Assessment of left ventricular twist by 3D ballistocardiography and seismocardiography compared with 2D STI echocardiography in a context of enhanced inotropism in healthy subjects

Sofia Morra, Amin Hossein, Jérémy Rabineau, Damien Gorlier, Judith Racape, Pierre-François Migeotte, Philippe van de Borne, Sofia Morra, Amin Hossein, Jérémy Rabineau, Damien Gorlier, Judith Racape, Pierre-François Migeotte, Philippe van de Borne

Abstract

Ballistocardiography (BCG) and Seismocardiography (SCG) assess the vibrations produced by cardiac contraction and blood flow, respectively, by means of micro-accelerometers and micro-gyroscopes. From the BCG and SCG signals, maximal velocities (VMax), integral of kinetic energy (iK), and maximal power (PMax) can be computed as scalar parameters, both in linear and rotational dimensions. Standard echocardiography and 2-dimensional speckle tracking imaging echocardiography were performed on 34 healthy volunteers who were infused with increasing doses of dobutamine (5-10-20 μg/kg/min). Linear VMax of BCG predicts the rates of left ventricular (LV) twisting and untwisting (both p < 0.0001). The linear PMax of both SCG and BCG and the linear iK of BCG are the best predictors of the LV ejection fraction (LVEF) (p < 0.0001). This result is further confirmed by mathematical models combining the metrics from SCG and BCG signals with heart rate, in which both linear PMax and iK strongly correlate with LVEF (R = 0.7, p < 0.0001). In this setting of enhanced inotropism, the linear VMax of BCG, rather than the VMax of SCG, is the metric which best explains the LV twist mechanics, in particular the rates of twisting and untwisting. PMax and iK metrics are strongly associated with the LVEF and account for 50% of the variance of the LVEF.

Conflict of interest statement

P-F. Migeotte, D. Gorlier and A. Hossein declare having direct ownership of shares in Healthcare Company. S. Morra, J. Rabineau, J. Racape, P. van de Borne do not declare any conflict of interest.

Figures

Figure 1
Figure 1
Synchronization of SCG and BCG signals with LV twist. From top to bottom: (a) ECG with the P-Q-R-S-T waves labeled; (b) LV twist, apical and basal rotations; (c) angular rates of LV twist, apical and basal twist rotations; (d) KLin SCG; (e) KRot SCG; (e) KLin BCG; (f) KRot BCG. The first of the two main peaks of KLin SCG (d) and KRot SCG (e) occurs before the aortic valve closure (AVC), during the ejection phase of cardiac cycle and concomitantly with the acceleration of LV twist; the second one occurs after the AVC, synchronously with the deceleration phase of LV twist. With regards to the BCG, waves of KLin and KRot occur almost exclusively after the AVC, during the diastolic phase of cardiac cycle. The Aortic Valve Closure (AVC) is labeled on the figure. KLin kinetic energy in the linear dimension, KRot kinetic energy in the rotational dimension, SCG seismocardiography, BCG ballistocardiography, ECG electrocardiogram, LV left ventricle.
Figure 2
Figure 2
Correlations between metrics of BCG and SCG with the LVEF. Mathematical models combining: (A) linear PMax of SCG and BCG with the LVEF and (B) iK of SCG and BCG with the LVEF (both R = 0.7, p < 0.0001).

References

    1. Gurev V, Tavakolian K, Constantino J, Kaminska B, Blaber AP, Trayanova NA. Mechanisms underlying isovolumic contraction and ejection peaks in seismocardiogram morphology. J. Med. Biol. Eng. 2012;32:103–110. doi: 10.5405/jmbe.847.
    1. Hossein A, Mirica DC, Rabineau J, Del Rio JI, Morra S, Gorlier D, Nonclercq A, van de Borne P, Migeotte PF. Publisher correction: Accurate detection of dobutamine-induced haemodynamic changes by kino-cardiography: A randomised double-blind placebo-controlled validation study. Sci. Rep. 2020;10:5459. doi: 10.1038/s41598-020-61864-9.
    1. Jafari Tadi M, Lehtonen E, Saraste A, Tuominen J, Koskinen J, Teras M, Airaksinen J, Pankaala M, Koivisto T. Gyrocardiography: A new non-invasive monitoring method for the assessment of cardiac mechanics and the estimation of hemodynamic variables. Sci. Rep. 2017;7:6823. doi: 10.1038/s41598-017-07248-y.
    1. Starr I. The relation of the ballistocardiogram to cardiac function. Am. J. Cardiol. 1958;2:737–747. doi: 10.1016/0002-9149(58)90271-6.
    1. Tavakolian K, Portacio G, Tamddondoust NR, Jahns G, Ngai B, Dumont GA, Blaber AP. Myocardial contractility: A seismocardiography approach. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2012;2012:3801–3804.
    1. Migeotte, P. F., Mucci, V., Delière, Q., Lejeune, L.,& van de Borne P. Multi-dimensional Kinetocardiography a new approach for wearable cardiac monitoring through body acceleration recordings. XIV Medit. Conf. Med. Biol. Eng. Comput. 1125–1130 (2016).
    1. Calvo, M., Le Rolle, V., Lemonnier, M., Yasuda, S., Oosterlinck, W., & Hernandez, A. Evaluation of three-dimensional accelerometers for the study of left ventricular contractility. Paper presented at: Computing in Cardiology Conference (CinC); 2018; Maastricht, Netherlands.
    1. Desruelles, J., Debacker, G. Seminar on ballistocardiography. practical value of the ballistocardiogram in myocardial infarction. Am. J. Cardiol. 3, 236–241 (1959).
    1. Moser M, Pordy L, Chesky K, Taymor RC, Master AM. The ballistocardiogram in myocardial infarction: A study of one hundred cases. Circulation. 1952;6:402–407. doi: 10.1161/01.CIR.6.3.402.
    1. Inan OT, Baran Pouyan M, Javaid AQ, Dowling S, Etemadi M, Dorier A, Heller JA, Bicen AO, Roy S, De Marco T, Klein L. Novel wearable seismocardiography and machine learning algorithms can assess clinical status of heart failure patients. Circ. Heart Fail. 2018;11:e004313. doi: 10.1161/CIRCHEARTFAILURE.117.004313.
    1. Nakatani S. Left ventricular rotation and twist: Why should we learn? J. Cardiovasc. Ultrasound. 2011;19:1–6. doi: 10.4250/jcu.2011.19.1.1.
    1. Sengupta PP, Korinek J, Belohlavek M, Narula J, Vannan MA, Jahangir A, Khandheria BK. Left ventricular structure and function: Basic science for cardiac imaging. J. Am. Coll. Cardiol. 2006;48:1988–2001. doi: 10.1016/j.jacc.2006.08.030.
    1. Sengupta PP, Tajik AJ, Chandrasekaran K, Khandheria BK. Twist mechanics of the left ventricle: Principles and application. JACC Cardiovasc. Imaging. 2008;1:366–376. doi: 10.1016/j.jcmg.2008.02.006.
    1. Lima MSM, Villarraga HR, Abduch MCD, Lima MF, Cruz C, Sbano JCN, Voos MC, Mathias WJ, Tsutsui JM. Global longitudinal strain or left ventricular twist and torsion? Which correlates best with ejection fraction? Arq Bras. Cardiol. 2017;109:23–29.
    1. Pacileo G, Baldini L, Limongelli G, Di Salvo G, Iacomino M, Capogrosso C, Rea A, D'Andrea A, Russo MG, Calabro R. Prolonged left ventricular twist in cardiomyopathies: A potential link between systolic and diastolic dysfunction. Eur. J. Echocardiogr. 2011;12:841–849. doi: 10.1093/ejechocard/jer148.
    1. Takeuchi M, Nishikage T, Nakai H, Kokumai M, Otani S, Lang RM. The assessment of left ventricular twist in anterior wall myocardial infarction using two-dimensional speckle tracking imaging. J. Am. Soc. Echocardiogr. 2007;20:36–44. doi: 10.1016/j.echo.2006.06.019.
    1. Hansen DE, Daughters GT, 2nd, Alderman EL, Ingels NB, Jr, Miller DC. Torsional deformation of the left ventricular midwall in human hearts with intramyocardial markers: regional heterogeneity and sensitivity to the inotropic effects of abrupt rate changes. Circ. Res. 1988;62:941–952. doi: 10.1161/01.RES.62.5.941.
    1. Hansen DE, Daughters GT, 2nd, Alderman EL, Ingels NB, Stinson EB, Miller DC. Effect of volume loading, pressure loading, and inotropic stimulation on left ventricular torsion in humans. Circulation. 1991;83:1315–1326. doi: 10.1161/01.CIR.83.4.1315.
    1. Kim WJ, Lee BH, Kim YJ, Kang JH, Jung YJ, Song JM, Kang DH, Song JK. Apical rotation assessed by speckle-tracking echocardiography as an index of global left ventricular contractility. Circ. Cardiovasc. Imaging. 2009;2:123–131. doi: 10.1161/CIRCIMAGING.108.794719.
    1. Moon MR, Ingels NB, Jr, Daughters GT, 2nd, Stinson EB, Hansen DE, Miller DC. Alterations in left ventricular twist mechanics with inotropic stimulation and volume loading in human subjects. Circulation. 1994;89:142–150. doi: 10.1161/01.CIR.89.1.142.
    1. Burns AT, La Gerche A, Prior DL, Macisaac AI. Left ventricular untwisting is an important determinant of early diastolic function. JACC Cardiovasc. Imaging. 2009;2:709–716. doi: 10.1016/j.jcmg.2009.01.015.
    1. Notomi Y, Martin-Miklovic MG, Oryszak SJ, Shiota T, Deserranno D, Popovic ZB, Garcia MJ, Greenberg NL, Thomas JD. Enhanced ventricular untwisting during exercise: A mechanistic manifestation of elastic recoil described by Doppler tissue imaging. Circulation. 2006;113:2524–2533. doi: 10.1161/CIRCULATIONAHA.105.596502.
    1. Marcelli, E., Cercenelli, L.. An implantable sensorized lead for continuous monitoring of cardiac apex rotation. Sensors (Basel) 18 (2018).
    1. Evangelista, A., Flachskampf, F., Lancellotti, P., Badano, L., Aguilar, R., Monaghan, M., Zamorano, J., & Nihoyannopoulos P and European Association of E. European Association of Echocardiography recommendations for standardization of performance, digital storage and reporting of echocardiographic studies. Eur. J. Echocardiogr. 9, 438–448 (2008).
    1. Mitchell C, Rahko PS, Blauwet LA, Canaday B, Finstuen JA, Foster MC, Horton K, Ogunyankin KO, Palma RA, Velazquez EJ. Guidelines for performing a comprehensive transthoracic echocardiographic examination in adults: Recommendations from the American Society of Echocardiography. J. Am. Soc. Echocardiogr. 2019;32:1–64. doi: 10.1016/j.echo.2018.06.004.
    1. Voigt JU, Pedrizzetti G, Lysyansky P, Marwick TH, Houle H, Baumann R, Pedri S, Ito Y, Abe Y, Metz S, Song JH, Hamilton J, Sengupta PP, Kolias TJ, d'Hooge J, Aurigemma GP, Thomas JD, Badano LP. Definitions for a common standard for 2D speckle tracking echocardiography: Consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. Eur Heart J. Cardiovasc. Imaging. 2015;16:1–11. doi: 10.1093/ehjci/jeu184.
    1. Migeotte PF, De Ridder S, Tank J, Pattyn N, Funtova I, Baevsky R, Neyt X, Prisk GK. Three dimensional ballisto- and seismo-cardiography: HIJ wave amplitudes are poorly correlated to maximal systolic force vector. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2012;2012:5046–5049.
    1. Prisk GK, Verhaeghe S, Padeken D, Hamacher H, Paiva M. Three-dimensional ballistocardiography and respiratory motion in sustained microgravity. Aviat. Space Environ. Med. 2001;72:1067–1074.
    1. Notomi Y, Lysyansky P, Setser RM, Shiota T, Popovic ZB, Martin-Miklovic MG, Weaver JA, Oryszak SJ, Greenberg NL, White RD, Thomas JD. Measurement of ventricular torsion by two-dimensional ultrasound speckle tracking imaging. J. Am. Coll. Cardiol. 2005;45:2034–2041. doi: 10.1016/j.jacc.2005.02.082.
    1. Notomi Y, Popovic ZB, Yamada H, Wallick DW, Martin MG, Oryszak SJ, Shiota T, Greenberg NL, Thomas JD. Ventricular untwisting: A temporal link between left ventricular relaxation and suction. Am. J. Physiol. Heart Circ. Physiol. 2008;294:H505–H513. doi: 10.1152/ajpheart.00975.2007.
    1. Morra, S., Mirica, D.C, Rabineau, J., Racape, J., Chaumont, M., Gorlier, D., Migeotte, P. F., & van de Borne, P. Quantitative analysis of LV twist and twist rates under dobutamine stimulation in healthy individuals: a comparison between twist and rates. Submitted for publication. 2020.
    1. Akiyama K, Maeda S, Matsuyama T, Kainuma A, Ishii M, Naito Y, Kinoshita M, Hamaoka S, Kato H, Nakajima Y, Nakamura N, Itatani K, Sawa T. Vector flow mapping analysis of left ventricular energetic performance in healthy adult volunteers. BMC Cardiovasc. Disord. 2017;17:21. doi: 10.1186/s12872-016-0444-7.
    1. Hong GR, Pedrizzetti G, Tonti G, Li P, Wei Z, Kim JK, Baweja A, Liu S, Chung N, Houle H, Narula J, Vannan MA. Characterization and quantification of vortex flow in the human left ventricle by contrast echocardiography using vector particle image velocimetry. JACC Cardiovasc. Imaging. 2008;1:705–717. doi: 10.1016/j.jcmg.2008.06.008.
    1. Kilner PJHM, Gibson DG. Our tortuous heart in dynamic mode-an echocardiographic study of mitral flow and movement in exercising subjects. Heart Vessels. 1997;12:103–110. doi: 10.1007/BF02767127.
    1. Sengupta PP, Khandheria BK, Korinek J, Jahangir A, Yoshifuku S, Milosevic I, Belohlavek M. Left ventricular isovolumic flow sequence during sinus and paced rhythms: New insights from use of high-resolution Doppler and ultrasonic digital particle imaging velocimetry. J. Am. Coll. Cardiol. 2007;49:899–908. doi: 10.1016/j.jacc.2006.07.075.
    1. Omar, A.M., Vallabhajosyula, S., & Sengupta, P.P. Left ventricular twist and torsion: research observations and clinical applications. Circ. Cardiovasc. Imaging. 2015;8.
    1. Solomon, D.S., Gillam, L. Echocardiography In: Elsevier, ed. Braunwald’s Heart Disease_A Textbook of Cardiovascular Medicine. 11th ed.; 2018: 175–178.
    1. Martinez-Legazpi P, Bermejo J, Benito Y, Yotti R, Perez Del Villar C, Gonzalez-Mansilla A, Barrio A, Villacorta E, Sanchez PL, Fernandez-Aviles F, del Alamo JC. Contribution of the diastolic vortex ring to left ventricular filling. J. Am. Coll. Cardiol. 2014;64:1711–1721. doi: 10.1016/j.jacc.2014.06.1205.
    1. Kim WY, Walker PG, Pedersen EM, Poulsen JK, Oyre S, Houlind K, Yoganathan AP. Left ventricular blood flow patterns in normal subjects: A quantitative analysis by three-dimensional magnetic resonance velocity mapping. J. Am. Coll. Cardiol. 1995;26:224–238. doi: 10.1016/0735-1097(95)00141-L.
    1. Nucifora G, Delgado V, Bertini M, Marsan NA, Van de Veire NR, Ng AC, Siebelink HM, Schalij MJ, Holman ER, Sengupta PP, Bax JJ. Left ventricular muscle and fluid mechanics in acute myocardial infarction. Am. J. Cardiol. 2010;106:1404–1409. doi: 10.1016/j.amjcard.2010.06.072.
    1. Doucende G, Schuster I, Rupp T, Startun A, Dauzat M, Obert P, Nottin S. Kinetics of left ventricular strains and torsion during incremental exercise in healthy subjects: The key role of torsional mechanics for systolic-diastolic coupling. Circ. Cardiovasc. Imaging. 2010;3:586–594. doi: 10.1161/CIRCIMAGING.110.943522.
    1. Parthenakis F, Maragkoudakis S, Marketou M, Patrianakos A, Zacharis E, Vardas P. Myocardial inotropic reserve: An old twist that constitutes a reliable index in the modern era of heart failure. Hellenic J. Cardiol. 2016;57:311–314. doi: 10.1016/j.hjc.2016.11.027.
    1. Bozhenko BS. Seismocardiography: A new method in the study of functional conditions of the heart. Ter Arkh. 1961;33:55–64.
    1. Inan OT, Migeotte PF, Park KS, Etemadi M, Tavakolian K, Casanella R, Zanetti J, Tank J, Funtova I, Prisk GK, Di Rienzo M. Ballistocardiography and seismocardiography: a review of recent advances. IEEE J. Biomed. Health Inform. 2015;19:1414–1427. doi: 10.1109/JBHI.2014.2361732.
    1. Taebi ASB, Bomar AJ, Sandler RH, Mansy HA. Recent advance in seismocardiography. Vibration. 2019;2:64–86. doi: 10.3390/vibration2010005.
    1. Tan C, Rubenson D, Srivastava A, Mohan R, Smith MR, Billick K, Bardarian S, Thomas HJ. Left ventricular outflow tract velocity time integral outperforms ejection fraction and Doppler-derived cardiac output for predicting outcomes in a select advanced heart failure cohort. Cardiovasc. Ultrasound. 2017;15:18. doi: 10.1186/s12947-017-0109-4.
    1. Kim CS, Ober SL, McMurtry MS, Finegan BA, Inan OT, Mukkamala R, Hahn JO. Ballistocardiogram: Mechanism and potential for unobtrusive cardiovascular health monitoring. Sci. Rep. 2016;6:31297. doi: 10.1038/srep31297.
    1. Kauer F, Geleijnse ML, van Dalen BM. Role of left ventricular twist mechanics in cardiomyopathies, dance of the helices. World J. Cardiol. 2015;7:476–482. doi: 10.4330/wjc.v7.i8.476.
    1. Sengupta PP, Khandheria BK, Narula J. Twist and untwist mechanics of the left ventricle. Heart Fail. Clin. 2008;4:315–324. doi: 10.1016/j.hfc.2008.03.001.
    1. Pellikka PA, Roger VL, McCully RB, Mahoney DW, Bailey KR, Seward JB, Tajik AJ. Normal stroke volume and cardiac output response during dobutamine stress echocardiography in subjects without left ventricular wall motion abnormalities. Am. J. Cardiol. 1995;76:881–886. doi: 10.1016/S0002-9149(99)80254-9.

Source: PubMed

3
Abonnieren