with diabetic macular ischemia in proliferative diabetic retinopathy. PLoS One. 2019;14(6, article e0218433) doi: 10.1371/journal.pone.0218433.
    1. Young I. The effect of ascorbate supplementation on oxidative stress in the streptozotocin diabetic rat. Free Radical Biology and Medicine. 1992;13(1):41–46. doi: 10.1016/0891-5849(92)90164-c.
    1. Gupta M. M., Chari S. Lipid peroxidation and antioxidant status in patients with diabetic retinopathy. Indian Journal of Physiology and Pharmacology. 2005;49(2):187–192.
    1. Vinson J., Hsu C., Possanza C., et al. Lipid peroxidation and diabetic complications: effect of antioxidant vitamins C and E. In: Armstrong D., editor. Free Radicals in Diagnostic Medicine. Vol. 366. Boston, MA USA: Springer; 1994. pp. 430–432. (Advances in Experimental Medicine and Biology).
    1. Ulker E., Parker W. H., Raj A., Qu Z. C., May J. M. Ascorbic acid prevents VEGF-induced increases in endothelial barrier permeability. Molecular and Cellular Biochemistry. 2016;412(1-2):73–79. doi: 10.1007/s11010-015-2609-6.
    1. Sorice A., Guerriero E., Capone F., Colonna G., Castello G., Costantini S. Ascorbic acid: its role in immune system and chronic inflammation diseases. Mini-Reviews in Medicinal Chemistry. 2014;14(5):444–452. doi: 10.2174/1389557514666140428112602.
    1. Kianian F., Karimian S. M., Kadkhodaee M., et al. Combination of ascorbic acid and calcitriol attenuates chronic asthma disease by reductions in oxidative stress and inflammation. Respiratory Physiology & Neurobiology. 2019;270, article 103265 doi: 10.1016/j.resp.2019.103265.
    1. Fujii T., Udy A. A., Venkatesh B. Comparing apples and oranges: the vasoactive effects of hydrocortisone and studies investigating high dose vitamin C combination therapy in septic shock. Critical Care and Resuscitation. 2019;21(3):152–155.
    1. Wang H., Zhang Z., Wen R., Chen J. Experimental and clinical studies on the reduction of erythrocyte sorbitol- glucose ratios by ascorbic acid in diabetes mellitus. Diabetes Research and Clinical Practice. 1995;28(1):1–8. doi: 10.1016/0168-8227(95)01059-m.
    1. May J. M., Jayagopal A., Qu Z. C., Parker W. H. Ascorbic acid prevents high glucose-induced apoptosis in human brain pericytes. Biochemical and Biophysical Research Communications. 2014;452(1):112–117. doi: 10.1016/j.bbrc.2014.08.057.
    1. Fukui M., Yamabe N., Choi H.-J., Polireddy K., Chen Q., Zhu B. Mechanism of ascorbate-induced cell death in human pancreatic cancer cells: role of Bcl-2, Beclin 1 and autophagy. Planta Medica. 2015;81(10):838–846. doi: 10.1055/s-0035-1546132.
    1. Martin A., Joseph J. A., Cuervo A. M. Stimulatory effect of vitamin C on autophagy in glial cells. Journal of Neurochemistry. 2002;82(3):538–549. doi: 10.1046/j.1471-4159.2002.00978.x.
    1. Hung T. H., Chen S. F., Li M. J., Yeh Y. L., Hsieh T.'. T.'. Differential effects of concomitant use of vitamins C and E on trophoblast apoptosis and autophagy between normoxia and hypoxia-reoxygenation. PLoS One. 2010;5(8, article e12202) doi: 10.1371/journal.pone.0012202.
    1. Wang X., Quinn P. J. Vitamin E and its function in membranes. Progress in Lipid Research. 1999;38(4):309–336. doi: 10.1016/s0163-7827(99)00008-9.
    1. Jain S. K., Palmer M. The effect of oxygen radicals metabolites and vitamin E on glycosylation of proteins. Free Radical Biology and Medicine. 1997;22(4):593–596. doi: 10.1016/s0891-5849(96)00377-2.
    1. Chung T.-W., Hau Yu J. J., Liu D.-Z. Reducing lipid peroxidation stress of erythrocyte membrane by α-tocopherol nicotinate plays an important role in improving blood rheological properties in type 2 diabetic patients with retinopathy. Diabetic Medicine. 1998;15(5):380–385. doi: 10.1002/(sici)1096-9136(199805)15:5<380::aid-dia592>;2-8.
    1. Haidara M. A., Yassin H., Rateb M., Ammar H., Zorkani M. Role of oxidative stress in development of cardiovascular complications in diabetes mellitus. Current Vascular Pharmacology. 2006;4(3):215–227. doi: 10.2174/157016106777698469.
    1. Zhao Y., Zhang W., Jia Q., et al. High dose vitamin E attenuates diabetic nephropathy via alleviation of autophagic stress. Frontiers in Physiology. 2019;9, article 1939 doi: 10.3389/fphys.2018.01939.
    1. Arablou T., Aryaeian N., Djalali M., Shahram F., Rasouli L. Association between dietary intake of some antioxidant micronutrients with some inflammatory and antioxidant markers in active rheumatoid arthritis patients. International Journal for Vitamin and Nutrition Research. 2019;89(5-6):238–245. doi: 10.1024/0300-9831/a000255.
    1. Azzi A., Boscoboinik D., Clément S., et al. α-Tocopherol as a modulator of smooth muscle cell proliferation. Prostaglandins, Leukotrienes and Essential Fatty Acids. 1997;57(4-5):507–514. doi: 10.1016/s0952-3278(97)90436-1.
    1. Herbet M., Izdebska M., Piątkowska-Chmiel I., et al. α-Tocopherol ameliorates redox equilibrium and reduces inflammatory response caused by chronic variable stress. BioMed Research International. 2018;2018:12. doi: 10.1155/2018/7210783.7210783
    1. Kunisaki M., Bursell S. E., Clermont A. C., et al. Vitamin E prevents diabetes-induced abnormal retinal blood flow via the diacylglycerol-protein kinase C pathway. American Journal of Physiology. Endocrinology and Metabolism. 1995;269(2):E239–E246. doi: 10.1152/ajpendo.1995.269.2.e239.
    1. Nakagawa K., Shibata A., Yamashita S., et al. In vivo angiogenesis is suppressed by unsaturated vitamin E, tocotrienol. The Journal of Nutrition. 2007;137(8):1938–1943. doi: 10.1093/jn/137.8.1938.
    1. Jarosz M., Olbert M., Wyszogrodzka G., Młyniec K., Librowski T. Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling. Inflammopharmacology. 2017;25(1):11–24. doi: 10.1007/s10787-017-0309-4.
    1. Miao X., Sun W., Miao L., et al. Zinc and diabetic retinopathy. Journal Diabetes Research. 2013;2013, article 425854:8. doi: 10.1155/2013/425854.
    1. Kogan S., Sood A., Garnick M. S. Zinc and wound healing: a review of zinc physiology and clinical applications. Wounds. 2017;29(4):102–106.
    1. Dharamdasani Detaram H., Mitchell P., Russell J., Burlutsky G., Liew G., Gopinath B. Dietary zinc intake is associated with macular fluid in neovascular age-related macular degeneration. Clinical & Experimental Ophthalmology. 2019;48(1):61–68. doi: 10.1111/ceo.13644.
    1. Rostamkhani H., Mellati A. A., Tabaei B. S., Alavi M., Mousavi S. N. Association of serum zinc and vitamin A levels with severity of retinopathy in type 2 diabetic patients: a cross-sectional study. Biological Trace Element Research. 2019;192(2):123–128. doi: 10.1007/s12011-019-01664-z.
    1. Luo Y. Y., Zhao J., Han X. Y., Zhou X. H., Wu J., Ji L. N. Relationship between serum zinc level and microvascular complications in patients with type 2 diabetes. Chinese Medical Journal. 2015;128(24):3276–3282. doi: 10.4103/0366-6999.171357.
    1. de Figueiredo Ribeiro S. M., Braga C. B. M., Peria F. M., et al. Effect of zinc supplementation on antioxidant defenses and oxidative stress markers in patients undergoing chemotherapy for colorectal cancer: a placebo-controlled, prospective randomized trial. Biological Trace Element Research. 2016;169(1):8–16. doi: 10.1007/s12011-015-0396-2.
    1. Guo C. H., Wang C. L. Effects of zinc supplementation on plasma copper/zinc ratios, oxidative stress, and immunological status in hemodialysis patients. International Journal of Medical Sciences. 2013;10(1):79–89. doi: 10.7150/ijms.5291.
    1. Ranasinghe P., Pigera S., Galappatthy P., Katulanda P., Constantine G. R. Zinc and diabetes mellitus: understanding molecular mechanisms and clinical implications. DARU Journal of Pharmaceutical Sciences. 2015;23(1):p. 44. doi: 10.1186/s40199-015-0127-4.
    1. Sharif R., Thomas P., Zalewski P., Fenech M. Zinc supplementation influences genomic stability biomarkers, antioxidant activity, and zinc transporter genes in an elderly Australian population with low zinc status. Molecular Nutrition & Food Research. 2015;59(6):1200–1212. doi: 10.1002/mnfr.201400784.
    1. Bray T. M., Bettger W. J. The physiological role of zinc as an antioxidant. Free Radical Biology and Medicine. 1990;8(3):281–291. doi: 10.1016/0891-5849(90)90076-u.
    1. Lee S. R. Critical role of zinc as either an antioxidant or a prooxidant in cellular systems. Oxidative Medicine and Cellular Longevity. 2018;2018:11. doi: 10.1155/2018/9156285.9156285
    1. Barman S., Srinivasan K. Attenuation of oxidative stress and cardioprotective effects of zinc supplementation in experimental diabetic rats. British Journal of Nutrition. 2017;117(3):335–350. doi: 10.1017/s0007114517000174.
    1. Liu Z., Wu X., Zhang T., et al. Effects of dietary copper and zinc supplementation on growth performance, tissue mineral retention, antioxidant status, and fur quality in growing-furring blue foxes (Alopex lagopus) Biological Trace Element Research. 2015;168(2):401–410. doi: 10.1007/s12011-015-0376-6.
    1. Kheirouri S., Naghizadeh S., Alizadeh M. Zinc supplementation does not influence serum levels of VEGF, BDNF, and NGF in diabetic retinopathy patients: a randomized controlled clinical trial. Nutritional Neuroscience. 2019;22(10):718–724. doi: 10.1080/1028415X.2018.1436236.
    1. Zhan J., Qin W., Zhang Y., et al. Upregulation of neuronal zinc finger protein A20 expression is required for electroacupuncture to attenuate the cerebral inflammatory injury mediated by the nuclear factor-κB signaling pathway in cerebral ischemia/reperfusion rats. Journal of Neuroinflammation. 2016;13(1):p. 258. doi: 10.1186/s12974-016-0731-3.
    1. Fujimoto S., Yasui H., Yoshikawa Y. Development of a novel antidiabetic zinc complex with an organoselenium ligand at the lowest dosage in KK-Ay mice. Journal of Inorganic Biochemistry. 2013;121:10–15. doi: 10.1016/j.jinorgbio.2012.12.008.
    1. Barman S., Srinivasan K. Zinc supplementation ameliorates diabetic cataract through modulation of crystallin proteins and polyol pathway in experimental rats. Biological Trace Element Research. 2019;187(1):212–223. doi: 10.1007/s12011-018-1373-3.
    1. Peres T. V., Schettinger M. R. C., Chen P., et al. Manganese-induced neurotoxicity: a review of its behavioral consequences and neuroprotective strategies. BMC Pharmacology and Toxicology. 2016;17(1):p. 57. doi: 10.1186/s40360-016-0099-0.
    1. Sigel A., Sigel H., Sigel R. K. O., editors. Interrelations between essential metal ions and human diseases. Springer Netherlands; 2013. (Metal Ions in Life Sciences).
    1. Salmonowicz B., Krzystek-Korpacka M., Noczyńska A. Trace elements, magnesium, and the efficacy of antioxidant systems in children with type 1 diabetes mellitus and in their siblings. Advances in Clinical and Experimental Medicine. 2014;23(2):259–268. doi: 10.17219/acem/37074.
    1. Du S., Wu X., Han T., et al. Dietary manganese and type 2 diabetes mellitus: two prospective cohort studies in China. Diabetologia. 2018;61(9):1985–1995. doi: 10.1007/s00125-018-4674-3.
    1. Jiang W.-D., Tang R. J., Liu Y., et al. Impairment of gill structural integrity by manganese deficiency or excess related to induction of oxidative damage, apoptosis and dysfunction of the physical barrier as regulated by NF-κB, caspase and Nrf2 signaling in fish. Fish & Shellfish Immunology. 2017;70:280–292. doi: 10.1016/j.fsi.2017.09.022.
    1. Burlet E., Jain S. K. Manganese supplementation increases adiponectin and lowers ICAM-1 and creatinine blood levels in Zucker type 2 diabetic rats, and downregulates ICAM-1 by upregulating adiponectin multimerization protein (DsbA-L) in endothelial cells. Molecular and Cellular Biochemistry. 2017;429(1-2):1–10. doi: 10.1007/s11010-016-2931-7.
    1. Kresovich J. K., Bulka C. M., Joyce B. T., et al. The inflammatory potential of dietary manganese in a cohort of elderly men. Biological Trace Element Research. 2018;183(1):49–57. doi: 10.1007/s12011-017-1127-7.
    1. Aguirre J. D., Culotta V. C. Battles with iron: manganese in oxidative stress protection. Journal of Biological Chemistry. 2012;287(17):13541–13548. doi: 10.1074/jbc.r111.312181.
    1. Martinez-Finley E. J., Gavin C. E., Aschner M., Gunter T. E. Manganese neurotoxicity and the role of reactive oxygen species. Free Radical Biology and Medicine. 2013;62:65–75. doi: 10.1016/j.freeradbiomed.2013.01.032.
    1. Lee S.-H., Jouihan H. A., Cooksey R. C., et al. Manganese supplementation protects against diet-induced diabetes in wild type mice by enhancing insulin secretion. Endocrinology. 2013;154(3):1029–1038. doi: 10.1210/en.2012-1445.
    1. Gomes M. B., Negrato C. A. Alpha-lipoic acid as a pleiotropic compound with potential therapeutic use in diabetes and other chronic diseases. Diabetology & Metabolic Syndrome. 2014;6(1) doi: 10.1186/1758-5996-6-80.
    1. Kim Y. S., Kim M., Choi M. Y., et al. Alpha-lipoic acid reduces retinal cell death in diabetic mice. Biochemical and Biophysical Research Communications. 2018;503(3):1307–1314. doi: 10.1016/j.bbrc.2018.07.041.
    1. Packer L. Antioxidant properties of lipoic acid and its therapeutic effects in prevention of diabetes complications and cataractsa. Annals of the New York Academy of Sciences. 1994;738(1):257–264. doi: 10.1111/j.1749-6632.1994.tb21811.x.
    1. Suh J. H., Shenvi S. V., Dixon B. M., et al. Decline in transcriptional activity of Nrf2 causes age-related loss of glutathione synthesis, which is reversible with lipoic acid. Proceedings of the National Academy of Sciences of the United States of America. 2004;101(10):3381–3386. doi: 10.1073/pnas.0400282101.
    1. Biewenga G. P., Haenen G. R. M. M., Bast A. The pharmacology of the antioxidant lipoic acid. General Pharmacology: The Vascular System. 1997;29(3):315–331. doi: 10.1016/s0306-3623(96)00474-0.
    1. Dworacka M., Chukanova G., Iskakova S., et al. New arguments for beneficial effects of alpha-lipoic acid on the cardiovascular system in the course of type 2 diabetes. European Journal of Pharmaceutical Sciences. 2018;117:41–47. doi: 10.1016/j.ejps.2018.02.009.
    1. Lee S. G., Lee C. G., Yun I. H., Hur D. Y., Yang J. W., Kim H. W. Effect of lipoic acid on expression of angiogenic factors in diabetic rat retina. Clinical & Experimental Ophthalmology. 2012;40(1):e47–e57. doi: 10.1111/j.1442-9071.2011.02695.x.
    1. Kan E., Alici Ö., Kan E. K., Ayar A. Effects of alpha-lipoic acid on retinal ganglion cells, retinal thicknesses, and VEGF production in an experimental model of diabetes. International Ophthalmology. 2017;37(6):1269–1278. doi: 10.1007/s10792-016-0396-z.
    1. Artwohl M., Muth K., Kosulin K., et al. R-(+)-α-lipoic acid inhibits endothelial cell apoptosis and proliferation: involvement of Akt and retinoblastoma protein/E2F-1. American Journal of Physiology. Endocrinology and Metabolism. 2007;293(3):E681–E689. doi: 10.1152/ajpendo.00584.2006.
    1. Chen C.-L., Cheng W. S., Chen J. L., Chiang C. H. Potential of nonoral α-lipoic acid aqueous formulations to reduce ocular microvascular complications in a streptozotocin-induced diabetic rat model. Journal of Ocular Pharmacology and Therapeutics. 2013;29(8):738–745. doi: 10.1089/jop.2012.0147.
    1. Santos J. M., Kowluru R. A. Role of mitochondria biogenesis in the metabolic memory associated with the continued progression of diabetic retinopathy and its regulation by lipoic acid. Investigative Opthalmology & Visual Science. 2011;52(12):8791–8798. doi: 10.1167/iovs.11-8203.
    1. Nebbioso M., Pranno F., Pescosolido N. Lipoic acid in animal models and clinical use in diabetic retinopathy. Expert Opinion on Pharmacotherapy. 2013;14(13):1829–1838. doi: 10.1517/14656566.2013.813483.
    1. Lin J., Bierhaus A., Bugert P., et al. Effect of R-(+)-α-lipoic acid on experimental diabetic retinopathy. Diabetologia. 2006;49(5):1089–1096. doi: 10.1007/s00125-006-0174-y.
    1. Nebbioso M., Federici M., Rusciano D., Evangelista M., Pescosolido N. Oxidative stress in preretinopathic diabetes subjects and antioxidants. Diabetes Technology & Therapeutics. 2012;14(3):257–263. doi: 10.1089/dia.2011.0172.
    1. Haritoglou C., Gerss J., Hammes H. P., Kampik A., Ulbig M. W., RETIPON Study Group Alpha-lipoic acid for the prevention of diabetic macular edema. Ophthalmologica. 2011;226(3):127–137. doi: 10.1159/000329470.
    1. Tsuda T. Curcumin as a functional food-derived factor: degradation products, metabolites, bioactivity, and future perspectives. Food & Function. 2018;9(2):705–714. doi: 10.1039/c7fo01242j.
    1. Lestari M. L. A. D., Indrayanto G. Profiles of Drug Substances, Excipients and Related Methodology. 2014. Curcumin; pp. 113–204.
    1. World Health Organization. World Health Organization; 2016. Evaluation of Certain Food Additives and Contaminants: Eightieth Report of the Joint FAO/WHO Expert Committee on Food Additives. .
    1. Radomska-Leśniewska D. M., Osiecka-Iwan A., Hyc A., Góźdź A., Dąbrowska A. M., Skopiński P. Therapeutic potential of curcumin in eye diseases. Central-European Journal of Immunology. 2019;44(2):181–189. doi: 10.5114/ceji.2019.87070.
    1. Nelson K. M., Dahlin J. L., Bisson J., Graham J., Pauli G. F., Walters M. A. The essential medicinal chemistry of curcumin. Journal of Medicinal Chemistry. 2017;60(5):1620–1637. doi: 10.1021/acs.jmedchem.6b00975.
    1. Parsamanesh N., Moossavi M., Bahrami A., Butler A. E., Sahebkar A. Therapeutic potential of curcumin in diabetic complications. Pharmacological Research. 2018;136:181–193. doi: 10.1016/j.phrs.2018.09.012.
    1. Pinlaor S., Yongvanit P., Prakobwong S., et al. Curcumin reduces oxidative and nitrative DNA damage through balancing of oxidant-antioxidant status in hamsters infected with Opisthorchis viverrini. Molecular Nutrition & Food Research. 2009;53(10):1316–1328. doi: 10.1002/mnfr.200800567.
    1. Kadam S., Kanitkar M., Dixit K., Deshpande R., Seshadri V., Kale V. Curcumin reverses diabetes-induced endothelial progenitor cell dysfunction by enhancing MnSOD expression and activity in vitro and in vivo. Journal of Tissue Engineering and Regenerative Medicine. 2018;12(7):1594–1607. doi: 10.1002/term.2684.
    1. Peddada K. V., Brown A.’., Verma V., Nebbioso M. Therapeutic potential of curcumin in major retinal pathologies. International Ophthalmology. 2019;39(3):725–734. doi: 10.1007/s10792-018-0845-y.
    1. Ran Z., Zhang Y., Wen X., Ma J. Curcumin inhibits high glucose-induced inflammatory injury in human retinal pigment epithelial cells through the ROS-PI3K/AKT/mTOR signaling pathway. Molecular Medicine Reports. 2019;19(2):1024–1031. doi: 10.3892/mmr.2018.9749.
    1. Sameermahmood Z., Balasubramanyam M., Saravanan T., Rema M. Curcumin modulates SDF-1α/CXCR4–induced migration of human retinal endothelial cells (HRECs) Investigative Opthalmology & Visual Science. 2008;49(8, article 3305) doi: 10.1167/iovs.07-0456.
    1. Nakamura S., Noguchi T., Inoue Y., et al. Nrf2 activator RS9 suppresses pathological ocular angiogenesis and hyperpermeability. Investigative Opthalmology & Visual Science. 2019;60(6):p. 1943. doi: 10.1167/iovs.18-25745.
    1. Nabavi S., Thiagarajan R., Rastrelli L., et al. Curcumin: a natural product for diabetes and its complications. Current Topics in Medicinal Chemistry. 2015;15(23):2445–2455. doi: 10.2174/1568026615666150619142519.
    1. Wang L.-L., Sun Y., Huang K., Zheng L. Curcumin, a potential therapeutic candidate for retinal diseases. Molecular Nutrition & Food Research. 2013;57(9):1557–1568. doi: 10.1002/mnfr.201200718.
    1. Krga I., Milenkovic D. Anthocyanins: from sources and bioavailability to cardiovascular health benefits and molecular mechanisms of action. Journal of Agricultural and Food Chemistry. 2019;67(7):1771–1783. doi: 10.1021/acs.jafc.8b06737.
    1. Lila M. A., Burton-Freeman B., Grace M., Kalt W. Unraveling anthocyanin bioavailability for human health. Annual Review of Food Science and Technology. 2016;7(1):375–393. doi: 10.1146/annurev-food-041715-033346.
    1. Lee Y. M., Yoon Y., Yoon H., Park H. M., Song S., Yeum K. J. Dietary anthocyanins against obesity and inflammation. Nutrients. 2017;9(10, article 1089) doi: 10.3390/nu9101089.
    1. Fang J. Bioavailability of anthocyanins. Drug Metabolism Reviews. 2014;46(4):508–520. doi: 10.3109/03602532.2014.978080.
    1. Li D., Wang P., Luo Y., Zhao M., Chen F. Health benefits of anthocyanins and molecular mechanisms: update from recent decade. Critical Reviews in Food Science and Nutrition. 2015;57(8):1729–1741. doi: 10.1080/10408398.2015.1030064.
    1. Różańska D., Regulska-Ilow B. The significance of anthocyanins in the prevention and treatment of type 2 diabetes. Advances in Clinical and Experimental Medicine. 2018;27(1):135–142. doi: 10.17219/acem/64983.
    1. Bungau S., Abdel-Daim M. M., Tit D. M., et al. Health benefits of polyphenols and carotenoids in age-related eye diseases. Oxidative Medicine and Cellular Longevity. 2019;2019:22. doi: 10.1155/2019/9783429.9783429
    1. Huang W., Yan Z., Li D., Ma Y., Zhou J., Sui Z. Antioxidant and anti-inflammatory effects of blueberry anthocyanins on high glucose-induced human retinal capillary endothelial cells. Oxidative Medicine and Cellular Longevity. 2018;2018:10. doi: 10.1155/2018/1862462.1862462
    1. Wang H., Nair M. G., Strasburg G. M., et al. Antioxidant and antiinflammatory activities of anthocyanins and their aglycon, cyanidin, from tart cherries. Journal of Natural Products. 1999;62(2):294–296. doi: 10.1021/np980501m.
    1. Aboonabi A., Singh I. Chemopreventive role of anthocyanins in atherosclerosis via activation of Nrf2-ARE as an indicator and modulator of redox. Biomedicine & Pharmacotherapy. 2015;72:30–36. doi: 10.1016/j.biopha.2015.03.008.
    1. Salehi B., Mishra A., Nigam M., et al. Resveratrol: a double-edged sword in health benefits. Biomedicine. 2018;6(3):p. 91. doi: 10.3390/biomedicines6030091.
    1. Li J., Yu S., Ying J., Shi T., Wang P. Resveratrol prevents ROS-induced apoptosis in high glucose-treated retinal capillary endothelial cells via the activation of AMPK/Sirt1/PGC-1α pathway. Oxidative Medicine and Cellular Longevity. 2017;2017:10. doi: 10.1155/2017/7584691.7584691
    1. Toro M. D., Nowomiejska K., Avitabile T., et al. Effect of resveratrol on in vitro and in vivo models of diabetic retinophathy: a systematic review. International Journal of Molecular Sciences. 2019;20(14, article 3503) doi: 10.3390/ijms20143503.
    1. Chen Y., Meng J., Li H., et al. Resveratrol exhibits an effect on attenuating retina inflammatory condition and damage of diabetic retinopathy via PON1. Experimental Eye Research. 2019;181:356–366. doi: 10.1016/j.exer.2018.11.023.
    1. Popescu M., Bogdan C., Pintea A., Rugină D., Ionescu C. Antiangiogenic cytokines as potential new therapeutic targets for resveratrol in diabetic retinopathy. Drug Design, Development and Therapy. 2018;12:1985–1996. doi: 10.2147/dddt.s156941.
    1. Zeng K., Wang Y., Yang N., et al. Resveratrol inhibits diabetic-induced Müller cells apoptosis through microRNA-29b/specificity protein 1 pathway. Molecular Neurobiology. 2017;54(6):4000–4014. doi: 10.1007/s12035-016-9972-5.
    1. Seong H., Ryu J., Yoo W. S., et al. Resveratrol ameliorates retinal ischemia/reperfusion injury in C57BL/6J mice via downregulation of caspase-3. Current Eye Research. 2017;42(12):1650–1658. doi: 10.1080/02713683.2017.1344713.
    1. Guo H., Ling W. The update of anthocyanins on obesity and type 2 diabetes: experimental evidence and clinical perspectives. Reviews in Endocrine & Metabolic Disorders. 2015;16(1):1–13. doi: 10.1007/s11154-014-9302-z.
    1. Wang Y., Hekimi S. Understanding ubiquinone. Trends in Cell Biology. 2016;26(5):367–378. doi: 10.1016/j.tcb.2015.12.007.
    1. Žmitek K., Pogačnik T., Mervic L., Žmitek J., Pravst I. The effect of dietary intake of coenzyme Q10 on skin parameters and condition: results of a randomised, placebo-controlled, double-blind study. BioFactors. 2017;43(1):132–140. doi: 10.1002/biof.1316.
    1. Garrido-Maraver J. Clinical applications of coenzyme Q10. Frontiers in Bioscience. 2014;19(4):p. 619. doi: 10.2741/4231.
    1. Lim S. C., Tan H. H., Goh S. K., et al. Oxidative burden in prediabetic and diabetic individuals: evidence from plasma coenzyme Q10. Diabetic Medicine. 2006;23(12):1344–1349. doi: 10.1111/j.1464-5491.2006.01996.x.
    1. Lopez-Moreno J., Quintana-Navarro G. M., Delgado-Lista J., et al. Mediterranean diet supplemented with coenzyme Q10 Modulates the postprandial metabolism of advanced glycation end products in elderly men and women. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences. 2016;73(3):340–346. doi: 10.1093/gerona/glw214.
    1. Yen C. H., Chu Y. J., Lee B. J., Lin Y. C., Lin P. T. Effect of liquid ubiquinol supplementation on glucose, lipids and antioxidant capacity in type 2 diabetes patients: a double-blind, randomised, placebo-controlled trial. British Journal of Nutrition. 2018;120(1):57–63. doi: 10.1017/S0007114518001241.
    1. Gholnari T., Aghadavod E., Soleimani A., Hamidi G. A., Sharifi N., Asemi Z. The effects of coenzyme Q10 supplementation on glucose metabolism, lipid profiles, inflammation, and oxidative stress in patients with diabetic nephropathy: a randomized, double-blind, placebo-controlled trial. Journal of the American College of Nutrition. 2017;37(3):188–193. doi: 10.1080/07315724.2017.1386140.
    1. Rodríguez-Carrizalez A. D., Castellanos-González J. A., Martínez-Romero E. C., et al. The effect of ubiquinone and combined antioxidant therapy on oxidative stress markers in non-proliferative diabetic retinopathy: a phase IIa, randomized, double-blind, and placebo-controlled study. Redox Report. 2015;21(4):155–163. doi: 10.1179/1351000215y.0000000040.
    1. Zhang X., Tohari A. M., Marcheggiani F., et al. Therapeutic potential of co-enzyme Q10 in retinal diseases. Current Medicinal Chemistry. 2017;24(39):4329–4339. doi: 10.2174/0929867324666170801100516.
    1. Behl T., Kotwani A. Omega-3 fatty acids in prevention of diabetic retinopathy. Journal of Pharmacy and Pharmacology. 2017;69(8):946–954. doi: 10.1111/jphp.12744.
    1. Gong Y., Fu Z., Liegl R., Chen J., Hellström A., Smith L. E. ω-3 and ω-6 long-chain PUFAs and their enzymatic metabolites in neovascular eye diseases. The American Journal of Clinical Nutrition. 2017;106(1):16–26. doi: 10.3945/ajcn.117.153825.
    1. Connor K. M., SanGiovanni J. P., Lofqvist C., et al. Increased dietary intake of omega-3-polyunsaturated fatty acids reduces pathological retinal angiogenesis. Nature Medicine. 2007;13(7):868–873. doi: 10.1038/nm1591.
    1. Dátilo M. N., Sant’Ana M. R., Formigari G. P., et al. Omega-3 from flaxseed oil protects obese mice against diabetic retinopathy through GPR120 receptor. Scientific Reports. 2018;8(1, article 14318) doi: 10.1038/s41598-018-32553-5.
    1. Lepretti M., Martucciello S., Burgos Aceves M., Putti R., Lionetti L. Omega-3 fatty acids and insulin resistance: focus on the regulation of mitochondria and endoplasmic reticulum stress. Nutrients. 2018;10(3):p. 350. doi: 10.3390/nu10030350.
    1. Sala-Vila A., Díaz-López A., Valls-Pedret C., et al. Dietary marine ω-3 fatty acids and incident sight-threatening retinopathy in middle-aged and older individuals with type 2 diabetes. JAMA Ophthalmology. 2016;134(10):1142–1149. doi: 10.1001/jamaophthalmol.2016.2906.
    1. Yu Z., Gong C., Lu B., et al. Dendrobium chrysotoxum Lindl. alleviates diabetic retinopathy by preventing retinal inflammation and tight junction protein decrease. Journal Diabetes Research. 2015;2015, article 518317:10. doi: 10.1155/2015/518317.
    1. Gong Y.-Q., Fan Y., Wu D.-Z., Yang H., Hu Z.-B., Wang Z.-T. In vivo and in vitro evaluation of erianin, a novel anti-angiogenic agent. European Journal of Cancer. 2004;40(10):1554–1565. doi: 10.1016/j.ejca.2004.01.041.
    1. Zhang T., Ouyang H., Mei X., et al. Erianin alleviates diabetic retinopathy by reducing retinal inflammation initiated by microglial cellsviainhibiting hyperglycemia-mediated ERK1/2–NF-κB signaling pathway. The FASEB Journal. 2019;33(11):11776–11790. doi: 10.1096/fj.201802614rrr.
    1. do Amaral F. G., Cipolla-Neto J. A brief review about melatonin, a pineal hormone. Archives of Endocrinology and Metabolism. 2018;62(4):472–479. doi: 10.20945/2359-3997000000066.
    1. Tuli H. S., Kashyap D., Sharma A. K., Sandhu S. S. Molecular aspects of melatonin (MLT)-mediated therapeutic effects. Life Sciences. 2015;135:147–157. doi: 10.1016/j.lfs.2015.06.004.
    1. Dehdashtian E., Mehrzadi S., Yousefi B., et al. Diabetic retinopathy pathogenesis and the ameliorating effects of melatonin; involvement of autophagy, inflammation and oxidative stress. Life Sciences. 2018;193:20–33. doi: 10.1016/j.lfs.2017.12.001.
    1. Djordjevic B., Cvetkovic T., Stoimenov T. J., et al. Oral supplementation with melatonin reduces oxidative damage and concentrations of inducible nitric oxide synthase, VEGF and matrix metalloproteinase 9 in the retina of rats with streptozotocin/nicotinamide induced pre-diabetes. European Journal of Pharmacology. 2018;833:290–297. doi: 10.1016/j.ejphar.2018.06.011.
    1. del Valle Bessone C., Fajreldines H. D., de Barboza G. E. D., et al. Protective role of melatonin on retinal ganglionar cell: in vitro an in vivo evidences. Life Sciences. 2019;218:233–240. doi: 10.1016/j.lfs.2018.12.053.
    1. Ba-Ali S., Brøndsted A. E., Andersen H. U., Sander B., Jennum P. J., Lund-Andersen H. Assessment of diurnal melatonin, cortisol, activity, and sleep−wake cycle in patients with and without diabetic retinopathy. Sleep Medicine. 2018;54:35–42. doi: 10.1016/j.sleep.2018.10.018.
    1. Hussain S. A., Khadim H. M., Khalaf B. H., Ismail S. H., Hussein K. I., Sahib A. S. Effects of melatonin and zinc on glycemic control in type 2 diabetic patients poorly controlled with metformin. Saudi Medical Journal. 2006;27(10):1483–1488.
    1. Bucolo C., Marrazzo G., Platania C. B. M., Drago F., Leggio G. M., Salomone S. Fortified extract of red berry, Ginkgo biloba, and white willow bark in experimental early diabetic retinopathy. Journal Diabetes Research. 2013;2013, article 432695:6. doi: 10.1155/2013/432695.
    1. Jin D., Tian J., Bao Q., et al. Does adjuvant treatment with Chinese herbal medicine to antidiabetic agents have additional benefits in patients with type 2 diabetes? A system review and meta-analysis of randomized controlled trials. Evidence-based Complementary and Alternative Medicine. 2019;2019:14. doi: 10.1155/2019/1825750.1825750
    1. Tabatabaei-Malazy O., Ardeshirlarijani E., Namazi N., Nikfar S., Jalili R. B., Larijani B. Dietary antioxidative supplements and diabetic retinopathy; a systematic review. Journal of Diabetes & Metabolic Disorders. 2019;18(2):705–716. doi: 10.1007/s40200-019-00434-x.
    1. Farvid M. S., Homayouni F., Amiri Z., Adelmanesh F. Improving neuropathy scores in type 2 diabetic patients using micronutrients supplementation. Diabetes Research and Clinical Practice. 2011;93(1):86–94. doi: 10.1016/j.diabres.2011.03.016.
    1. Title L. M., Cummings P. M., Giddens K., Nassar B. A. Oral glucose loading acutely attenuates endothelium-dependent vasodilation in healthy adults without diabetes: an effect prevented by vitamins C and E. Journal of the American College of Cardiology. 2000;36(7):2185–2191. doi: 10.1016/s0735-1097(00)00980-3.
    1. Narotzki B., Reznick A. Z., Navot-Mintzer D., Dagan B., Levy Y. Green tea and vitamin E enhance exercise-induced benefits in body composition, glucose homeostasis, and antioxidant status in elderly men and women. Journal of the American College of Nutrition. 2013;32(1):31–40. doi: 10.1080/07315724.2013.767661.
    1. Galasko D. R., Peskind E., Clark C. M., et al. Antioxidants for Alzheimer disease: a randomized clinical trial with cerebrospinal fluid biomarker measures. Archives of Neurology. 2012;69(7):836–841. doi: 10.1001/archneurol.2012.85.
    1. Polanski J. F., Cruz O. L. Evaluation of antioxidant treatment in presbyacusis: prospective, placebo-controlled, double-blind, randomised trial. The Journal of Laryngology & Otology. 2013;127(2):134–141. doi: 10.1017/s0022215112003118.
    1. Rodríguez-Carrizalez A. D., Castellanos-González J. A., Martínez-Romero E. C., et al. The antioxidant effect of ubiquinone and combined therapy on mitochondrial function in blood cells in non-proliferative diabetic retinopathy: a randomized, double-blind, phase IIa, placebo-controlled study. Redox Report. 2016;21(4):190–195. doi: 10.1179/1351000215y.0000000032.
    1. Lafuente M., Ortín L., Argente M., et al. Three-year outcomes in a randomized single-blind controlled trial of intravitreal ranibizumab and oral supplementation with docosahexaenoic acid and antioxidants for diabetic macular edema. Retina. 2019;39(6):1083–1090. doi: 10.1097/IAE.0000000000002114.
    1. Kowluru R. A., Zhong Q., Santos J. M., Thandampallayam M., Putt D., Gierhart D. L. Beneficial effects of the nutritional supplements on the development of diabetic retinopathy. Nutrition and Metabolism. 2014;11(1):p. 8. doi: 10.1186/1743-7075-11-8.
    1. Motawi T. K., Darwish H. A., Hamed M. A., El-Rigal N. S., Naser A. F. A. A therapeutic Insight of niacin and coenzyme Q10 against diabetic encephalopathy in rats. Molecular Neurobiology. 2017;54(3):1601–1611. doi: 10.1007/s12035-016-9765-x.
    1. Wattanathorn J., Thiraphatthanavong P., Thukham-Mee W., Muchimapura S., Wannanond P., Tong-Un T. Anticataractogenesis and Antiretinopathy Effects of the Novel Protective Agent Containing the Combined Extract of Mango and Vietnamese Coriander in STZ-Diabetic Rats. Oxidative Medicine and Cellular Longevity. 2017;2017:13. doi: 10.1155/2017/5290161.5290161
    1. Ahmed T., Archie S. R., Faruk A., Chowdhury F. A., Al Shoyaib A., Ahsan C. R. Evaluation of the anti-inflammatory activities of diclofenac sodium, prednisolone and atorvastatin in combination with ascorbic acid. Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry. 2019;18 doi: 10.2174/1871523018666190514112048.
    1. Yang A. J. T., Frendo-Cumbo S., MacPherson R. E. K. Resveratrol and metformin recover prefrontal cortex AMPK activation in diet-induced obese mice but reduce BDNF and synaptophysin protein content. Journal of Alzheimer's Disease. 2019;71(3):945–956. doi: 10.3233/jad-190123.
    1. Gurreri A., Pazzaglia A., Schiavi C. Role of statins and ascorbic acid in the natural history of diabetic retinopathy: a new, affordable therapy? Ophthalmic Surgery, Lasers & Imaging Retina. 2019;50(5):S23–S27. doi: 10.3928/23258160-20190108-06.
    1. Wang Y., Tao J., Yao Y. Prostaglandin E2 Activates NLRP3 inflammasome in endothelial cells to promote diabetic retinopathy. Hormone and Metabolic Research. 2018;50(9):704–710. doi: 10.1055/a-0664-0699.
    1. Semeraro F., Russo A., Gambicorti E., et al. Efficacy and vitreous levels of topical NSAIDs. Expert Opinion on Drug Delivery. 2015;12(11):1767–1782. doi: 10.1517/17425247.2015.1068756.
    1. Russo A., Morescalchi F., Vezzoli S., et al. Reduction of vitreous prostaglandin E2 levels after topical administration of indomethacin 0.5%, bromfenac 0.09%, and nepafenac 0.1%. Retina. 2016;36(6):1227–1231. doi: 10.1097/iae.0000000000000860.
    1. Friedman S. M., Almukhtar T. H., Baker C. W., et al. Topical nepafenec in eyes with noncentral diabetic macular edema. Retina. 2015;35(5):944–956. doi: 10.1097/IAE.0000000000000403.
    1. Evliyaoğlu F., Akpolat Ç., Kurt M. M., Çekiç O., Nuri Elçioğlu M. Retinal vascular caliber changes after topical nepafenac treatment for diabetic macular edema. Current Eye Research. 2017;43(3):357–361. doi: 10.1080/02713683.2017.1399425.
    1. Grzybowski A., Adamiec-Mroczek J. Topical nonsteroidal anti-inflammatory drugs for cystoid macular edema prevention in patients with diabetic retinopathy. American Journal of Ophthalmology. 2017;181:xiv–xvi. doi: 10.1016/j.ajo.2017.07.019.
    1. Tang H., Li G., Zhao Y., et al. Comparisons of diabetic retinopathy events associated with glucose-lowering drugs in patients with type 2 diabetes mellitus: a network meta-analysis. Diabetes, Obesity and Metabolism. 2018;20(5):1262–1279. doi: 10.1111/dom.13232.
    1. Kang E. Y.-C., Chen T. H., Garg S. J., et al. Association of statin therapy with prevention of vision-threatening diabetic retinopathy. JAMA Ophthalmology. 2019;137(4):363–371. doi: 10.1001/jamaophthalmol.2018.6399.
    1. Vail D., Callaway N. F., Ludwig C. A., Saroj N., Moshfeghi D. M. Lipid-Lowering Medications Are Associated with Lower Risk of Retinopathy and Ophthalmic Interventions among United States Patients with Diabetes. American Journal of Ophthalmology. 2019;207:378–384. doi: 10.1016/j.ajo.2019.05.029.
    1. Wilkinson-Berka J. L., Suphapimol V., Jerome J. R., Deliyanti D., Allingham M. J. Angiotensin II and aldosterone in retinal vasculopathy and inflammation. Experimental Eye Research. 2019;187, article 107766 doi: 10.1016/j.exer.2019.107766.
    1. Phipps J. A., Dixon M. A., Jobling A. I., et al. The renin-angiotensin system and the retinal neurovascular unit: a role in vascular regulation and disease. Experimental Eye Research. 2019;187, article 107753 doi: 10.1016/j.exer.2019.107753.
    1. Wang B., Wang F., Zhang Y., et al. Effects of RAS inhibitors on diabetic retinopathy: a systematic review and meta-analysis. The Lancet Diabetes & Endocrinology. 2015;3(4):263–274. doi: 10.1016/s2213-8587(14)70256-6.
    1. Liu Q., Zhang F., Zhang X., et al. Fenofibrate ameliorates diabetic retinopathy by modulating Nrf2 signaling and NLRP3 inflammasome activation. Molecular and Cellular Biochemistry. 2018;445(1-2):105–115. doi: 10.1007/s11010-017-3256-x.
    1. Morgan C. L., Owens D. R., Aubonnet P., et al. Primary prevention of diabetic retinopathy with fibrates: a retrospective, matched cohort study. BMJ Open. 2013;3(12, article e004025) doi: 10.1136/bmjopen-2013-004025.
    1. Shi R., Zhao L., Qi Y. The effect of fenofibrate on early retinal nerve fiber layer loss in type 2 diabetic patients: a case-control study. BMC Ophthalmology. 2018;18(1):p. 100. doi: 10.1186/s12886-018-0769-3.
    1. Stewart S., Lois N. Fenofibrate for diabetic retinopathy. Asia-Pacific Journal of Ophthalmology. 2019;7(6):422–426. doi: 10.22608/apo.2018288.
    1. Knickelbein J. E., Abbott A. B., Chew E. Y. Fenofibrate and diabetic retinopathy. Current Diabetes Reports. 2016;16(10):p. 90. doi: 10.1007/s11892-016-0786-7.
    1. Su X. J., Han L., Qi Y. X., Liu H. W. Efficacy of fenofibrate for diabetic retinopathy: a systematic review protocol. Medicine. 2019;98(14, article e14999) doi: 10.1097/MD.0000000000014999.
    1. Santos A. R., Ribeiro L., Bandello F., et al. Functional and structural findings of neurodegeneration in early stages of diabetic retinopathy: cross-sectional analyses of baseline data of the EUROCONDOR Project. Diabetes. 2017;66(9):2503–2510. doi: 10.2337/db16-1453.
    1. Simó-Servat O., Hernández C., Simó R. Somatostatin and diabetic retinopathy: an evolving story. Endocrine. 2018;60(1):1–3. doi: 10.1007/s12020-018-1561-0.
    1. US Food and Drug Administration. D ALPHAGAN® (brimonidine tartrate ophthalmic solution) 2016. .
    1. Gupta P. C., Sood S., Narang S., Ichhpujani P. Role of brimonidine in the treatment of clinically significant macular edema with ischemic changes in diabetic maculopathy. International Ophthalmology. 2014;34(4):787–792. doi: 10.1007/s10792-013-9871-y.
    1. Grauslund J., Frydkjaer-Olsen U., Peto T., et al. Topical treatment with brimonidine and somatostatin causes retinal vascular dilation in patients with early diabetic retinopathy from the EUROCONDOR. Investigative Opthalmology & Visual Science. 2019;60(6):p. 2257. doi: 10.1167/iovs.18-26487.
    1. Simó R., Hernández C., Porta M., et al. Effects of topically administered neuroprotective drugs in early stages of diabetic retinopathy: Results of the EUROCONDOR Clinical Trial. Diabetes. 2019;68(2):457–463. doi: 10.2337/db18-0682.
    1. Honasoge A., Nudleman E., Smith M., Rajagopal R. Emerging insights and interventions for diabetic retinopathy. Current Diabetes Reports. 2019;19(10):p. 100. doi: 10.1007/s11892-019-1218-2.
    1. Nayak K., Misra M. A review on recent drug delivery systems for posterior segment of eye. Biomedicine & Pharmacotherapy. 2018;107:1564–1582. doi: 10.1016/j.biopha.2018.08.138.
    1. Das A., McGuire P. G., Monickaraj F. Novel pharmacotherapies in diabetic retinopathy: current status and what’s in the horizon? Indian Journal of Ophthalmology. 2016;64(1):4–13. doi: 10.4103/0301-4738.178154.
    1. Jiang S., Franco Y. L., Zhou Y., Chen J. Nanotechnology in retinal drug delivery. International Journal of Ophthalmology. 2018;11(6):1038–1044. doi: 10.18240/ijo.2018.06.23.
    1. Whitehead M., Osborne A., Widdowson P. S., Yu-Wai-Man P., Martin K. R. Angiopoietins in diabetic retinopathy: current understanding and therapeutic potential. Journal Diabetes Research. 2019;2019, article 5140521:9. doi: 10.1155/2019/5140521.
    1. Bolinger M. T., Antonetti D. A. Moving past anti-VEGF: novel therapies for treating diabetic retinopathy. International Journal of Molecular Sciences. 2016;17(9):p. 1498. doi: 10.3390/ijms17091498.
    1. Campbell M., Doyle S. L. Current perspectives on established and novel therapies for pathological neovascularization in retinal disease. Biochemical Pharmacology. 2019;164:321–325. doi: 10.1016/j.bcp.2019.04.029.
    1. Dong Y., Wan G., Yan P., Qian C., Li F., Peng G. Fabrication of resveratrol coated gold nanoparticles and investigation of their effect on diabetic retinopathy in streptozotocin induced diabetic rats. Journal of Photochemistry and Photobiology B: Biology. 2019;195:51–57. doi: 10.1016/j.jphotobiol.2019.04.012.
    1. Elbana K. A., Salem H. M., Abdel Fattah N. R., Etman E. Serum pentraxin 3 level as a recent biomarker of diabetic retinopathy in Egyptian patients with diabetes. Diabetes and Metabolic Syndrome: Clinical Research and Reviews. 2019;13(4):2361–2364. doi: 10.1016/j.dsx.2019.06.007.

Source: PubMed

3
Abonnieren