Oxidative Stress as the Main Target in Diabetic Retinopathy Pathophysiology

Olvera-Montaño Cecilia, Castellanos-González José Alberto, Navarro-Partida José, Cardona-Muñoz Ernesto Germán, López-Contreras Ana Karen, Roman-Pintos Luis Miguel, Robles-Rivera Ricardo Raúl, Rodríguez-Carrizalez Adolfo Daniel, Olvera-Montaño Cecilia, Castellanos-González José Alberto, Navarro-Partida José, Cardona-Muñoz Ernesto Germán, López-Contreras Ana Karen, Roman-Pintos Luis Miguel, Robles-Rivera Ricardo Raúl, Rodríguez-Carrizalez Adolfo Daniel

Abstract

Diabetic retinopathy (DR) is one of the most common complications of diabetes mellitus (DM) causing vision impairment even at young ages. There are numerous mechanisms involved in its development such as inflammation and cellular degeneration leading to endothelial and neural damage. These mechanisms are interlinked thus worsening the diabetic retinopathy outcome. In this review, we propose oxidative stress as the focus point of this complication onset.

Conflict of interest statement

Authors declare that they have no conflicts of interest to report.

Figures

Figure 1
Figure 1
Damage at each retinal layer. A series of events occur in early DR development. Neurodegeneration of horizontal, bipolar, amacrine, and ganglion cells. These damages may be determined by proNGF concentrations as NLRP3 and NLRP1 are related to eye degenerative diseases. NFL: nerve fiber layer; GCL: ganglion cell layer; IPL: inner plexiform layer; INL: inner nuclear layer; ∗OPL: outer plexiform layer; ONL: outer nuclear layer; PL: photoreceptor layer.
Figure 2
Figure 2
Glucose metabolic pathways in the hyperglycemic milieu, oxidative stress in diabetic retinopathy, and antioxidant targets. In hyperglycemic states, different pathways were activated producing ROS which enhance inflammatory, apoptotic, and degeneration pathways, ultimately leading to the appearance of diabetic retinopathy clinical characteristics. Some antioxidant substances are able to interact with ROS (xanthophylls, vitamins C and E, and anthocyanin); others function as cofactors to enhance antioxidant enzymes (Cu, Zn, and vitamins E and C), and others are capable of inhibiting the expression of proinflammatory and prodegeneration factors (curcumin and lutein). Finally, all of them interfere in diabetic retinopathy development.
Figure 3
Figure 3
The ROS role in inflammation and pyroptosis. ROS augments NF-κB production which promotes proinflammatory mediators favoring the expression of VEGF. VEGF translocates NF-κB into the nucleus, and NF-κB activate NLRP3 with caspase cleavage leading to cytokine release. NLRP3 inflammasome has been associated to diabetic retinopathy by Müller pyroptosis by the caspase-1/IL-1beta pathway. NF-κB: nuclear factor kappa B; COX-2: cyclooxygenase-2; VEGF: vascular endothelial growth factor.
Figure 4
Figure 4
The ROS role in autophagy. ROS upregulate MMP9 and MMP2 that leads to mitochondrial membrane potential impairment. When a mithochondrion malfunctions, autophagy (mitophagy) is activated, though in high stress conditions, caspases inactivate mitophagy and activate apoptosis pathways.
Figure 5
Figure 5
The ROS role in neurodegeneration. In physiological conditions, NGF activates VEGF to promote angiogenesis and protect nerves from hypoxia and ROS inhibits NGF formation from its precursor which leads to neural apoptosis. ROS activate ZNRF1 that provokes neurodegeneration; at the same time, TNF-α activates apoptosis via metalloproteinase/caspase pathway. ZNRF1: zinc and ring finger-1; NGF: nerve growth factor; VEGF: vascular endothelial growth factor; MMP: matrix metalloproteinases; TNF-α: tumor necrosis factor-α.

References

    1. Shaw J. E., Sicree R. A., Zimmet P. Z. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Research and Clinical Practice. 2010;87(1):4–14. doi: 10.1016/j.diabres.2009.10.007.
    1. Yuan T., Yang T., Chen H., et al. New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis. Redox Biology. 2019;20:247–260. doi: 10.1016/j.redox.2018.09.025.
    1. Zheng Y., He M., Congdon N. The worldwide epidemic of diabetic retinopathy. Indian Journal of Ophthalmology. 2012;60(5):428–431. doi: 10.4103/0301-4738.100542.
    1. Distefano L. N., Garcia-Arumi J., Martinez-Castillo V., Boixadera A. Combination of anti-VEGF and laser photocoagulation for diabetic macular edema: a review. Journal of Ophthalmology. 2017;2017:7. doi: 10.1155/2017/2407037.2407037
    1. Claramunt J. Diabetic retinopathy. Revista Médica Clínica Las Condes. 2009;20(5):670–679.
    1. Koopman W. J. H., Nijtmans L. G. J., Dieteren C. E. J., et al. Mammalian mitochondrial complex I: biogenesis, regulation, and reactive oxygen species generation. Antioxidants & Redox Signaling. 2010;12(12):1431–1470. doi: 10.1089/ars.2009.2743.
    1. Park S., Kang H. J., Jeon J. H., Kim M. J., Lee I. K. Recent advances in the pathogenesis of microvascular complications in diabetes. Archives of Pharmacal Research. 2019;42(3):252–262. doi: 10.1007/s12272-019-01130-3.
    1. Barrett E. J., Liu Z., Khamaisi M., et al. Diabetic microvascular disease: an Endocrine Society scientific statement. The Journal of Clinical Endocrinology & Metabolism. 2017;102(12):4343–4410. doi: 10.1210/jc.2017-01922.
    1. Aghadavod E., Khodadadi S., Baradaran A., Nasri P., Bahmani M., Rafieian-Kopaei M. Role of oxidative stress and inflammatory factors in diabetic kidney disease. Iranian Journal of Kidney Diseases. 2016;10(6):337–343.
    1. Jha J. C., Banal C., Chow B. S. M., Cooper M. E., Jandeleit-Dahm K. Diabetes and kidney disease: role of oxidative stress. Antioxidants & Redox Signaling. 2016;25(12):657–684. doi: 10.1089/ars.2016.6664.
    1. Sifuentes-Franco S., Pacheco-Moisés F. P., Rodríguez-Carrizalez A. D., Miranda-Díaz A. G. The role of oxidative stress, mitochondrial function, and autophagy in diabetic polyneuropathy. Journal of Diabetes Research. 2017;2017:15. doi: 10.1155/2017/1673081.1673081
    1. Weng L., Zhang F., Wang R., Ma W., Song Y. A review on protective role of genistein against oxidative stress in diabetes and related complications. Chemico-Biological Interactions. 2019;310, article 108665 doi: 10.1016/j.cbi.2019.05.031.
    1. Bao L., Li J., Zha D., et al. Chlorogenic acid prevents diabetic nephropathy by inhibiting oxidative stress and inflammation through modulation of the Nrf2/HO-1 and NF-ĸB pathways. International Immunopharmacology. 2018;54:245–253. doi: 10.1016/j.intimp.2017.11.021.
    1. Rossino M. G., Casini G. Nutraceuticals for the treatment of diabetic retinopathy. Nutrients. 2019;11(4):p. 771. doi: 10.3390/nu11040771.
    1. Laddha A. P., Kulkarni Y. A. Tannins and vascular complications of diabetes: an update. Phytomedicine. 2019;56:229–245. doi: 10.1016/j.phymed.2018.10.026.
    1. Whitehead M., Wickremasinghe S., Osborne A., van Wijngaarden P., Martin K. R. Diabetic retinopathy: a complex pathophysiology requiring novel therapeutic strategies. Expert Opinion on Biological Therapy. 2018;18(12):1257–1270. doi: 10.1080/14712598.2018.1545836.
    1. Lehninger A., Nelson D. Lehninger Principles of Biochemistry. 18 ed. New York: Worth Publishers; 2000.
    1. Heng L. Z., Comyn O., Peto T., et al. Diabetic retinopathy: pathogenesis, clinical grading, management and future developments. Diabetic Medicine. 2013;30(6):640–650. doi: 10.1111/dme.12089.
    1. Behl T., Kotwani A. Exploring the various aspects of the pathological role of vascular endothelial growth factor (VEGF) in diabetic retinopathy. Pharmacological Research. 2015;99:137–148. doi: 10.1016/j.phrs.2015.05.013.
    1. Phillips S. A., Thornalley P. J. The formation of methylglyoxal from triose phosphates: Investigation using a specific assay for methylglyoxal. European Journal of Biochemistry. 1993;212(1):101–105. doi: 10.1111/j.1432-1033.1993.tb17638.x.
    1. Schlotterer A., Kolibabka M., Lin J., et al. Methylglyoxal induces retinopathy-type lesions in the absence of hyperglycemia: studies in a rat model. The FASEB Journal. 2019;33(3):4141–4153. doi: 10.1096/fj.201801146rr.
    1. Akimoto Y., Kreppel L. K., Hirano H., Hart G. W. Hyperglycemia and the O-GlcNAc transferase in rat aortic smooth muscle cells: elevated expression and altered patterns of O-GlcNAcylation. Archives of Biochemistry and Biophysics. 2001;389(2):166–175. doi: 10.1006/abbi.2001.2331.
    1. dela Justina V., Gonçalves J. S., de Freitas R. A., et al. Increased O-linked N-acetylglucosamine modification of NF-ĸB and augmented cytokine production in the placentas from hyperglycemic rats. Inflammation. 2017;40(5):1773–1781. doi: 10.1007/s10753-017-0620-7.
    1. Choudhuri S., Chowdhury I. H., Das S., et al. Role of NF-κB activation and VEGF gene polymorphisms in VEGF up regulation in non-proliferative and proliferative diabetic retinopathy. Molecular and Cellular Biochemistry. 2015;405(1-2):265–279. doi: 10.1007/s11010-015-2417-z.
    1. Murakami T., Felinski E. A., Antonetti D. A. Occludin phosphorylation and ubiquitination regulate tight junction trafficking and vascular endothelial growth factor-induced permeability. Journal of Biological Chemistry. 2009;284(31):21036–21046. doi: 10.1074/jbc.M109.016766.
    1. Hendrick A. M., Gibson M. V., Kulshreshtha A. Diabetic retinopathy. Primary Care: Clinics in Office Practice. 2015;42(3):451–464. doi: 10.1016/j.pop.2015.05.005.
    1. Devi T. S., Lee I., Hüttemann M., Kumar A., Nantwi K. D., Singh L. P. TXNIP links innate host defense mechanisms to oxidative stress and inflammation in retinal Muller glia under chronic hyperglycemia: implications for diabetic retinopathy. Experimental Diabetes Research. 2012;2012:19. doi: 10.1155/2012/438238.438238
    1. Bain S. C., Klufas M. A., Ho A., Matthews D. R. Worsening of diabetic retinopathy with rapid improvement in systemic glucose control: a review. Diabetes, Obesity and Metabolism. 2019;21(3):454–466. doi: 10.1111/dom.13538.
    1. Ahsan H. Diabetic retinopathy – biomolecules and multiple pathophysiology. Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2015;9(1):51–54. doi: 10.1016/j.dsx.2014.09.011.
    1. Packer L., Cadenas E. Oxidants and antioxidants revisited. New concepts of oxidative stress. Free Radical Research. 2007;41(9):951–952. doi: 10.1080/10715760701490975.
    1. Miyamoto N., de Kozak Y., Jeanny J. C., et al. Placental growth factor-1 and epithelial haemato–retinal barrier breakdown: potential implication in the pathogenesis of diabetic retinopathy. Diabetologia. 2007;50(2):461–470. doi: 10.1007/s00125-006-0539-2.
    1. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414(6865):813–820. doi: 10.1038/414813a.
    1. Giacco F., Brownlee M. Oxidative stress and diabetic complications. Circulation Research. 2010;107(9):1058–1070. doi: 10.1161/CIRCRESAHA.110.223545.
    1. Yan L.-J. Redox imbalance stress in diabetes mellitus: role of the polyol pathway. Animal Models and Experimental Medicine. 2018;1(1):7–13. doi: 10.1002/ame2.12001.
    1. Aldieri E., Riganti C., Polimeni M., et al. Classical inhibitors of NOX NAD(P)H oxidases are not specific. Current Drug Metabolism. 2008;9(8):686–696. doi: 10.2174/138920008786049285.
    1. Cumaoǧlu A., Cevik Ç. E., Rackova L., Ari N., Karasu Ç. I. Effects of antioxidant stobadine on protein carbonylation, advanced oxidation protein products and reductive capacity of liver in streptozotocin-diabetic rats: role of oxidative/nitrosative stress. Biofactors. 2007;30(3):171–178. doi: 10.1002/biof.5520300304.
    1. Gomes A. P., Price N. L., Ling A. J. Y., et al. Declining NAD+ induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell. 2013;155(7):1624–1638. doi: 10.1016/j.cell.2013.11.037.
    1. Ido Y., Williamson J. R. Hyperglycemic cytosolic reductive stress ‘pseudohypoxia’: implications for diabetic retinopathy. Investigative Ophthalmology & Visual Science. 1997;38(8):1467–1470.
    1. Chung S. S. M., Ho E. C. M., Lam K. S. L., Chung S. K. Contribution of polyol pathway to diabetes-induced oxidative stress. Journal of the American Society of Nephrology. 2003;14(90003):233S–2236. doi: 10.1097/01.ASN.0000077408.15865.06.
    1. Gugliucci A. Formation of fructose-mediated advanced glycation end products and their roles in metabolic and inflammatory diseases. Advances in Nutrition: An International Review Journal. 2017;8(1):54–62. doi: 10.3945/an.116.013912.
    1. Saxena R., Singh D., Saklani R., Gupta S. K. Clinical biomarkers and molecular basis for optimized treatment of diabetic retinopathy: current status and future prospects. Eye and Brain. 2016;8:1–13. doi: 10.2147/eb.s69185.
    1. Obrosova I., Cao X., Greene D. A., Stevens M. J. Diabetes-induced changes in lens antioxidant status, glucose utilization and energy metabolism: effect of DL-α-lipoic acid. Diabetologia. 1998;41(12):1442–1450. doi: 10.1007/s001250051090.
    1. Jedziniak J. A., Chylack L. T., Jr., Cheng H. M., Gillis M. K., Kalustian A. A., Tung W. H. The sorbitol pathway in the human lens: aldose reductase and polyol dehydrogenase. Investigative Ophthalmology & Visual Science. 1981;20(3):314–326.
    1. Srinivasan V., Sandhya N., Sampathkumar R., Farooq S., Mohan V., Balasubramanyam M. Glutamine fructose-6-phosphate amidotransferase (GFAT) gene expression and activity in patients with type 2 diabetes: inter-relationships with hyperglycaemia and oxidative stress. Clinical Biochemistry. 2007;40(13-14):952–957. doi: 10.1016/j.clinbiochem.2007.05.002.
    1. Das Evcimen N., King G. The role of protein kinase C activation and the vascular complications of diabetes. Pharmacological Research. 2007;55(6):498–510. doi: 10.1016/j.phrs.2007.04.016.
    1. Liu Z. C., Yu E. H., Liu W., Liu X. C., Tang S. B., Zhu B. H. Translocation of protein kinase C δ contributes to the moderately high glucose-, but not hypoxia-induced proliferation in primary cultured human retinal endothelial cells. Molecular Medicine Reports. 2014;9(5):1780–1786. doi: 10.3892/mmr.2014.2049.
    1. Jiang Y., Zhang Q., Steinle J. J. Beta-adrenergic receptor agonist decreases VEGF levels through altered eNOS and PKC signaling in diabetic retina. Growth Factors. 2015;33(3):192–199. doi: 10.3109/08977194.2015.1054990.
    1. Dekker L. V., Leitges M., Altschuler G., et al. Protein kinase C-β contributes to NADPH oxidase activation in neutrophils. Biochemical Journal. 2000;347(1):285–289. doi: 10.1042/bj3470285.
    1. Lei S., Su W., Liu H., et al. Nitroglycerine-induced nitrate tolerance compromises propofol protection of the endothelial cells against TNF-α: the role of PKC-β2 and NADPH oxidase. Oxidative Medicine and Cellular Longevity. 2013;2013:9. doi: 10.1155/2013/678484.678484
    1. Byun H. O., Jung H. J., Kim M. J., Yoon G. PKCδ phosphorylation is an upstream event of GSK3 inactivation-mediated ROS generation in TGF-β1-induced senescence. Free Radical Research. 2014;48(9):1100–1108. doi: 10.3109/10715762.2014.929120.
    1. Ramasamy R., Shekhtman A., Schmidt A. M. The multiple faces of RAGE – opportunities for therapeutic intervention in aging and chronic disease. Expert Opinion on Therapeutic Targets. 2016;20(4):431–446. doi: 10.1517/14728222.2016.1111873.
    1. Homme R. P., Singh M., Majumder A., et al. Remodeling of retinal architecture in diabetic retinopathy: disruption of ocular physiology and visual functions by inflammatory gene products and pyroptosis. Frontiers in Physiology. 2018;9, article 1268 doi: 10.3389/fphys.2018.01268.
    1. Lukiw W. J., Ottlecz A., Lambrou G., et al. Coordinate activation of HIF-1 and NF-κB DNA binding and COX-2 and VEGF expression in retinal cells by hypoxia. Investigative Opthalmology & Visual Science. 2003;44(10):4163–4170. doi: 10.1167/iovs.02-0655.
    1. Hsiao K. Y., Lin S. C., Wu M. H., Tsai S. J. Pathological functions of hypoxia in endometriosis. Frontiers in Bioscience. 2015;7:309–321.
    1. Cheng J., Yang H.‑. L., Gu C.‑. J., et al. Melatonin restricts the viability and angiogenesis of vascular endothelial cells by suppressing HIF-1α/ROS/VEGF. International Journal of Molecular Medicine. 2019;43(2):945–955. doi: 10.3892/ijmm.2018.4021.
    1. Liang X., Zhang D., Liu W., et al. Reactive oxygen species trigger NF-κB-mediated NLRP3 inflammasome activation induced by zinc oxide nanoparticles in A549 cells. Toxicology and Industrial Health. 2017;33(10):737–745. doi: 10.1177/0748233717712409.
    1. El-Remessy A. B., Al-Shabrawey M., Khalifa Y., Tsai N.-T., Caldwell R. B., Liou G. I. Neuroprotective and blood-retinal barrier-preserving effects of cannabidiol in experimental diabetes. The American Journal of Pathology. 2006;168(1):235–244. doi: 10.2353/ajpath.2006.050500.
    1. Yerramothu P., Vijay A. K., Willcox M. D. P. Inflammasomes, the eye and anti-inflammasome therapy. Eye. 2018;32(3):491–505. doi: 10.1038/eye.2017.241.
    1. Feenstra D. J., Yego E. C., Mohr S. Modes of retinal cell death in diabetic retinopathy. Journal of Clinical & Experimental Ophthalmology. 2013;4(5):p. 298. doi: 10.4172/2155-9570.1000298.
    1. Akhtar-Schäfer I., Wang L., Krohne T. U., Xu H., Langmann T. Modulation of three key innate immune pathways for the most common retinal degenerative diseases. EMBO Molecular Medicine. 2018;10(10, article e8259) doi: 10.15252/emmm.201708259.
    1. Di Rosa M., Distefano G., Gagliano C., Rusciano D., Malaguarnera L. Autophagy in diabetic retinopathy. Current Neuropharmacology. 2016;14(8):810–825. doi: 10.2174/1570159X14666160321122900.
    1. Kowluru R. A., Zhong Q., Santos J. M. Matrix metalloproteinases in diabetic retinopathy: potential role of MMP-9. Expert Opinion on Investigational Drugs. 2012;21(6):797–805. doi: 10.1517/13543784.2012.681043.
    1. Yang J. S., Lu C. C., Kuo S. C., et al. Autophagy and its link to type II diabetes mellitus. BioMedicine. 2017;7(2):p. 8. doi: 10.1051/bmdcn/2017070201.
    1. White E., Mehnert J. M., Chan C. S. Autophagy, metabolism, and cancer. Clinical Cancer Research. 2015;21(22):5037–5046. doi: 10.1158/1078-0432.CCR-15-0490.
    1. Parzych K. R., Klionsky D. J. An overview of autophagy: morphology, mechanism, and regulation. Antioxidants & Redox Signaling. 2014;20(3):460–473. doi: 10.1089/ars.2013.5371.
    1. Sarparanta J., Garcia-Macia M., Singh R. Autophagy and mitochondria in obesity and type 2 diabetes. Current Diabetes Reviews. 2017;13(4):352–369. doi: 10.2174/1573399812666160217122530.
    1. Frost L. S., Mitchell C. H., Boesze-Battaglia K. Autophagy in the eye: implications for ocular cell health. Experimental Eye Research. 2014;124:56–66. doi: 10.1016/j.exer.2014.04.010.
    1. Demirtas L., Guclu A., Erdur F. M., et al. Apoptosis, autophagy & endoplasmic reticulum stress in diabetes mellitus. The Indian Journal of Medical Research. 2016;144(4):515–524. doi: 10.4103/0971-5916.200887.
    1. Cachafeiro M., Bemelmans A. P., Samardzija M., et al. Hyperactivation of retina by light in mice leads to photoreceptor cell death mediated by VEGF and retinal pigment epithelium permeability. Cell Death & Disease. 2013;4(8, article e781) doi: 10.1038/cddis.2013.303.
    1. Jain A., Saxena S., Khanna V. K., Shukla R. K., Meyer C. H. Status of serum VEGF and ICAM-1 and its association with external limiting membrane and inner segment-outer segment junction disruption in type 2 diabetes mellitus. Molecular Vision. 2013;19:1760–1768.
    1. Joussen A. M., Poulaki V., Qin W., et al. Retinal vascular endothelial growth factor induces intercellular adhesion molecule-1 and endothelial nitric oxide synthase expression and initiates early diabetic retinal leukocyte adhesion in vivo. The American Journal of Pathology. 2002;160(2):501–509. doi: 10.1016/S0002-9440(10)64869-9.
    1. Shin H. J., Lee S. H., Chung H., Kim H. C. Association between photoreceptor integrity and visual outcome in diabetic macular edema. Graefe's Archive for Clinical and Experimental Ophthalmology. 2012;250(1):61–70. doi: 10.1007/s00417-011-1774-x.
    1. Meleth A. D., Agro´n E., Chan C. C., et al. Serum inflammatory markers in diabetic retinopathy. Investigative Opthalmology & Visual Science. 2005;46(11):4295–4301. doi: 10.1167/iovs.04-1057.
    1. Goldstein I. M., Ostwald P., Roth S. Nitric oxide: a review of its role in retinal function and disease. Vision Research. 1996;36(18):2979–2994. doi: 10.1016/0042-6989(96)00017-X.
    1. Sato M., Ohtsuka T., Stell W. K. Endogenous nitric oxide enhances the light-response of cones during light-adaptation in the rat retina. Vision Research. 2011;51(1):131–137. doi: 10.1016/j.visres.2010.10.011.
    1. Chakravarthy H., Devanathan V. Molecular mechanisms mediating diabetic retinal neurodegeneration: potential research avenues and therapeutic targets. Journal of Molecular Neuroscience. 2018;66(3):445–461. doi: 10.1007/s12031-018-1188-x.
    1. Kim K., Kim E. S., Yu S. Y. Longitudinal relationship between retinal diabetic neurodegeneration and progression of diabetic retinopathy in patients with type 2 diabetes. American Journal of Ophthalmology. 2018;196:165–172. doi: 10.1016/j.ajo.2018.08.053.
    1. Abcouwer S. F., Gardner T. W. Diabetic retinopathy: loss of neuroretinal adaptation to the diabetic metabolic environment. Annals of the New York Academy of Sciences. 2014;1311(1):174–190. doi: 10.1111/nyas.12412.
    1. Kern T. S., Tang J., Berkowitz B. A. Validation of structural and functional lesions of diabetic retinopathy in mice. Molecular Vision. 2010;16:2121–2131.
    1. Lynch S. K., Abramoff M. D. Diabetic retinopathy is a neurodegenerative disorder. Vision Research. 2017;139:101–107. doi: 10.1016/j.visres.2017.03.003.
    1. Ly A., Yee P., Vessey K. A., Phipps J. A., Jobling A. I., Fletcher E. L. Early inner retinal astrocyte dysfunction during diabetes and development of hypoxia, retinal stress, and neuronal functional loss. Investigative Opthalmology & Visual Science. 2011;52(13):9316–9326. doi: 10.1167/iovs.11-7879.
    1. Kalesnykas G., Tuulos T., Uusitalo H., Jolkkonen J. Neurodegeneration and cellular stress in the retina and optic nerve in rat cerebral ischemia and hypoperfusion models. Neuroscience. 2008;155(3):937–947. doi: 10.1016/j.neuroscience.2008.06.038.
    1. Semeraro F., Cancarini A., dell’Omo R., Rezzola S., Romano M. R., Costagliola C. Diabetic retinopathy: vascular and inflammatory disease. Journal of Diabetes Research. 2015;2015:16. doi: 10.1155/2015/582060.582060
    1. Arjamaa O., Aaltonen V., Piippo N., et al. Hypoxia and inflammation in the release of VEGF and interleukins from human retinal pigment epithelial cells. Graefe's Archive for Clinical and Experimental Ophthalmology. 2017;255(9):1757–1762. doi: 10.1007/s00417-017-3711-0.
    1. Wang S., Ji L.‑. Y., Li L., Li J.‑. M. Oxidative stress, autophagy and pyroptosis in the neovascularization of oxygen‑induced retinopathy in mice. Molecular Medicine Reports. 2018;19(2):927–934. doi: 10.3892/mmr.2018.9759.
    1. Yan X., Tezel G., Wax M. B., Edward D. P. Matrix metalloproteinases and tumor necrosis factor α in glaucomatous optic nerve head. Archives of Ophthalmology. 2000;118(5):666–673. doi: 10.1001/archopht.118.5.666.
    1. Wakatsuki S., Furuno A., Ohshima M., Araki T. Oxidative stress-dependent phosphorylation activates ZNRF1 to induce neuronal/axonal degeneration. The Journal of Cell Biology. 2015;211(4):881–896. doi: 10.1083/jcb.201506102.
    1. Wang J., He C., Zhou T., Huang Z., Zhou L., Liu X. NGF increases VEGF expression and promotes cell proliferation via ERK1/2 and AKT signaling in Müller cells. Molecular Vision. 2016;22:254–263.
    1. Sun Z., Hu W., Yin S., et al. NGF protects against oxygen and glucose deprivation-induced oxidative stress and apoptosis by up-regulation of HO-1 through MEK/ERK pathway. Neuroscience Letters. 2017;641:8–14. doi: 10.1016/j.neulet.2017.01.046.
    1. Garcia T. B., Hollborn M., Bringmann A. Expression and signaling of NGF in the healthy and injured retina. Cytokine & Growth Factor Reviews. 2017;34:43–57. doi: 10.1016/j.cytogfr.2016.11.005.
    1. Mysona B. A., Matragoon S., Stephens M., et al. Imbalance of the nerve growth factor and its precursor as a potential biomarker for diabetic retinopathy. BioMed Research International. 2015;2015:12. doi: 10.1155/2015/571456.571456
    1. Simó R., Hernández C. Neurodegeneration in the diabetic eye: new insights and therapeutic perspectives. Trends in Endocrinology & Metabolism. 2014;25(1):23–33. doi: 10.1016/j.tem.2013.09.005.
    1. Caillaud M., Chantemargue B., Richard L., et al. Local low dose curcumin treatment improves functional recovery and remyelination in a rat model of sciatic nerve crush through inhibition of oxidative stress. Neuropharmacology. 2018;139:98–116. doi: 10.1016/j.neuropharm.2018.07.001.
    1. Eichler W., Savković-Cvijić H., Bürger S., et al. Müller cell-derived PEDF mediates neuroprotection via STAT3 activation. Cellular Physiology and Biochemistry. 2017;44(4):1411–1424. doi: 10.1159/000485537.
    1. Mishra B., Swaroop A., Kandpal R. P. Genetic components in diabetic retinopathy. Indian Journal of Ophthalmology. 2016;64(1):55–61. doi: 10.4103/0301-4738.178153.
    1. Zhang X., Saaddine J. B., Chou C. F., et al. Prevalence of diabetic retinopathy in the United States, 2005-2008. JAMA. 2010;304(6):649–656. doi: 10.1001/jama.2010.1111.
    1. Simó-Servat O., Hernández C., Simó R. Genetics in diabetic retinopathy: current concepts and new insights. Current Genomics. 2013;14(5):289–299. doi: 10.2174/13892029113149990008.
    1. Cho H., Sobrin L. Genetics of diabetic retinopathy. Current Diabetes Reports. 2014;14(8):p. 515. doi: 10.1007/s11892-014-0515-z.
    1. Tom L., Davoudi S., Sobrin L. Genetic epidemiology of diabetic retinopathy. Annals of Eye Science. 2018;2:56–56. doi: 10.21037/aes.2017.07.04.
    1. Owyong M., Schwartz S. G., Scott I. U. An update on the genetics of diabetic retinopathy. Retina Today. 2017;12(2):43–48.
    1. Pillai G. S., Varky R. Genetics in diabetic retinopathy - a brief review. Kerala Journal of Ophthalmology. 2016;28(1):p. 14. doi: 10.4103/0976-6677.193880.
    1. Abhary S., Burdon K. P., Laurie K. J., et al. Aldose reductase gene polymorphisms and diabetic retinopathy susceptibility. Diabetes Care. 2010;33(8):1834–1836. doi: 10.2337/dc09-1893.
    1. Ng D. P. K. Human genetics of diabetic retinopathy: current perspectives. Journal of Ophthalmology. 2010;2010:6. doi: 10.1155/2010/172593.172593
    1. Sun W., Oates P. J., Coutcher J. B., Gerhardinger C., Lorenzi M. A selective aldose reductase inhibitor of a new structural class prevents or reverses early retinal abnormalities in experimental diabetic retinopathy. Diabetes. 2006;55(10):2757–2762. doi: 10.2337/db06-0138.
    1. Priščáková P., Minárik G., Repiská V. Candidate gene studies of diabetic retinopathy in human. Molecular Biology Reports. 2016;43(12):1327–1345. doi: 10.1007/s11033-016-4075-y.
    1. Tao D., Mai X., Zhang T., Mei Y. Association between the RAGE (receptor for advanced glycation end-products) -374T/A gene polymorphism and diabetic retinopathy in T2DM. Revista da Associação Médica Brasileira. 2017;63(11):971–977. doi: 10.1590/1806-9282.63.11.971.
    1. Yu W., Yang J., Sui W., Qu B., Huang P., Chen Y. Association of genetic variants in the receptor for advanced glycation end products gene with diabetic retinopathy: a meta-analysis. Medicine. 2016;95(39, article e4463) doi: 10.1097/MD.0000000000004463.
    1. Buraczynska M., Ksiazek P., Baranowicz-Gaszczyk I., Jozwiak L. Association of the VEGF gene polymorphism with diabetic retinopathy in type 2 diabetes patients. Nephrology Dialysis Transplantation. 2007;22(3):827–832. doi: 10.1093/ndt/gfl641.
    1. Gonzalez-Salinas R., Garcia-Gutierrez M. C., Garcia-Aguirre G., et al. Evaluation of VEGF gene polymorphisms and proliferative diabetic retinopathy in Mexican population. International Journal of Ophthalmology. 2017;10(1):135–139. doi: 10.18240/ijo.2017.01.22.
    1. Opatrilova R., Kubatka P., Caprnda M., et al. Nitric oxide in the pathophysiology of retinopathy: evidences from preclinical and clinical researches. Acta Ophthalmologica. 2018;96(3):222–231. doi: 10.1111/aos.13384.
    1. Yu C., Yi J., Yin X., Deng Y., Liao Y., Li X. Correlation of interactions between NOS3 polymorphisms and oxygen therapy with retinopathy of prematurity susceptibility. International Journal of Clinical and Experimental Pathology. 2015;8(11):15250–15254.
    1. Ma Z. J., Chen R., Ren H. Z., Guo X., Guo J., Chen L. M. Association between eNOS 4b/a polymorphism and the risk of diabetic retinopathy in type 2 diabetes mellitus: a meta-analysis. Journal of Diabetes Research. 2014;2014:8. doi: 10.1155/2014/549747.549747
    1. Momeni A., Chaleshtori M. H., Saadatmand S., Kheiri S. Correlation of endothelial nitric oxide synthase gene polymorphism (GG, TT and GT genotype) with proteinuria and retinopathy in type 2 diabetic patients. Journal of Clinical and Diagnostic Research. 2016;10(2):OC32–OC35. doi: 10.7860/JCDR/2016/14975.7291.
    1. Zhao S., Li T., Zheng B., Zheng Z. Nitric oxide synthase 3 (NOS3) 4b/a, T-786C and G894T polymorphisms in association with diabetic retinopathy susceptibility: a meta-analysis. Ophthalmic Genetics. 2012;33(4):200–207. doi: 10.3109/13816810.2012.675398.
    1. Wang Y., Ng M. C. Y., Lee S. C., et al. Phenotypic heterogeneity and associations of two aldose reductase gene polymorphisms with nephropathy and retinopathy in type 2 diabetes. Diabetes Care. 2003;26(8):2410–2415. doi: 10.2337/diacare.26.8.2410.
    1. Santos K. G., Tschiedel B., Schneider J., Souto K., Roisenberg I. Diabetic retinopathy in Euro-Brazilian type 2 diabetic patients: relationship with polymorphisms in the aldose reductase, the plasminogen activator inhibitor-1 and the methylenetetrahydrofolate reductase genes. Diabetes Research and Clinical Practice. 2003;61(2):133–136. doi: 10.1016/S0168-8227(03)00112-8.
    1. Cheema B. S., kohli H. S., Sharma R., Bhansali A., Khullar M. Endothelial nitric oxide synthase gene polymorphism and type 2 diabetic retinopathy among Asian Indians. Acta Diabetologica. 2012;49(6):481–488. doi: 10.1007/s00592-012-0437-7.
    1. Santos K. G., Crispim D., Canani L. H., Ferrugem P. T., Gross J. L., Roisenberg I. Relationship of endothelial nitric oxide synthase (eNOS) gene polymorphisms with diabetic retinopathy in Caucasians with type 2 diabetes. Ophthalmic Genetics. 2012;33(1):23–27. doi: 10.3109/13816810.2011.620057.
    1. Ng Z. X., Kuppusamy U. R., Tajunisah I., Fong K. C. S., Chua K. H. Association analysis of −429T/C and −374T/A polymorphisms of receptor of advanced glycation end products (RAGE) gene in Malaysian with type 2 diabetic retinopathy. Diabetes Research and Clinical Practice. 2012;95(3):372–377. doi: 10.1016/j.diabres.2011.11.005.
    1. Vanita V. Association of RAGE (p.Gly82Ser) and MnSOD (p.Val16Ala) polymorphisms with diabetic retinopathy in T2DM patients from north India. Diabetes Research and Clinical Practice. 2014;104(1):155–162. doi: 10.1016/j.diabres.2013.12.059.
    1. Yang L., Wu Q., Li Y., et al. Association of the receptor for advanced glycation end products gene polymorphisms and circulating RAGE levels with diabetic retinopathy in the Chinese population. Journal of Diabetes Research. 2013;2013:8. doi: 10.1155/2013/264579.264579
    1. Kangas-Kontio T., Vavuli S., Kakko S. J., et al. Polymorphism of the manganese superoxide dismutase gene but not of vascular endothelial growth factor gene is a risk factor for diabetic retinopathy. British Journal of Ophthalmology. 2009;93(10):1401–1406. doi: 10.1136/bjo.2009.159012.
    1. Abhary S., Burdon K. P., Gupta A., et al. Common sequence variation in the VEGFA gene predicts risk of diabetic retinopathy. Investigative Opthalmology & Visual Science. 2009;50(12):5552–5558. doi: 10.1167/iovs.09-3694.
    1. Qiu M., Xiong W., Liao H., Li F. VEGF − 634G>C polymorphism and diabetic retinopathy risk: a meta-analysis. Gene. 2013;518(2):310–315. doi: 10.1016/j.gene.2013.01.018.
    1. Dadbinpour A., Sheikhha M., Darbouy M., Afkhami-Ardekani M. Investigating GSTT1 and GSTM1 null genotype as the risk factor of diabetes type 2 retinopathy. Journal of Diabetes & Metabolic Disorders. 2013;12(1):p. 48. doi: 10.1186/2251-6581-12-48.
    1. Haghighi S. F., Salehi Z., Sabouri M. R., Abbasi N. Polymorphic variant of MnSOD A16V and risk of diabetic retinopathy. Molecular Biology. 2015;49(1):114–118.
    1. Fan W. Y., Liu N. P. Meta-analysis of association between K469E polymorphism of the ICAM-1 gene and retinopathy in type 2 diabetes. International Journal of Ophthalmology. 2015;8(3):603–607. doi: 10.3980/j.issn.2222-3959.2015.03.30.
    1. Rodrigues K. F., Pietrani N. T., Sandrim V. C., et al. Association of a large panel of cytokine gene polymorphisms with complications and comorbidities in type 2 diabetes patients. Journal of Diabetes Research. 2015;2015:9. doi: 10.1155/2015/605965.605965
    1. Bazzaz J. T., Amoli M. M., Taheri Z., Larijani B., Pravica V., Hutchinson I. V. TGF-β1 and IGF-I gene variations in type 1 diabetes microangiopathic complications. Journal of Diabetes & Metabolic Disorders. 2014;13(1):p. 45. doi: 10.1186/2251-6581-13-45.
    1. American Diabetes Association. Introduction: standards of medical care in diabetes—2018. Diabetes Care. 2017;41(Supplement 1):S1–S2. doi: 10.2337/dc18-Sint01.
    1. Martínez-González M. A., Salas-Salvadó J., Estruch R., et al. Benefits of the Mediterranean diet: insights from the PREDIMED study. Progress in Cardiovascular Diseases. 2015;58(1):50–60. doi: 10.1016/j.pcad.2015.04.003.
    1. Díaz-López A., Babio N., Martínez-González M. A., et al. Mediterranean diet, retinopathy, nephropathy, and microvascular diabetes complications: a post hoc analysis of a randomized trial. Diabetes Care. 2015;38(11):2134–2141. doi: 10.2337/dc15-1117.
    1. Chew E. Y. Dietary intake of omega-3 fatty acids from fish and risk of diabetic retinopathy. JAMA. 2017;317(21):2226–2227. doi: 10.1001/jama.2017.1926.
    1. PREDIMED study investigators, Tresserra-Rimbau A., Guasch-Ferré M., et al. Intake of total polyphenols and some classes of polyphenols is inversely associated with diabetes in elderly people at high cardiovascular disease risk. The Journal of Nutrition. 2016;146(4):767–777. doi: 10.3945/jn.115.223610.
    1. Guasch-Ferré M., Merino J., Sun Q., Fitó M., Salas-Salvadó J. Dietary polyphenols, Mediterranean diet, prediabetes, and type 2 diabetes: a narrative review of the evidence. Oxidative Medicine and Cellular Longevity. 2017;2017:16. doi: 10.1155/2017/6723931.6723931
    1. Pall M. L., Levine S. Nrf2, a master regulator of detoxification and also antioxidant, anti-inflammatory and other cytoprotective mechanisms, is raised by health promoting factors. Sheng Li Xue Bao. 2015;67(1):1–18.
    1. Boeing H., Bechthold A., Bub A., et al. Critical review: vegetables and fruit in the prevention of chronic diseases. European Journal of Nutrition. 2012;51(6):637–663. doi: 10.1007/s00394-012-0380-y.
    1. Millen A. E., Sahli M. W., Nie J., et al. Adequate vitamin D status is associated with the reduced odds of prevalent diabetic retinopathy in African Americans and Caucasians. Cardiovascular Diabetology. 2016;15(1):p. 128. doi: 10.1186/s12933-016-0434-1.
    1. Beidokhti M. N., Jager A. K. Review of antidiabetic fruits, vegetables, beverages, oils and spices commonly consumed in the diet. Journal of Ethnopharmacology. 2017;201:26–41. doi: 10.1016/j.jep.2017.02.031.
    1. Zafra-Stone S., Yasmin T., Bagchi M., Chatterjee A., Vinson J. A., Bagchi D. Berry anthocyanins as novel antioxidants in human health and disease prevention. Molecular Nutrition & Food Research. 2007;51(6):675–683. doi: 10.1002/mnfr.200700002.
    1. Millen A. E., Klein R., Folsom A. R., Stevens J., Palta M., Mares J. A. Relation between intake of vitamins C and E and risk of diabetic retinopathy in the Atherosclerosis Risk in Communities Study. The American Journal of Clinical Nutrition. 2004;79(5):865–873. doi: 10.1093/ajcn/79.5.865.
    1. Tanaka S., Yoshimura Y., Kawasaki R., et al. Fruit intake and incident diabetic retinopathy with type 2 diabetes. Epidemiology. 2013;24(2):204–211. doi: 10.1097/EDE.0b013e318281725e.
    1. Sharma Y., Saxena S., Mishra A., Saxena A., Natu S. M. Nutrition for diabetic retinopathy: plummeting the inevitable threat of diabetic vision loss. European Journal of Nutrition. 2017;56(6):2013–2027. doi: 10.1007/s00394-017-1406-2.
    1. Kijlstra A., Tian Y., Kelly E. R., Berendschot T. T. J. M. Lutein: more than just a filter for blue light. Progress in Retinal and Eye Research. 2012;31(4):303–315. doi: 10.1016/j.preteyeres.2012.03.002.
    1. Ambati R., Phang S. M., Ravi S., Aswathanarayana R. Astaxanthin: sources, extraction, stability, biological activities and its commercial applications—a review. Marine Drugs. 2014;12(1):128–152. doi: 10.3390/md12010128.
    1. Neelam K., Goenadi C. J., Lun K., Yip C. C., Au Eong K. G. Putative protective role of lutein and zeaxanthin in diabetic retinopathy. British Journal of Ophthalmology. 2017;101(5):551–558. doi: 10.1136/bjophthalmol-2016-309814.
    1. Gong X., Rubin L. P. Role of macular xanthophylls in prevention of common neovascular retinopathies: retinopathy of prematurity and diabetic retinopathy. Archives of Biochemistry and Biophysics. 2015;572:40–48. doi: 10.1016/j.abb.2015.02.004.
    1. Su C. C., Chan C. M., Chen H. M., et al. Lutein inhibits the migration of retinal pigment epithelial cells via cytosolic and mitochondrial Akt pathways (lutein inhibits RPE cells migration) International Journal of Molecular Sciences. 2014;15(8):13755–13767. doi: 10.3390/ijms150813755.
    1. Chao S. C., Vagaggini T., Nien C. W., Huang S. C., Lin H. Y. Effects of lutein and zeaxanthin on LPS-induced secretion of IL-8 by uveal melanocytes and relevant signal pathways. Journal of Ophthalmology. 2015;2015:7. doi: 10.1155/2015/152854.152854
    1. Silvan J. M., Reguero M., de Pascual-Teresa S. A protective effect of anthocyanins and xanthophylls on UVB-induced damage in retinal pigment epithelial cells. Food & Function. 2016;7(2):1067–1076. doi: 10.1039/C5FO01368B.
    1. Murillo A. G., Fernandez M. L. Potential of dietary non-provitamin A carotenoids in the prevention and treatment of diabetic microvascular complications. Advances in Nutrition. 2016;7(1):14–24. doi: 10.3945/an.115.009803.
    1. Ishida S. Lifestyle-related diseases and anti-aging ophthalmology: suppression of retinal and choroidal pathologies by inhibiting renin-angiotensin system and inflammation. Nippon Ganka Gakkai Zasshi. 2009;113(3):403–22; discussion 423.
    1. Baccouche B., Benlarbi M., Barber A. J., Ben Chaouacha-Chekir R. Short-term administration of astaxanthin attenuates retinal changes in diet-induced diabetic Psammomys obesus. Current Eye Research. 2018;43(9):1177–1189. doi: 10.1080/02713683.2018.1484143.
    1. Dong L. Y., Jin J., Lu G., Kang X. L. Astaxanthin attenuates the apoptosis of retinal ganglion cells in db/db mice by inhibition of oxidative stress. Marine Drugs. 2013;11(12):960–974. doi: 10.3390/md11030960.
    1. Braakhuis A., Raman R., Vaghefi E. The association between dietary intake of antioxidants and ocular disease. Diseases. 2017;5(1):p. 3. doi: 10.3390/diseases5010003.
    1. Kundu D., Mandal T., Nandi M., Osta M., Bandyopadhyay U., Ray D. Oxidative stress in diabetic patients with retinopathy. Annals of African Medicine. 2014;13(1):41–46. doi: 10.4103/1596-3519.126951.
    1. Young I. S., Torney J. J., Trimble E. R. The effect of ascorbate supplementation on oxidative stress in the streptozotocin diabetic rat. Free Radical Biology and Medicine. 1992;13(1):41–46. doi: 10.1016/0891-5849(92)90164-C.
    1. Gupta M. M., Chari S. Lipid peroxidation and antioxidant status in patients with diabetic retinopathy. Indian Journal of Physiology and Pharmacology. 2005;49(2):187–192.
    1. Vinson J., Hsu C., Possanza C., et al. Lipid peroxidation and diabetic complications: effect of antioxidant vitamins C and E. Free Radicals in Diagnostic Medicine. 1994;366:430–432. doi: 10.1007/978-1-4615-1833-4_42.
    1. Ulker E., Parker W. H., Raj A., Qu Z. C., May J. M. Ascorbic acid prevents VEGF-induced increases in endothelial barrier permeability. Molecular and Cellular Biochemistry. 2016;412(1-2):73–79. doi: 10.1007/s11010-015-2609-6.
    1. Aruoma O. I., Halliwell B. Superoxide-dependent and ascorbate-dependent formation of hydroxyl radicals from hydrogen peroxide in the presence of iron. Are lactoferrin and transferrin promoters of hydroxyl-radical generation? Biochemical Journal. 1987;241(1):273–278. doi: 10.1042/bj2410273.
    1. Wang H., Zhang Z. B., Wen R. R., Chen J. W. Experimental and clinical studies on the reduction of erythrocyte sorbitol-glucose ratios by ascorbic acid in diabetes mellitus. Diabetes Research and Clinical Practice. 1995;28(1):1–8. doi: 10.1016/0168-8227(95)01059-M.
    1. May J. M., Jayagopal A., Qu Z. C., Parker W. H. Ascorbic acid prevents high glucose-induced apoptosis in human brain pericytes. Biochemical and Biophysical Research Communications. 2014;452(1):112–117. doi: 10.1016/j.bbrc.2014.08.057.
    1. Fukui M., Yamabe N., Choi H. J., Polireddy K., Chen Q., Zhu B. T. Mechanism of ascorbate-induced cell death in human pancreatic cancer cells: role of Bcl-2, beclin 1 and autophagy. Planta Medica. 2015;81(10):838–846. doi: 10.1055/s-0035-1546132.
    1. Martin A., Joseph J. A., Cuervo A. M. Stimulatory effect of vitamin C on autophagy in glial cells. Journal of Neurochemistry. 2002;82(3):538–549. doi: 10.1046/j.1471-4159.2002.00978.x.
    1. Hung T. H., Chen S. F., Li M. J., Yeh Y. L., Hsieh T.'. T.'. Differential effects of concomitant use of vitamins C and E on trophoblast apoptosis and autophagy between normoxia and hypoxia-reoxygenation. PLoS One. 2010;5(8, article e12202) doi: 10.1371/journal.pone.0012202.
    1. Wang X., Quinn P. J. Vitamin E and its function in membranes. Progress in Lipid Research. 1999;38(4):309–336. doi: 10.1016/S0163-7827(99)00008-9.
    1. Jain S. K., Palmer M. The effect of oxygen radicals metabolites and vitamin E on glycosylation of proteins. Free Radical Biology and Medicine. 1997;22(4):593–596. doi: 10.1016/S0891-5849(96)00377-2.
    1. Chung T. W., Hau Yu J. J., Liu D. Z. Reducing lipid peroxidation stress of erythrocyte membrane by α-tocopherol nicotinate plays an important role in improving blood rheological properties in type 2 diabetic patients with retinopathy. Diabetic Medicine. 1998;15(5):380–385. doi: 10.1002/(SICI)1096-9136(199805)15:5<380::AID-DIA592>;2-8.
    1. Schleicher E. D., Wagner E., Nerlich A. G. Increased accumulation of the glycoxidation product N(epsilon)-(carboxymethyl)lysine in human tissues in diabetes and aging. Journal of Clinical Investigation. 1997;99(3):457–468. doi: 10.1172/JCI119180.
    1. De Pascale M. C., Bassi A. M., Patrone V., Villacorta L., Azzi A., Zingg J.-M. Increased expression of transglutaminase-1 and PPARγ after vitamin E treatment in human keratinocytes. Archives of Biochemistry and Biophysics. 2006;447(2):97–106. doi: 10.1016/j.abb.2006.02.002.
    1. Azzi A., Boscoboinik D., Clément S., et al. α-tocopherol as a modulator of smooth muscle cell proliferation. Prostaglandins, Leukotrienes and Essential Fatty Acids. 1997;57(4-5):507–514. doi: 10.1016/S0952-3278(97)90436-1.
    1. Kunisaki M., Bursell S. E., Clermont A. C., et al. Vitamin E prevents diabetes-induced abnormal retinal blood flow via the diacylglycerol-protein kinase C pathway. American Journal of Physiology-Endocrinology and Metabolism. 1995;269(2):E239–E246. doi: 10.1152/ajpendo.1995.269.2.E239.
    1. Nakagawa K., Shibata A., Yamashita S., et al. In vivo angiogenesis is suppressed by unsaturated vitamin E, tocotrienol. The Journal of Nutrition. 2007;137(8):1938–1943. doi: 10.1093/jn/137.8.1938.
    1. Wong M. Y. Z., Man R. E. K., Fenwick E. K., et al. Dietary intake and diabetic retinopathy: a systematic review. PLoS One. 2018;13(1, article e0186582) doi: 10.1371/journal.pone.0186582.
    1. Rodríguez-Carrizalez A. D., Castellanos-González J. A., Martínez-Romero E. C., et al. The effect of ubiquinone and combined antioxidant therapy on oxidative stress markers in non-proliferative diabetic retinopathy: a phase IIa, randomized, double-blind, and placebo-controlled study. Redox Report. 2016;21(4):155–163. doi: 10.1179/1351000215Y.0000000040.
    1. Jarosz M., Olbert M., Wyszogrodzka G., Młyniec K., Librowski T. Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling. Inflammopharmacology. 2017;25(1):11–24. doi: 10.1007/s10787-017-0309-4.
    1. Kogan S., Sood A., Garnick M. S. Zinc and wound healing: a review of zinc physiology and clinical applications. Wounds. 2017;29(4):102–106.
    1. Balsano C., Porcu C., Sideri S. Is copper a new target to counteract the progression of chronic diseases? Metallomics. 2018;10(12):1712–1722. doi: 10.1039/C8MT00219C.
    1. de Figueiredo Ribeiro S. M., Braga C. B. M., Peria F. M., et al. Effect of zinc supplementation on antioxidant defenses and oxidative stress markers in patients undergoing chemotherapy for colorectal cancer: a placebo-controlled, prospective randomized trial. Biological Trace Element Research. 2016;169(1):8–16. doi: 10.1007/s12011-015-0396-2.
    1. Guo C. H., Wang C. L. Effects of zinc supplementation on plasma copper/zinc ratios, oxidative stress, and immunological status in hemodialysis patients. International Journal of Medical Sciences. 2013;10(1):79–89. doi: 10.7150/ijms.5291.
    1. Ranasinghe P., Pigera S., Galappatthy P., Katulanda P., Constantine G. R. Zinc and diabetes mellitus: understanding molecular mechanisms and clinical implications. DARU Journal of Pharmaceutical Sciences. 2015;23(1):p. 44. doi: 10.1186/s40199-015-0127-4.
    1. Barman S., Srinivasan K. Attenuation of oxidative stress and cardioprotective effects of zinc supplementation in experimental diabetic rats. British Journal of Nutrition. 2017;117(3):335–350. doi: 10.1017/S0007114517000174.
    1. Fujimoto S., Yasui H., Yoshikawa Y. Development of a novel antidiabetic zinc complex with an organoselenium ligand at the lowest dosage in KK-Ay mice. Journal of Inorganic Biochemistry. 2013;121:10–15. doi: 10.1016/j.jinorgbio.2012.12.008.
    1. Sharif R., Thomas P., Zalewski P., Fenech M. Zinc supplementation influences genomic stability biomarkers, antioxidant activity, and zinc transporter genes in an elderly Australian population with low zinc status. Molecular Nutrition & Food Research. 2015;59(6):1200–1212. doi: 10.1002/mnfr.201400784.
    1. Cousins R. J., Blanchard R. K., Moore J. B., et al. Regulation of zinc metabolism and genomic outcomes. The Journal of Nutrition. 2003;133(5):1521S–1526S. doi: 10.1093/jn/133.5.1521S.
    1. Bray T. M., Bettger W. J. The physiological role of zinc as an antioxidant. Free Radical Biology and Medicine. 1990;8(3):281–291. doi: 10.1016/0891-5849(90)90076-U.
    1. Lee S. R. Critical role of zinc as either an antioxidant or a prooxidant in cellular systems. Oxidative Medicine and Cellular Longevity. 2018;2018:11. doi: 10.1155/2018/9156285.9156285
    1. Afshar Ebrahimi F., Foroozanfard F., Aghadavod E., Bahmani F., Asemi Z. The effects of magnesium and zinc co-supplementation on biomarkers of inflammation and oxidative stress, and gene expression related to inflammation in polycystic ovary syndrome: a randomized controlled clinical trial. Biological Trace Element Research. 2018;184(2):300–307. doi: 10.1007/s12011-017-1198-5.
    1. Liu Z., Wu X., Zhang T., et al. Effects of dietary copper and zinc supplementation on growth performance, tissue mineral retention, antioxidant status, and fur quality in growing-furring blue foxes (Alopex lagopus) Biological Trace Element Research. 2015;168(2):401–410. doi: 10.1007/s12011-015-0376-6.
    1. Gomes M. B., Negrato C. A. Alpha-lipoic acid as a pleiotropic compound with potential therapeutic use in diabetes and other chronic diseases. Diabetology & Metabolic Syndrome. 2014;6(1):p. 80. doi: 10.1186/1758-5996-6-80.
    1. Rochette L., Ghibu S., Muresan A., Vergely C. Alpha-lipoic acid: molecular mechanisms and therapeutic potential in diabetes. Canadian Journal of Physiology and Pharmacology. 2015;93(12):1021–1027. doi: 10.1139/cjpp-2014-0353.
    1. Packer L. Antioxidant properties of lipoic acid and its therapeutic effects in prevention of diabetes complications and cataractsa. Annals of the New York Academy of Sciences. 1994;738(1):257–264. doi: 10.1111/j.1749-6632.1994.tb21811.x.
    1. Suh J. H., Shenvi S. V., Dixon B. M., et al. Decline in transcriptional activity of Nrf2 causes age-related loss of glutathione synthesis, which is reversible with lipoic acid. Proceedings of the National Academy of Sciences of the United States of America. 2004;101(10):3381–3386. doi: 10.1073/pnas.0400282101.
    1. Biewenga G. P., Haenen G. R. M. M., Bast A. The pharmacology of the antioxidant lipoic acid. General Pharmacology: The Vascular System. 1997;29(3):315–331. doi: 10.1016/S0306-3623(96)00474-0.
    1. Lee S. G., Lee C. G., Yun I. H., Hur D. Y., Yang J. W., Kim H. W. Effect of lipoic acid on expression of angiogenic factors in diabetic rat retina. Clinical & Experimental Ophthalmology. 2012;40(1):e47–e57. doi: 10.1111/j.1442-9071.2011.02695.x.
    1. Kan E., Alici Ö., Kan E. K., Ayar A. Effects of alpha-lipoic acid on retinal ganglion cells, retinal thicknesses, and VEGF production in an experimental model of diabetes. International Ophthalmology. 2017;37(6):1269–1278. doi: 10.1007/s10792-016-0396-z.
    1. Artwohl M., Muth K., Kosulin K., et al. R-(+)-α-lipoic acid inhibits endothelial cell apoptosis and proliferation: involvement of Akt and retinoblastoma protein/E2F-1. American Journal of Physiology-Endocrinology and Metabolism. 2007;293(3):E681–E689. doi: 10.1152/ajpendo.00584.2006.
    1. Chen C.-L., Cheng W. S., Chen J. L., Chiang C. H. Potential of nonoral α-lipoic acid aqueous formulations to reduce ocular microvascular complications in a streptozotocin-induced diabetic rat model. Journal of Ocular Pharmacology and Therapeutics. 2013;29(8):738–745. doi: 10.1089/jop.2012.0147.
    1. Santos J. M., Kowluru R. A. Role of mitochondria biogenesis in the metabolic memory associated with the continued progression of diabetic retinopathy and its regulation by lipoic acid. Investigative Opthalmology & Visual Science. 2011;52(12):8791–8798. doi: 10.1167/iovs.11-8203.
    1. Nebbioso M., Pranno F., Pescosolido N. Lipoic acid in animal models and clinical use in diabetic retinopathy. Expert Opinion on Pharmacotherapy. 2013;14(13):1829–1838. doi: 10.1517/14656566.2013.813483.
    1. Lin J., Bierhaus A., Bugert P., et al. Effect of R-(+)-α-lipoic acid on experimental diabetic retinopathy. Diabetologia. 2006;49(5):1089–1096. doi: 10.1007/s00125-006-0174-y.
    1. Nebbioso M., Federici M., Rusciano D., Evangelista M., Pescosolido N. Oxidative stress in preretinopathic diabetes subjects and antioxidants. Diabetes Technology & Therapeutics. 2012;14(3):257–263. doi: 10.1089/dia.2011.0172.
    1. Haritoglou C., Gerss J., Hammes H. P., Kampik A., Ulbig M. W. Alpha-lipoic acid for the prevention of diabetic macular edema. Ophthalmologica. 2011;226(3):127–137. doi: 10.1159/000329470.
    1. Peres T. V., Schettinger M. R. C., Chen P., et al. Manganese-induced neurotoxicity: a review of its behavioral consequences and neuroprotective strategies. BMC Pharmacology and Toxicology. 2016;17(1):p. 57. doi: 10.1186/s40360-016-0099-0.
    1. Sigel A., Sigel H., Sigel R. K. O. Interrelations between essential metal ions and human diseases. Vol. 13. Springer; 2013. (Metal ions in life sciences).
    1. Salmonowicz B., Krzystek-Korpacka M., Noczyńska A. Trace elements, magnesium, and the efficacy of antioxidant systems in children with type 1 diabetes mellitus and in their siblings. Advances in Clinical and Experimental Medicine. 2014;23(2):259–268. doi: 10.17219/acem/37074.
    1. Martinez-Finley E. J., Gavin C. E., Aschner M., Gunter T. E. Manganese neurotoxicity and the role of reactive oxygen species. Free Radical Biology and Medicine. 2013;62:65–75. doi: 10.1016/j.freeradbiomed.2013.01.032.
    1. Aguirre J. D., Culotta V. C. Battles with iron: manganese in oxidative stress protection. Journal of Biological Chemistry. 2012;287(17):13541–13548. doi: 10.1074/jbc.R111.312181.
    1. Lee S. H., Jouihan H. A., Cooksey R. C., et al. Manganese supplementation protects against diet-induced diabetes in wild type mice by enhancing insulin secretion. Endocrinology. 2013;154(3):1029–1038. doi: 10.1210/en.2012-1445.
    1. Lestari M. L. A. D., Indrayanto G. Chapter Three - Curcumin. Profiles of Drug Substances, Excipients and Related Methodology. 2014;39:113–204. doi: 10.1016/B978-0-12-800173-8.00003-9.
    1. Joint FAO/WHO Expert Committee on Food Additives. Evaluation of certain food additives and contaminants. World Health Organ Tech Rep Ser. 2004;922:1–176.
    1. Priyadarsini K. I., Maity D. K., Naik G. H., et al. Role of phenolic O-H and methylene hydrogen on the free radical reactions and antioxidant activity of curcumin. Free Radical Biology and Medicine. 2003;35(5):475–484. doi: 10.1016/S0891-5849(03)00325-3.
    1. Pinlaor S., Yongvanit P., Prakobwong S., et al. Curcumin reduces oxidative and nitrative DNA damage through balancing of oxidant-antioxidant status in hamsters infected with Opisthorchis viverrini. Molecular Nutrition & Food Research. 2009;53(10):1316–1328. doi: 10.1002/mnfr.200800567.
    1. Molina-Jijón E., Tapia E., Zazueta C., et al. Curcumin prevents Cr(VI)-induced renal oxidant damage by a mitochondrial pathway. Free Radical Biology and Medicine. 2011;51(8):1543–1557. doi: 10.1016/j.freeradbiomed.2011.07.018.
    1. Kowluru R. A., Kanwar M. Effects of curcumin on retinal oxidative stress and inflammation in diabetes. Nutrition & Metabolism. 2007;4(1):p. 8. doi: 10.1186/1743-7075-4-8.
    1. Gupta S. K., Kumar B., Nag T. C., et al. Curcumin prevents experimental diabetic retinopathy in rats through its hypoglycemic, antioxidant, and anti-inflammatory mechanisms. Journal of Ocular Pharmacology and Therapeutics. 2011;27(2):123–130. doi: 10.1089/jop.2010.0123.
    1. Flynn D. L., Rafferty M. F., Boctor A. M. Inhibition of 5-hydroxy-eicosatetraenoic acid (5-HETE) formation in intact human neutrophils by naturally-occurring diarylheptanoids: inhibitory activities of curcuminoids and yakuchinones. Prostaglandins, Leukotrienes and Medicine. 1986;22(3):357–360. doi: 10.1016/0262-1746(86)90146-0.
    1. Sameermahmood Z., Balasubramanyam M., Saravanan T., Rema M. Curcumin modulates SDF-1α/CXCR4–induced migration of human retinal endothelial cells (HRECs) Investigative Opthalmology & Visual Science. 2008;49(8):3305–3311. doi: 10.1167/iovs.07-0456.
    1. Mandal M. N. A., Patlolla J. M. R., Zheng L., et al. Curcumin protects retinal cells from light-and oxidant stress-induced cell death. Free Radical Biology and Medicine. 2009;46(5):672–679. doi: 10.1016/j.freeradbiomed.2008.12.006.
    1. Li Y., Zou X., Cao K., et al. Curcumin analog 1, 5-bis (2-trifluoromethylphenyl)-1, 4-pentadien-3-one exhibits enhanced ability on Nrf2 activation and protection against acrolein-induced ARPE-19 cell toxicity. Toxicology and Applied Pharmacology. 2013;272(3):726–735. doi: 10.1016/j.taap.2013.07.029.
    1. Nabavi S. F., Thiagarajan R., Rastrelli L., et al. Curcumin: a natural product for diabetes and its complications. Current Topics in Medicinal Chemistry. 2015;15(23):2445–2455. doi: 10.2174/1568026615666150619142519.
    1. Wang L. L., Sun Y., Huang K., Zheng L. Curcumin, a potential therapeutic candidate for retinal diseases. Molecular Nutrition & Food Research. 2013;57(9):1557–1568. doi: 10.1002/mnfr.201200718.
    1. Yoshino M., Haneda M., Naruse M., et al. Prooxidant activity of curcumin: copper-dependent formation of 8-hydroxy-2′-deoxyguanosine in DNA and induction of apoptotic cell death. Toxicology in Vitro. 2004;18(6):783–789. doi: 10.1016/j.tiv.2004.03.009.
    1. Wallace T. C., Giusti M. M. Anthocyanins. Advances in Nutrition. 2015;6(5):620–622. doi: 10.3945/an.115.009233.
    1. Lila M. A., Burton-Freeman B., Grace M., Kalt W. Unraveling anthocyanin bioavailability for human health. Annual Review of Food Science and Technology. 2016;7(1):375–393. doi: 10.1146/annurev-food-041715-033346.
    1. Fang J. Bioavailability of anthocyanins. Drug Metabolism Reviews. 2014;46(4):508–520. doi: 10.3109/03602532.2014.978080.
    1. Skrovankova S., Sumczynski D., Mlcek J., Jurikova T., Sochor J. Bioactive compounds and antioxidant activity in different types of berries. International Journal of Molecular Sciences. 2015;16(10):24673–24706. doi: 10.3390/ijms161024673.
    1. Wang H., Nair M. G., Strasburg G. M., et al. Antioxidant and antiinflammatory activities of anthocyanins and their aglycon, cyanidin, from tart cherries. Journal of Natural Products. 1999;62(2):294–296. doi: 10.1021/np980501m.
    1. Aboonabi A., Singh I. Chemopreventive role of anthocyanins in atherosclerosis via activation of Nrf2–ARE as an indicator and modulator of redox. Biomedicine & Pharmacotherapy. 2015;72:30–36. doi: 10.1016/j.biopha.2015.03.008.
    1. Vendrame S., Klimis-Zacas D. Anti-inflammatory effect of anthocyanins via modulation of nuclear factor-κB and mitogen-activated protein kinase signaling cascades. Nutrition Reviews. 2015;73(6):348–358. doi: 10.1093/nutrit/nuu066.
    1. Mena P., Domínguez-Perles R., Gironés-Vilaplana A., Baenas N., García-Viguera C., Villaño D. Flavan-3-ols, anthocyanins, and inflammation. IUBMB Life. 2014;66(11):745–758. doi: 10.1002/iub.1332.
    1. Guo H., Ling W. The update of anthocyanins on obesity and type 2 diabetes: experimental evidence and clinical perspectives. Reviews in Endocrine and Metabolic Disorders. 2015;16(1):1–13. doi: 10.1007/s11154-014-9302-z.
    1. Žmitek K., Pogačnik T., Mervic L., Žmitek J., Pravst I. The effect of dietary intake of coenzyme Q10 on skin parameters and condition: results of a randomised, placebo-controlled, double-blind study. Biofactors. 2017;43(1):132–140. doi: 10.1002/biof.1316.
    1. Lim S. C., Tan H. H., Goh S. K., et al. Oxidative burden in prediabetic and diabetic individuals: evidence from plasma coenzyme Q10. Diabetic Medicine. 2006;23(12):1344–1349. doi: 10.1111/j.1464-5491.2006.01996.x.
    1. Garrido-Maraver J., Cordero M. D., Oropesa-Avila M., et al. Clinical applications of coenzyme Q10. Frontiers in Bioscience. 2014;19(4):619–633. doi: 10.2741/4231.
    1. Modi K., Santani D. D., Goyal R. K., Bhatt P. A. Effect of coenzyme Q10 on catalase activity and other antioxidant parameters in streptozotocin-induced diabetic rats. Biological Trace Element Research. 2006;109(1):025–034. doi: 10.1385/BTER:109:1:025.
    1. Dhanasekaran M., Ren J. The emerging role of coenzyme Q-10 in aging, neurodegeneration, cardiovascular disease, cancer and diabetes mellitus. Current Neurovascular Research. 2005;2(5):447–459. doi: 10.2174/156720205774962656.
    1. Li J., Yu S., Ying J., Shi T., Wang P. Resveratrol prevents ROS-induced apoptosis in high glucose-treated retinal capillary endothelial cells via the activation of AMPK/Sirt1/PGC-1α pathway. Oxidative Medicine and Cellular Longevity. 2017;2017:10. doi: 10.1155/2017/7584691.7584691
    1. Abu-Amero K. K., Kondkar A. A., Chalam K. V. Resveratrol and ophthalmic diseases. Nutrients. 2016;8(4):p. 200. doi: 10.3390/nu8040200.
    1. Goldberg D. M., Yan J., Soleas G. J. Absorption of three wine-related polyphenols in three different matrices by healthy subjects. Clinical Biochemistry. 2003;36(1):79–87. doi: 10.1016/S0009-9120(02)00397-1.
    1. Walle T. Bioavailability of resveratrol. Annals of the New York Academy of Sciences. 2011;1215(1):9–15. doi: 10.1111/j.1749-6632.2010.05842.x.
    1. Doganay S., Borazan M., Iraz M., Cigremis Y. The effect of resveratrol in experimental cataract model formed by sodium selenite. Current Eye Research. 2006;31(2):147–153. doi: 10.1080/02713680500514685.
    1. Hightower K. R., McCready J. P. Effect of selenite on epithelium of cultured rabbit lens. Investigative Ophthalmology & Visual Science. 1991;32(2):406–409.
    1. Bola C., Bartlett H., Eperjesi F. Resveratrol and the eye: activity and molecular mechanisms. Graefe's Archive for Clinical and Experimental Ophthalmology. 2014;252(5):699–713. doi: 10.1007/s00417-014-2604-8.
    1. Kim Y. H., Kim Y. S., Roh G. S., Choi W. S., Cho G. J. Resveratrol blocks diabetes-induced early vascular lesions and vascular endothelial growth factor induction in mouse retinas. Acta Ophthalmologica. 2012;90(1):e31–e37. doi: 10.1111/j.1755-3768.2011.02243.x.
    1. Luna C., Li G., Liton P. B., et al. Resveratrol prevents the expression of glaucoma markers induced by chronic oxidative stress in trabecular meshwork cells. Food and Chemical Toxicology. 2009;47(1):198–204. doi: 10.1016/j.fct.2008.10.029.
    1. Gong Y., Fu Z., Liegl R., Chen J., Hellström A., Smith L. E. H. ω-3 and ω-6 long-chain PUFAs and their enzymatic metabolites in neovascular eye diseases. The American Journal of Clinical Nutrition. 2017;106(1):16–26. doi: 10.3945/ajcn.117.153825.
    1. Behl T., Kotwani A. Omega-3 fatty acids in prevention of diabetic retinopathy. Journal of Pharmacy and Pharmacology. 2017;69(8):946–954. doi: 10.1111/jphp.12744.
    1. Dátilo M. N., Sant’Ana M. R., Formigari G. P., et al. Omega-3 from flaxseed oil protects obese mice against diabetic retinopathy through GPR120 receptor. Scientific Reports. 2018;8(1, article 14318) doi: 10.1038/s41598-018-32553-5.
    1. Sala-Vila A., Díaz-López A., Valls-Pedret C., et al. Dietary marine ω-3 fatty acids and incident sight-threatening retinopathy in middle-aged and older individuals with type 2 diabetes: prospective investigation from the PREDIMED trial. JAMA Ophthalmology. 2016;134(10):1142–1149. doi: 10.1001/jamaophthalmol.2016.2906.
    1. Sapieha P., Chen J., Stahl A., et al. Omega-3 polyunsaturated fatty acids preserve retinal function in type 2 diabetic mice. Nutrition & Diabetes. 2012;2(7, article e36) doi: 10.1038/nutd.2012.10.

Source: PubMed

3
Abonnieren