Comparison of maintenance, emergence and recovery characteristics of sevoflurane and desflurane in pediatric ambulatory surgery

Manish B Kotwani, Anila D Malde, Manish B Kotwani, Anila D Malde

Abstract

Background and aims: Increasing number of pediatric ambulatory surgeries are being carried out in general anesthesia using supraglottic airways (SGAs). Literature comparing sevoflurane and desflurane for the maintenance of SGA-based anesthesia is limited. Hence, we planned this prospective randomized study to compare the maintenance, emergence and recovery characteristics of sevoflurane and desflurane for pediatric ambulatory surgery.

Material and methods: Sixty children aged 6 months to 6 years posted for short surgical procedures were enrolled into the study. Anesthesia was induced with intravenous propofol (maximum 4 mg/kg), SGA was inserted, and children were randomized to receive sevoflurane or desflurane for the maintenance of anesthesia. No muscle relaxants were administered, and all children received caudal block and rectal paracetamol suppository. Demographic data, perioperative hemodynamics and adverse events, emergence and recovery characteristics, postoperative pain, and emergence agitation (EA) were recorded. Data were analyzed using SPSS (version 16.0, IBM Corporation, Armonk, New York, USA). P < 0.05 was considered statistically significant.

Results: Demography, perioperative hemodynamics, and duration of inhalational anesthesia were comparable between two groups. There were no respiratory adverse events in either group during maintenance. Time to awakening and time to removal of SGA were shorter with desflurane (5.3 ± 1.4 and 5.8 ± 1.3 min) than sevoflurane (9.1 ± 2.4 and 10.0 ± 1.6 min) (P < 0.0001). Recovery (steward recovery score = 6) was faster with desflurane (18 ± 8.4 min) than sevoflurane (45.3 ± 9.7 min) (P < 0.001). The incidence of EA was 16.7% with desflurane and 10% with sevoflurane (P = 0.226).

Conclusion: Desflurane provides faster emergence and recovery in comparison to sevoflurane when used for the maintenance of anesthesia through SGA in children. Both sevoflurane and desflurane can be safely used in children for lower abdominal surgeries.

Keywords: Desflurane; emergence; pediatric; recovery; sevoflurane.

Conflict of interest statement

There are no conflicts of interest.

References

    1. Klock PA, Jr, Czeslick EG, Klafta JM, Ovassapian A, Moss J. The effect of sevoflurane and desflurane on upper airway reactivity. Anesthesiology. 2001;94:963–7.
    1. White PF, Tang J, Wender RH, Yumul R, Stokes OJ, Sloninsky A, et al. Desflurane versus sevoflurane for maintenance of outpatient anesthesia: The effect on early versus late recovery and perioperative coughing. Anesth Analg. 2009;109:387–93.
    1. Oofuvong M, Geater AF, Chongsuvivatwong V, Pattaravit N, Nuanjun K. Risk over time and risk factors of intraoperative respiratory events: A historical cohort study of 14,153 children. BMC Anesthesiol. 2014;14:13.
    1. Eger EI, White PF, Bogetz MS. Clinical and economic factors important to anaesthetic choice for day-case surgery. Pharmacoeconomics. 2000;17:245–62.
    1. Rosenberg MK, Bridge P, Brown M. Cost comparison: A desflurane- versus a propofol-based general anesthetic technique. Anesth Analg. 1994;79:852–5.
    1. Lerman J. Inhalational anesthetics. Paediatr Anaesth. 2004;14:380–3.
    1. Murat I. Is there a place for desflurane in paediatric anaesthesia? Paediatr Anaesth. 2002;12:663–4.
    1. Costi D, Cyna AM, Ahmed S, Stephens K, Strickland P, Ellwood J, et al. Effects of sevoflurane versus other general anaesthesia on emergence agitation in children. Cochrane Database Syst Rev. 2014:CD007084.
    1. Welborn LG, Hannallah RS, Norden JM, Ruttimann UE, Callan CM. Comparison of emergence and recovery characteristics of sevoflurane, desflurane, and halothane in pediatric ambulatory patients. Anesth Analg. 1996;83:917–20.
    1. Uzun S, Tuncer S, Tavlan A, Reisli R, Sarkilar G, Ökesli S. Comparison of maintenance and recovery characteristics of desflurane and sevoflurane in children. Turk J Anaesthesiol Reanim. 2003;31:415–21.
    1. Demirbilek S, Togal T, Cicek M, Aslan U, Sizanli E, Ersoy MO. Effects of fentanyl on the incidence of emergence agitation in children receiving desflurane or sevoflurane anaesthesia. Eur J Anaesthesiol. 2004;21:538–42.
    1. Cohen IT, Finkel JC, Hannallah RS, Hummer KA, Patel KM. The effect of fentanyl on the emergence characteristics after desflurane or sevoflurane anesthesia in children. Anesth Analg. 2002;94:1178–81.
    1. Jindal R, Kumra VP, Narani KK, Sood J. Comparison of maintenance and emergence characteristics after desflurane or sevoflurane in outpatient anaesthesia. Indian J Anaesth. 2011;55:36–42.
    1. Gupta P, Rath GP, Prabhakar H, Bithal PK. Comparison between sevoflurane and desflurane on emergence and recovery characteristics of children undergoing surgery for spinal dysraphism. Indian J Anaesth. 2015;59:482–7.
    1. Singh R, Kharbanda M, Sood N, Mahajan V, Chatterji C. Comparative evaluation of incidence of emergence agitation and post-operative recovery profile in paediatric patients after isoflurane, sevoflurane and desflurane anaesthesia. Indian J Anaesth. 2012;56:156–61.
    1. Valley RD, Freid EB, Bailey AG, Kopp VJ, Georges LS, Fletcher J, et al. Tracheal extubation of deeply anesthetized pediatric patients: A comparison of desflurane and sevoflurane. Anesth Analg. 2003;96:1320–4.
    1. Lerman J, Hammer GB, Verghese S, Ehlers M, Khalil SN, Betts E, et al. Airway responses to desflurane during maintenance of anesthesia and recovery in children with laryngeal mask airways. Paediatr Anaesth. 2010;20:495–505.
    1. Yasuda N, Lockhart SH, Eger EI, 2nd, Weiskopf RB, Johnson BH, Freire BA, et al. Kinetics of desflurane, isoflurane, and halothane in humans. Anesthesiology. 1991;74:489–98.
    1. Steward A, Allott PR, Cowles AL, Mapleson WW. Solubility coefficients for inhaled anaesthetics for water, oil and biological media. Br J Anaesth. 1973;45:282–93.
    1. Macario A, Dexter F, Lubarsky D. Meta-analysis of trials comparing postoperative recovery after anesthesia with sevoflurane or desflurane. Am J Health Syst Pharm. 2005;62:63–8.
    1. Mayer J, Boldt J, Röhm KD, Scheuermann K, Suttner SW. Desflurane anesthesia after sevoflurane inhaled induction reduces severity of emergence agitation in children undergoing minor ear-nose-throat surgery compared with sevoflurane induction and maintenance. Anesth Analg. 2006;102:400–4.
    1. Kain ZN, Caldwell-Andrews AA, Maranets I, McClain B, Gaal D, Mayes LC, et al. Preoperative anxiety and emergence delirium and postoperative maladaptive behaviors. Anesth Analg. 2004;99:1648–54.
    1. Aguilera IM, Patel D, Meakin GH, Masterson J. Perioperative anxiety and postoperative behavioural disturbances in children undergoing intravenous or inhalation induction of anaesthesia. Paediatr Anaesth. 2003;13:501–7.
    1. Silva LM, Braz LG, Módolo NS. Emergence agitation in pediatric anesthesia: Current features. J Pediatr (Rio J) 2008;84:107–13.
    1. Cravero J, Surgenor S, Whalen K. Emergence agitation in paediatric patients after sevoflurane anaesthesia and no surgery: A comparison with halothane. Paediatr Anaesth. 2000;10:419–24.

Source: PubMed

3
Abonnieren