Immune Activation, Inflammation, and Non-AIDS Co-Morbidities in HIV-Infected Patients under Long-Term ART

Sonia Zicari, Libera Sessa, Nicola Cotugno, Alessandra Ruggiero, Elena Morrocchi, Carlo Concato, Salvatore Rocca, Paola Zangari, Emma C Manno, Paolo Palma, Sonia Zicari, Libera Sessa, Nicola Cotugno, Alessandra Ruggiero, Elena Morrocchi, Carlo Concato, Salvatore Rocca, Paola Zangari, Emma C Manno, Paolo Palma

Abstract

Despite effective antiretroviral therapy (ART), people living with HIV (PLWH) still present persistent chronic immune activation and inflammation. This condition is the result of several factors including thymic dysfunction, persistent antigen stimulation due to low residual viremia, microbial translocation and dysbiosis, caused by the disruption of the gut mucosa, co-infections, and cumulative ART toxicity. All of these factors can create a vicious cycle that does not allow the full control of immune activation and inflammation, leading to an increased risk of developing non-AIDS co-morbidities such as metabolic syndrome and cardiovascular diseases. This review aims to provide an overview of the most recent data about HIV-associated inflammation and chronic immune exhaustion in PLWH under effective ART. Furthermore, we discuss new therapy approaches that are currently being tested to reduce the risk of developing inflammation, ART toxicity, and non-AIDS co-morbidities.

Keywords: ART; HIV; immune activation; inflammation; metabolic syndrome; non-AIDS co-morbidities; premature aging.

Conflict of interest statement

The authors declare there are no conflicts of interest.

Figures

Figure 1
Figure 1
HIV infection causes both mucosal disruption and depletion of CD4+ T cells in gut-associated lymphoid tissue (GALT), altering the microbial composition (dysbiosis) and allowing microbial product to enter the circulatory system. Even with the introduction of antiretroviral therapy (ART), these two mechanisms lead to chronic immune activation and persistent inflammation that could also be enhanced by opportunistic co-infections. In turn, chronic activation and persistent inflammation result in (i) immune exhaustion and premature immune senescence, and in (ii) a direct damage of organs, through the release of pro-inflammatory cytokines. Images were obtained from Servier Medical Art images (http://smart.servier.com/).
Figure 2
Figure 2
HIV causes persistent inflammation and chronic immune activation. Over the years and despite effective ART, this altered immunological status could lead to the development of non-AIDS co-morbidities in people living with HIV (PLWH). Many of these are identified as cardiovascular diseases (CVDs) or metabolic syndrome (MetS). NADCs: non-AIDS-defining cancers; HALS: HIV-associated lipodystrophy syndrome; MHO: metabolically healthy obesity; ROS: reactive oxygen species; BMI: body mass index. Images were obtained from Servier Medical Art images (http://smart.servier.com/).

References

    1. World Health Organization HIV/AIDS. [(accessed on 31 December 2017)]; Available online:
    1. Deeks S.G., Lewin S.R., Havlir D.V. The end of aids: HIV infection as a chronic disease. Lancet. 2013;382:1525–1533. doi: 10.1016/S0140-6736(13)61809-7.
    1. Brites-Alves C., Luz E., Netto E.M., Ferreira T., Diaz R.S., Pedroso C., Page K., Brites C. Immune activation, proinflammatory cytokines, and conventional risks for cardiovascular disease in HIV patients: A case-control study in bahia, brazil. Front. Immunol. 2018;9:1469. doi: 10.3389/fimmu.2018.01469.
    1. Manjati T., Nkambule B., Ipp H. Immune activation is associated with decreased thymic function in asymptomatic, untreated HIV-infected individuals. South. Afr. J. HIV Med. 2016;17:445. doi: 10.4102/sajhivmed.v17i1.445.
    1. Zevin A.S., McKinnon L., Burgener A., Klatt N.R. Microbial translocation and microbiome dysbiosis in HIV-associated immune activation. Curr. Opin. HIV AIDS. 2016;11:182–190. doi: 10.1097/COH.0000000000000234.
    1. Sokoya T., Steel H.C., Nieuwoudt M., Rossouw T.M. HIV as a cause of immune activation and immunosenescence. Mediators Inflamm. 2017;2017:6825493. doi: 10.1155/2017/6825493.
    1. Bosho D.D., Dube L., Mega T.A., Adare D.A., Tesfaye M.G., Eshetie T.C. Prevalence and predictors of metabolic syndrome among people living with human immunodeficiency virus (PLWHIV) Diabetol. Metab. Syndr. 2018;10:10. doi: 10.1186/s13098-018-0312-y.
    1. Raposo M.A., Armiliato G.N.A., Guimaraes N.S., Caram C.A., Silveira R.D.S., Tupinambas U. Metabolic disorders and cardiovascular risk in people living with HIV/AIDS without the use of antiretroviral therapy. Rev. Soc. Bras. Med. Trop. 2017;50:598–606. doi: 10.1590/0037-8682-0258-2017.
    1. Gami A.S., Witt B.J., Howard D.E., Erwin P.J., Gami L.A., Somers V.K., Montori V.M. Metabolic syndrome and risk of incident cardiovascular events and death: A systematic review and meta-analysis of longitudinal studies. J. Am. Coll. Cardiol. 2007;49:403–414. doi: 10.1016/j.jacc.2006.09.032.
    1. Alshehri A.M. Metabolic syndrome and cardiovascular risk. J. Fam. Community Med. 2010;17:73–78. doi: 10.4103/1319-1683.71987.
    1. Nwosu F.C., Avershina E., Wilson R., Rudi K. Gut microbiota in HIV infection: Implication for disease progression and management. Gastroenterol. Res.Pract. 2014;2014:803185. doi: 10.1155/2014/803185.
    1. Nazli A., Chan O., Dobson-Belaire W.N., Ouellet M., Tremblay M.J., Gray-Owen S.D., Arsenault A.L., Kaushic C. Exposure to HIV-1 directly impairs mucosal epithelial barrier integrity allowing microbial translocation. PLoS Pathog. 2010;6:e1000852. doi: 10.1371/journal.ppat.1000852.
    1. Gootenberg D.B., Paer J.M., Luevano J.M., Kwon D.S. HIV-associated changes in the enteric microbial community: Potential role in loss of homeostasis and development of systemic inflammation. Curr. Opin. Infect. Dis. 2017;30:31–43. doi: 10.1097/QCO.0000000000000341.
    1. Abad-Fernandez M., Vallejo A., Hernandez-Novoa B., Diaz L., Gutierrez C., Madrid N., Munoz M.A., Moreno S. Correlation between different methods to measure microbial translocation and its association with immune activation in long-term suppressed HIV-1-infected individuals. J. Acquir. Immune Defic. Syndr. 2013;64:149–153. doi: 10.1097/QAI.0b013e31829a2f12.
    1. Vazquez-Castellanos J.F., Serrano-Villar S., Latorre A., Artacho A., Ferrus M.L., Madrid N., Vallejo A., Sainz T., Martinez-Botas J., Ferrando-Martinez S., et al. Altered metabolism of gut microbiota contributes to chronic immune activation in HIV-infected individuals. Mucosal. Immunol. 2015;8:760–772. doi: 10.1038/mi.2014.107.
    1. Mutlu E.A., Keshavarzian A., Losurdo J., Swanson G., Siewe B., Forsyth C., French A., Demarais P., Sun Y., Koenig L., et al. A compositional look at the human gastrointestinal microbiome and immune activation parameters in HIV infected subjects. PLoS Pathog. 2014;10:e1003829. doi: 10.1371/journal.ppat.1003829.
    1. Dinh D.M., Volpe G.E., Duffalo C., Bhalchandra S., Tai A.K., Kane A.V., Wanke C.A., Ward H.D. Intestinal microbiota, microbial translocation, and systemic inflammation in chronic HIV infection. J. Infect. Dis. 2015;211:19–27. doi: 10.1093/infdis/jiu409.
    1. Vujkovic-Cvijin I., Dunham R.M., Iwai S., Maher M.C., Albright R.G., Broadhurst M.J., Hernandez R.D., Lederman M.M., Huang Y., Somsouk M., et al. Dysbiosis of the gut microbiota is associated with HIV disease progression and tryptophan catabolism. Sci. Transl. Med. 2013;5:193ra191. doi: 10.1126/scitranslmed.3006438.
    1. Larsen J.M. The immune response to prevotella bacteria in chronic inflammatory disease. Immunology. 2017;151:363–374. doi: 10.1111/imm.12760.
    1. Jiang F., Meng D., Weng M., Zhu W., Wu W., Kasper D., Walker W.A. The symbiotic bacterial surface factor polysaccharide a on bacteroides fragilis inhibits il-1beta-induced inflammation in human fetal enterocytes via toll receptors 2 and 4. PLoS ONE. 2017;12:e0172738.
    1. Paquin-Proulx D., Ching C., Vujkovic-Cvijin I., Fadrosh D., Loh L., Huang Y., Somsouk M., Lynch S.V., Hunt P.W., Nixon D.F., et al. Bacteroides are associated with galt inkt cell function and reduction of microbial translocation in HIV-1 infection. Mucosal. Immunol. 2017;10:69–78. doi: 10.1038/mi.2016.34.
    1. Marchetti G., Tincati C., Silvestri G. Microbial translocation in the pathogenesis of HIV infection and aids. Clin. Microbiol. Rev. 2013;26:2–18. doi: 10.1128/CMR.00050-12.
    1. Burdo T.H., Lentz M.R., Autissier P., Krishnan A., Halpern E., Letendre S., Rosenberg E.S., Ellis R.J., Williams K.C. Soluble cd163 made by monocyte/macrophages is a novel marker of HIV activity in early and chronic infection prior to and after anti-retroviral therapy. J. Infect. Dis. 2011;204:154–163. doi: 10.1093/infdis/jir214.
    1. Knudsen T.B., Ertner G., Petersen J., Moller H.J., Moestrup S.K., Eugen-Olsen J., Kronborg G., Benfield T. Plasma soluble cd163 level independently predicts all-cause mortality in HIV-1-infected individuals. J. Infect. Dis. 2016;214:1198–1204. doi: 10.1093/infdis/jiw263.
    1. Park B.S., Lee J.O. Recognition of lipopolysaccharide pattern by tlr4 complexes. Exp. Mol. Med. 2013;45:e66. doi: 10.1038/emm.2013.97.
    1. Mendez-Lagares G., Romero-Sanchez M.C., Ruiz-Mateos E., Genebat M., Ferrando-Martinez S., Munoz-Fernandez M.A., Pacheco Y.M., Leal M. Long-term suppressive combined antiretroviral treatment does not normalize the serum level of soluble cd14. J. Infect. Dis. 2013;207:1221–1225. doi: 10.1093/infdis/jit025.
    1. O’Halloran J.A., Dunne E., Gurwith M., Lambert J.S., Sheehan G.J., Feeney E.R., Pozniak A., Reiss P., Kenny D., Mallon P. The effect of initiation of antiretroviral therapy on monocyte, endothelial and platelet function in HIV-1 infection. HIV Med. 2015;16:608–619. doi: 10.1111/hiv.12270.
    1. Longenecker C.T., Jiang Y., Orringer C.E., Gilkeson R.C., Debanne S., Funderburg N.T., Lederman M.M., Storer N., Labbato D.E., McComsey G.A. Soluble cd14 is independently associated with coronary calcification and extent of subclinical vascular disease in treated HIV infection. AIDS. 2014;28:969–977. doi: 10.1097/QAD.0000000000000158.
    1. Hanna D.B., Lin J., Post W.S., Hodis H.N., Xue X., Anastos K., Cohen M.H., Gange S.J., Haberlen S.A., Heath S.L., et al. Association of macrophage inflammation biomarkers with progression of subclinical carotid artery atherosclerosis in HIV-infected women and men. J. Infect. Dis. 2017;215:1352–1361. doi: 10.1093/infdis/jix082.
    1. Sandler N.G., Wand H., Roque A., Law M., Nason M.C., Nixon D.E., Pedersen C., Ruxrungtham K., Lewin S.R., Emery S., et al. Plasma levels of soluble cd14 independently predict mortality in HIV infection. J. Infect. Dis. 2011;203:780–790. doi: 10.1093/infdis/jiq118.
    1. Kuller L.H., Tracy R., Belloso W., De Wit S., Drummond F., Lane H.C., Ledergerber B., Lundgren J., Neuhaus J., Nixon D., et al. Inflammatory and coagulation biomarkers and mortality in patients with HIV infection. PLoS Med. 2008;5:e203. doi: 10.1371/journal.pmed.0050203.
    1. Rodger A.J., Fox Z., Lundgren J.D., Kuller L.H., Boesecke C., Gey D., Skoutelis A., Goetz M.B., Phillips A.N., INSIGHT Strategies for Management of Antiretroviral Therapy (SMART) Study Group Activation and coagulation biomarkers are independent predictors of the development of opportunistic disease in patients with HIV infection. J. Infect. Dis. 2009;200:973–983. doi: 10.1086/605447.
    1. Zeng M., Smith A.J., Wietgrefe S.W., Southern P.J., Schacker T.W., Reilly C.S., Estes J.D., Burton G.F., Silvestri G., Lifson J.D., et al. Cumulative mechanisms of lymphoid tissue fibrosis and t cell depletion in HIV-1 and SIV infections. J. Clin. Investig. 2011;121:998–1008. doi: 10.1172/JCI45157.
    1. Schacker T.W., Nguyen P.L., Beilman G.J., Wolinsky S., Larson M., Reilly C., Haase A.T. Collagen deposition in HIV-1 infected lymphatic tissues and T cell homeostasis. J. Clin. Investig. 2002;110:1133–1139. doi: 10.1172/JCI0216413.
    1. Moysi E., Pallikkuth S., de Armas L.R., Gonzalez L.E., Ambrozak D., George V., Huddleston D., Pahwa R., Koup R.A., Petrovas C., et al. Altered immune cell follicular dynamics in HIV infection following influenza vaccination. J. Clin. Investig. 2018;128:3171–3185. doi: 10.1172/JCI99884.
    1. Sanchez J.L., Hunt P.W., Reilly C.S., Hatano H., Beilman G.J., Khoruts A., Jasurda J.S., Somsouk M., Thorkelson A., Russ S., et al. Lymphoid fibrosis occurs in long-term nonprogressors and persists with antiretroviral therapy but may be reversible with curative interventions. J. Infect. Dis. 2015;211:1068–1075. doi: 10.1093/infdis/jiu586.
    1. Grund B., Baker J.V., Deeks S.G., Wolfson J., Wentworth D., Cozzi-Lepri A., Cohen C.J., Phillips A., Lundgren J.D., Neaton J.D., et al. Relevance of interleukin-6 and d-dimer for serious non-aids morbidity and death among HIV-positive adults on suppressive antiretroviral therapy. PLoS ONE. 2016;11:e0155100. doi: 10.1371/journal.pone.0155100.
    1. Graham S.M., Rajwans N., Jaoko W., Estambale B.B., McClelland R.S., Overbaugh J., Liles W.C. Endothelial activation biomarkers increase after HIV-1 acquisition: Plasma vascular cell adhesion molecule-1 predicts disease progression. AIDS. 2013;27:1803–1813. doi: 10.1097/QAD.0b013e328360e9fb.
    1. Fourie C.M., Schutte A.E., Smith W., Kruger A., van Rooyen J.M. Endothelial activation and cardiometabolic profiles of treated and never-treated HIV infected africans. Atherosclerosis. 2015;240:154–160. doi: 10.1016/j.atherosclerosis.2015.03.015.
    1. Mosepele M., Mohammed T., Mupfumi L., Moyo S., Bennett K., Lockman S., Hemphill L.C., Triant V.A. HIV disease is associated with increased biomarkers of endothelial dysfunction despite viral suppression on long-term antiretroviral therapy in botswana. Cardiovasc. J. Afr. 2018;29:155–161. doi: 10.5830/CVJA-2018-003.
    1. Silva K., Hope-Lucas C., White T., Hairston T.K., Rameau T., Brown A. Cortical neurons are a prominent source of the proinflammatory cytokine osteopontin in HIV-associated neurocognitive disorders. J. Neurovirol. 2015;21:174–185. doi: 10.1007/s13365-015-0317-3.
    1. Bandera A., Ferrario G., Saresella M., Marventano I., Soria A., Zanini F., Sabbatini F., Airoldi M., Marchetti G., Franzetti F., et al. Cd4+ t cell depletion, immune activation and increased production of regulatory t cells in the thymus of HIV-infected individuals. PLoS ONE. 2010;5:e10788. doi: 10.1371/journal.pone.0010788.
    1. Freeman M.L., Shive C.L., Nguyen T.P., Younes S.A., Panigrahi S., Lederman M.M. Cytokines and t-cell homeostasis in HIV infection. J. Infect. Dis. 2016;214(Suppl. 2):S51–S57. doi: 10.1093/infdis/jiw287.
    1. De Voeght A., Martens H., Renard C., Vaira D., Debruche M., Simonet J., Geenen V., Moutschen M., Darcis G. Exploring the link between innate immune activation and thymic function by measuring scd14 and trecs in hiv patients living in belgium. PLoS ONE. 2017;12:e0185761. doi: 10.1371/journal.pone.0185761.
    1. Bourgeois C., Hao Z., Rajewsky K., Potocnik A.J., Stockinger B. Ablation of thymic export causes accelerated decay of naive cd4 t cells in the periphery because of activation by environmental antigen. Proc. Natl. Acad. Sci. USA. 2008;105:8691–8696. doi: 10.1073/pnas.0803732105.
    1. Marquez M., Romero-Cores P., Montes-Oca M., Martin-Aspas A., Soto-Cardenas M.J., Guerrero F., Fernandez-Gutierrez C., Giron-Gonzalez J.A. Immune activation response in chronic HIV-infected patients: Influence of hepatitis c virus coinfection. PLoS ONE. 2015;10:e0119568. doi: 10.1371/journal.pone.0119568.
    1. Maidji E., Somsouk M., Rivera J.M., Hunt P.W., Stoddart C.A. Replication of cmv in the gut of HIV-infected individuals and epithelial barrier dysfunction. PLoS Pathog. 2017;13:e1006202. doi: 10.1371/journal.ppat.1006202.
    1. Gianella S., Anderson C.M., Var S.R., Oliveira M.F., Lada S.M., Vargas M.V., Massanella M., Little S.J., Richman D.D., Strain M.C., et al. Replication of human herpesviruses is associated with higher HIV DNA levels during antiretroviral therapy started at early phases of HIV infection. J. Virol. 2016;90:3944–3952. doi: 10.1128/JVI.02638-15.
    1. Gianella S., Massanella M., Richman D.D., Little S.J., Spina C.A., Vargas M.V., Lada S.M., Daar E.S., Dube M.P., Haubrich R.H., et al. Cytomegalovirus replication in semen is associated with higher levels of proviral HIV DNA and cd4+ t cell activation during antiretroviral treatment. J. Virol. 2014;88:7818–7827. doi: 10.1128/JVI.00831-14.
    1. Henrich T.J., Hobbs K.S., Hanhauser E., Scully E., Hogan L.E., Robles Y.P., Leadabrand K.S., Marty F.M., Palmer C.D., Jost S., et al. Human immunodeficiency virus type 1 persistence following systemic chemotherapy for malignancy. J. Infect. Dis. 2017;216:254–262. doi: 10.1093/infdis/jix265.
    1. Christensen-Quick A., Vanpouille C., Lisco A., Gianella S. Cytomegalovirus and HIV persistence: Pouring gas on the fire. AIDS Res. Hum. Retroviruses. 2017;33:S23–S30. doi: 10.1089/aid.2017.0145.
    1. Liu J.C., Leung J.M., Ngan D.A., Nashta N.F., Guillemi S., Harris M., Lima V.D., Um S.J., Li Y., Tam S., et al. Absolute leukocyte telomere length in HIV-infected and uninfected individuals: Evidence of accelerated cell senescence in HIV-associated chronic obstructive pulmonary disease. PLoS ONE. 2015;10:e0124426. doi: 10.1371/journal.pone.0124426.
    1. Appay V., Almeida J.R., Sauce D., Autran B., Papagno L. Accelerated immune senescence and HIV-1 infection. Exp. Gerontol. 2007;42:432–437. doi: 10.1016/j.exger.2006.12.003.
    1. Dock J.N., Effros R.B. Role of cd8 T cell replicative senescence in human aging and in HIV-mediated immunosenescence. Aging Dis. 2011;2:382–397.
    1. Cohen J., Torres C. HIV-associated cellular senescence: A contributor to accelerated aging. Ageing Res. Rev. 2017;36:117–124. doi: 10.1016/j.arr.2016.12.004.
    1. Wing E.J. HIV and aging. Int. J. Infect. Dis. 2016;53:61–68. doi: 10.1016/j.ijid.2016.10.004.
    1. Desai S., Landay A. Early immune senescence in HIV disease. Curr. HIV/AIDS Rep. 2010;7:4–10. doi: 10.1007/s11904-009-0038-4.
    1. Fernandez S., French M.A., Price P. Immunosenescent cd57+cd4+ T-cells accumulate and contribute to interferon-gamma responses in HIV patients responding stably to art. Dis. Mark. 2011;31:337–342. doi: 10.1155/2011/217860.
    1. Gianesin K., Noguera-Julian A., Zanchetta M., Del Bianco P., Petrara M.R., Freguja R., Rampon O., Fortuny C., Camos M., Mozzo E., et al. Premature aging and immune senescence in HIV-infected children. AIDS. 2016;30:1363–1373. doi: 10.1097/QAD.0000000000001093.
    1. Diaz L., Mendez-Lagares G., Correa-Rocha R., Pacheco Y.M., Ferrando-Martinez S., Ruiz-Mateos E., del Mar del Pozo-Balado M., Leon J.A., Gurbindo M.D., Isabel de Jose M., et al. Detectable viral load aggravates immunosenescence features of cd8 T-cell subsets in vertically HIV-infected children. J. Acquir. Immune Defic. Syndr. 2012;60:447–454. doi: 10.1097/QAI.0b013e318259254f.
    1. Appay V., Sauce D. Assessing immune aging in HIV-infected patients. Virulence. 2017;8:529–538. doi: 10.1080/21505594.2016.1195536.
    1. George V.K., Pallikkuth S., Parmigiani A., Alcaide M., Fischl M., Arheart K.L., Pahwa S. HIV infection worsens age-associated defects in antibody responses to influenza vaccine. J. Infect. Dis. 2015;211:1959–1968. doi: 10.1093/infdis/jiu840.
    1. Hong F.F., Mellors J.W. Changes in HIV reservoirs during long-term antiretroviral therapy. Curr. Opin. HIV AIDS. 2015;10:43–48. doi: 10.1097/COH.0000000000000119.
    1. Lee S.A., Deeks S.G. The benefits of early antiretroviral therapy for HIV infection: How early is early enough? EBio Med. 2016;11:7–8. doi: 10.1016/j.ebiom.2016.08.009.
    1. De Paula H.H.S., Ferreira A.C.G., Caetano D.G., Delatorre E., Teixeira S.L.M., Coelho L.E., Joao E.G., de Andrade M.M., Cardoso S.W., Grinsztejn B., et al. Reduction of inflammation and t cell activation after 6 months of cart initiation during acute, but not in early chronic HIV-1 infection. Retrovirology. 2018;15:76. doi: 10.1186/s12977-018-0458-6.
    1. Allers K., Puyskens A., Epple H.J., Schurmann D., Hofmann J., Moos V., Schneider T. The effect of timing of antiretroviral therapy on cd4+ t-cell reconstitution in the intestine of HIV-infected patients. Mucosal. Immunol. 2016;9:265–274. doi: 10.1038/mi.2015.58.
    1. Ghislain M., Bastard J.P., Meyer L., Capeau J., Fellahi S., Gerard L., May T., Simon A., Vigouroux C., Goujard C., et al. Late antiretroviral therapy (art) initiation is associated with long-term persistence of systemic inflammation and metabolic abnormalities. PLoS ONE. 2015;10:e0144317. doi: 10.1371/journal.pone.0144317.
    1. Amu S., Lantto Graham R., Bekele Y., Nasi A., Bengtsson C., Rethi B., Sorial S., Meini G., Zazzi M., Hejdeman B., et al. Dysfunctional phenotypes of cd4+ and cd8+ t cells are comparable in patients initiating art during early or chronic HIV-1 infection. Medicine. 2016;95:e3738. doi: 10.1097/MD.0000000000003738.
    1. Ruggiero A., de Spiegelaere W., Cozzi-Lepri A., Kiselinova M., Pollakis G., Beloukas A., Vandekerckhove L., Strain M., Richman D., Phillips A., et al. During stably suppressive antiretroviral therapy integrated HIV-1 DNA load in peripheral blood is associated with the frequency of cd8 cells expressing hla-dr/dp/dq. EBio Med. 2015;2:1153–1159. doi: 10.1016/j.ebiom.2015.07.025.
    1. Ruggiero A., Cozzi-Lepri A., Beloukas A., Richman D., Khoo S., Phillips A., Geretti A.M., Group E.S. Factors associated with persistence of plasma HIV-1 RNA during long-term continuously suppressive firstline antiretroviral therapy. Open Forum Infect. Dis. 2018;5:ofy032. doi: 10.1093/ofid/ofy032.
    1. Palma P., Zangari P., Alteri C., Tchidjou H.K., Manno E.C., Liuzzi G., Perno C.F., Rossi P., Bertoli A., Bernardi S. Early antiretroviral treatment (eart) limits viral diversity over time in a long-term HIV viral suppressed perinatally infected child. BMC Infect. Dis. 2016;16:742. doi: 10.1186/s12879-016-2092-z.
    1. Cotugno N., Douagi I., Rossi P., Palma P. Suboptimal immune reconstitution in vertically hiv infected children: A view on how HIV replication and timing of haart initiation can impact on t and b-cell compartment. Clin. Dev. Immunol. 2012;2012:805151. doi: 10.1155/2012/805151.
    1. Tagarro A., Chan M., Zangari P., Ferns B., Foster C., De Rossi A., Nastouli E., Munoz-Fernandez M.A., Gibb D., Rossi P., et al. Early and highly suppressive antiretroviral therapy are main factors associated with low viral reservoir in european perinatally HIV-infected children. J. Acquir. Immune Defic. Syndr. 2018;79:269–276. doi: 10.1097/QAI.0000000000001789.
    1. Klein N., Palma P., Luzuriaga K., Pahwa S., Nastouli E., Gibb D.M., Rojo P., Borkowsky W., Bernardi S., Zangari P., et al. Early antiretroviral therapy in children perinatally infected with HIV: A unique opportunity to implement immunotherapeutic approaches to prolong viral remission. Lancet. Infect. Dis. 2015;15:1108–1114. doi: 10.1016/S1473-3099(15)00052-3.
    1. Schuetz A., Deleage C., Sereti I., Rerknimitr R., Phanuphak N., Phuang-Ngern Y., Estes J.D., Sandler N.G., Sukhumvittaya S., Marovich M., et al. Initiation of art during early acute HIV infection preserves mucosal th17 function and reverses HIV-related immune activation. PLoS Pathog. 2014;10:e1004543. doi: 10.1371/journal.ppat.1004543.
    1. Ryom L., Boesecke C., Bracchi M., Ambrosioni J., Pozniak A., Arribas J., Behrens G., Mallon P., Puoti M., Rauch A., et al. Highlights of the 2017 european aids clinical society (eacs) guidelines for the treatment of adult HIV-positive persons version 9.0. HIV Med. 2018;19:309–315. doi: 10.1111/hiv.12600.
    1. Bamford A., Turkova A., Lyall H., Foster C., Klein N., Bastiaans D., Burger D., Bernadi S., Butler K., Chiappini E., et al. Paediatric european network for treatment of AIDS (penta) guidelines for treatment of paediatric HIV-1 infection 2015: Optimizing health in preparation for adult life. HIV Med. 2018;19:e1–e42. doi: 10.1111/hiv.12217.
    1. Bourgi K., Wanjalla C., Koethe J.R. Inflammation and metabolic complications in HIV. Curr. HIV/AIDS Rep. 2018;15:371–381. doi: 10.1007/s11904-018-0411-2.
    1. Swami A. Metabolic syndrome and HIV infection. J. HIV Retrovirus. 2016;2:1. doi: 10.21767/2471-9676.100014.
    1. Ivanov A.V., Valuev-Elliston V.T., Ivanova O.N., Kochetkov S.N., Starodubova E.S., Bartosch B., Isaguliants M.G. Oxidative stress during HIV infection: Mechanisms and consequences. Oxid. Med. Cell. Longev. 2016;2016:8910396. doi: 10.1155/2016/8910396.
    1. Reuter S., Gupta S.C., Chaturvedi M.M., Aggarwal B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med. 2010;49:1603–1616. doi: 10.1016/j.freeradbiomed.2010.09.006.
    1. Lagathu C., Cossarizza A., Bereziat V., Nasi M., Capeau J., Pinti M. Basic science and pathogenesis of ageing with HIV: Potential mechanisms and biomarkers. AIDS. 2017;31(Suppl. 2):S105–S119. doi: 10.1097/QAD.0000000000001441.
    1. Schoeman J.C., Moutloatse G.P., Harms A.C., Vreeken R.J., Scherpbier H.J., van Leeuwen L., Kuijpers T.W., Reinecke C.J., Berger R., Hankemeier T., et al. Fetal metabolic stress disrupts immune homeostasis and induces proinflammatory responses in human immunodeficiency virus type 1- and combination antiretroviral therapy-exposed infants. J. Infect. Dis. 2017;216:436–446. doi: 10.1093/infdis/jix291.
    1. Theengh D.P., Yadav P., Jain A.K., Nandy P. Assessment of metabolic syndrome in HIV-infected individuals. Indian J. Sex. Transm. Dis. AIDS. 2017;38:152–156.
    1. Nguyen K.A., Peer N., Mills E.J., Kengne A.P. A meta-analysis of the metabolic syndrome prevalence in the global HIV-infected population. PLoS ONE. 2016;11:e0150970. doi: 10.1371/journal.pone.0150970.
    1. Rogalska-Plonska M., Grzeszczuk A., Rogalski P., Lucejko M., Flisiak R. Metabolic syndrome in HIV infected adults in poland. Kardiol. Pol. 2018;76:548–553. doi: 10.5603/KP.a2017.0249.
    1. Bedimo R., Abodunde O. Metabolic and cardiovascular complications in HIV/HCV-co-infected patients. Curr. HIV/AIDS Rep. 2016;13:328–339. doi: 10.1007/s11904-016-0333-9.
    1. Singh E., Naidu G., Davies M.A., Bohlius J. HIV-associated malignancies in children. Curr. Opin. HIV AIDS. 2017;12:77–83. doi: 10.1097/COH.0000000000000331.
    1. Ivy W., Nesheim S.R., Paul S.M., Ibrahim A.R., Chan M., Niu X., Lampe M.A. Cancer among children with perinatal exposure to HIV and antiretroviral medications--new jersey, 1995–2010. J. Acquir. Immune Defic. Syndr. 2015;70:62–66. doi: 10.1097/QAI.0000000000000695.
    1. Borges A.H., Dubrow R., Silverberg M.J. Factors contributing to risk for cancer among HIV-infected individuals, and evidence that earlier combination antiretroviral therapy will alter this risk. Curr. Opin. HIV AIDS. 2014;9:34–40. doi: 10.1097/COH.0000000000000025.
    1. Caccuri F., Rueckert C., Giagulli C., Schulze K., Basta D., Zicari S., Marsico S., Cervi E., Fiorentini S., Slevin M., et al. HIV-1 matrix protein p17 promotes lymphangiogenesis and activates the endothelin-1/endothelin b receptor axis. Arterioscler. Thromb. Vasc. Biol. 2014;34:846–856. doi: 10.1161/ATVBAHA.113.302478.
    1. Center for Disease Control and Prevention Aids-Defining Conditions. [(accessed on 5 December 2008)]; Available online: .
    1. Vaccher E., Serraino D., Carbone A., de Paoli P. The evolving scenario of non-aids-defining cancers: Challenges and opportunities of care. Oncologist. 2014;19:860–867. doi: 10.1634/theoncologist.2014-0024.
    1. Wang C.C., Silverberg M.J., Abrams D.I. Non-AIDS-defining malignancies in the HIV-infected population. Curr. Infect. Dis. Rep. 2014;16:406. doi: 10.1007/s11908-014-0406-0.
    1. Zangari P., Santilli V., Cotugno N., Manno E., Palumbo G., Lombardi A., de Vito R., Tchidjou H., Baldassari S., Ariganello P., et al. Raising awareness of non-hodgkin lymphoma in HIV-infected adolescents: Report of 2 cases in the haart era. J. Pediatr. Hematol. Oncol. 2013;35:e134–e137. doi: 10.1097/MPH.0b013e318282cef5.
    1. Kaspar M.B., Sterling R.K. Mechanisms of liver disease in patients infected with HIV. BMJ Open Gastroenterol. 2017;4:e000166. doi: 10.1136/bmjgast-2017-000166.
    1. Srinivasa S., Fitch K.V., Wong K., O’Malley T.K., Maehler P., Branch K.L., Looby S.E., Burdo T.H., Martinez-Salazar E.L., Torriani M., et al. Randomized, placebo-controlled trial to evaluate effects of eplerenone on metabolic and inflammatory indices in hiv. J. Clin. Endocrinol. Metab. 2018;103:2376–2384. doi: 10.1210/jc.2018-00330.
    1. Perazzo H., Cardoso S.W., Yanavich C., Nunes E.P., Morata M., Gorni N., da Silva P.S., Cardoso C., Almeida C., Luz P., et al. Predictive factors associated with liver fibrosis and steatosis by transient elastography in patients with HIV mono-infection under long-term combined antiretroviral therapy. J. Int. AIDS Soc. 2018;21:e25201. doi: 10.1002/jia2.25201.
    1. Phalane E., Fourie C.M.T., Schutte A.E. The metabolic syndrome and renal function in an african cohort infected with human immunodeficiency virus. South. Afr. J. HIV Med. 2018;19:813. doi: 10.4102/sajhivmed.v19i1.813.
    1. Dragovic G., Srdic D., Al Musalhi K., Soldatovic I., Kusic J., Jevtovic D., Nair D. Higher levels of cystatin c in HIV/AIDS patients with metabolic syndrome. Basic Clin. Pharmacol. Toxicol. 2018;122:396–401. doi: 10.1111/bcpt.12919.
    1. Husain N.E., Noor S.K., Elmadhoun W.M., Almobarak A.O., Awadalla H., Woodward C.L., Mital D., Ahmed M.H. Diabetes, metabolic syndrome and dyslipidemia in people living with HIV in Africa: Re-emerging challenges not to be forgotten. HIV/AIDS. 2017;9:193–202. doi: 10.2147/HIV.S137974.
    1. Pedro M.N., Rocha G.Z., Guadagnini D., Santos A., Magro D.O., Assalin H.B., Oliveira A.G., Pedro R.J., Saad M.J.A. Insulin resistance in HIV-patients: Causes and consequences. Front. Endocrinol. 2018;9:514. doi: 10.3389/fendo.2018.00514.
    1. Hadigan C., Corcoran C., Stanley T., Piecuch S., Klibanski A., Grinspoon S. Fasting hyperinsulinemia in human immunodeficiency virus-infected men: Relationship to body composition, gonadal function, and protease inhibitor use. J. Clin. Endocrinol. Metab. 2000;85:35–41. doi: 10.1210/jc.85.1.35.
    1. Fahme S.A., Bloomfield G.S., Peck R. Hypertension in HIV-infected adults: Novel pathophysiologic mechanisms. Hypertension. 2018;72:44–55. doi: 10.1161/HYPERTENSIONAHA.118.10893.
    1. Xu Y., Chen X., Wang K. Global prevalence of hypertension among people living with HIV: A systematic review and meta-analysis. J. Am. Soc. Hypertens. 2017;11:530–540. doi: 10.1016/j.jash.2017.06.004.
    1. Idiculla J., Swaroop N., Shastri S., George N., Rewari B.B., Shet A. Metabolic syndrome and cardiovascular disease risk assessment among human immunodeficiency virus-infected individuals on antiretroviral therapy. Indian J. Sex. Transm. Dis. AIDS. 2018;39:28–33. doi: 10.4103/ijstd.IJSTD_89_16.
    1. Dube M.P., Lipshultz S.E., Fichtenbaum C.J., Greenberg R., Schecter A.D., Fisher S.D., Working G. Effects of HIV infection and antiretroviral therapy on the heart and vasculature. Circulation. 2008;118:e36–e40. doi: 10.1161/CIRCULATIONAHA.107.189625.
    1. Chow F.C., Price R.W., Hsue P.Y., Kim A.S. Greater risk of stroke of undetermined etiology in a contemporary HIV-infected cohort compared with uninfected individuals. J. Stroke Erebrovasc Dis. 2017;26:1154–1160. doi: 10.1016/j.jstrokecerebrovasdis.2017.02.010.
    1. Scutari R., Alteri C., Perno C.F., Svicher V., Aquaro S. The role of HIV infection in neurologic injury. Brain Sci. 2017;7:38. doi: 10.3390/brainsci7040038.
    1. Obirikorang C., Quaye L., Osei-Yeboah J., Odame E.A., Asare I. Prevalence of metabolic syndrome among hiv-infected patients in ghana: A cross-sectional study. Niger. Med. J. 2016;57:86–90. doi: 10.4103/0300-1652.182082.
    1. Finkelstein J.L., Gala P., Rochford R., Glesby M.J., Mehta S. HIV/AIDS and lipodystrophy: Implications for clinical management in resource-limited settings. J. Int. AIDS Soc. 2015;18:19033. doi: 10.7448/IAS.18.1.19033.
    1. Sacilotto L.B., Pereira P.C.M., Manechini J.P.V., Papini S.J. Body composition and metabolic syndrome components on lipodystrophy different subtypes associated with HIV. J. Nutr. Metab. 2017;2017:8260867. doi: 10.1155/2017/8260867.
    1. Freitas P., Carvalho D., Santos A.C., Matos M.J., Madureira A.J., Marques R., Martinez E., Sarmento A., Medina J.L. Prevalence of obesity and its relationship to clinical lipodystrophy in HIV-infected adults on anti-retroviral therapy. J. Endocrinol. Invest. 2012;35:964–970.
    1. Koethe J.R., Grome H., Jenkins C.A., Kalams S.A., Sterling T.R. The metabolic and cardiovascular consequences of obesity in persons with HIV on long-term antiretroviral therapy. AIDS. 2016;30:83–91. doi: 10.1097/QAD.0000000000000893.
    1. Lake J.E. The fat of the matter: Obesity and visceral adiposity in treated HIV infection. Curr. HIV/AIDS Rep. 2017;14:211–219. doi: 10.1007/s11904-017-0368-6.
    1. Antonello V.S., Antonello I.C., Grossmann T.K., Tovo C.V., Pupo B.B., Winckler Lde Q. Hypertension--an emerging cardiovascular risk factor in HIV infection. J. Am. Soc. of Hypertens. 2015;9:403–407. doi: 10.1016/j.jash.2015.03.008.
    1. Dimala C.A., Atashili J., Mbuagbaw J.C., Wilfred A., Monekosso G.L. Prevalence of hypertension in HIV/AIDS patients on highly active antiretroviral therapy (haart) compared with haart-naive patients at the limbe regional hospital, cameroon. PLoS ONE. 2016;11:e0148100. doi: 10.1371/journal.pone.0148100.
    1. Cibrian-Ponce A., Sanchez-Aleman M.A., Garcia-Jimenez S., Perez-Martinez E., Bernal-Fernandez G., Castanon-Mayo M., Avila-Jimenez L., Toledano-Jaimes C.D. Changes in cardiovascular risk and clinical outcomes in a HIV/AIDS cohort study over a 1-year period at a specialized clinic in mexico. Ther. Clin. Risk Manag. 2018;14:1757–1764. doi: 10.2147/TCRM.S170536.
    1. Solomon D., Sabin C.A., Mallon P.W.G., Winston A., Tariq S. Cardiovascular disease in women living with HIV: A narrative review. Maturitas. 2018;108:58–70. doi: 10.1016/j.maturitas.2017.11.012.
    1. Nguyen K.A., Peer N., de Villiers A., Mukasa B., Matsha T.E., Mills E.J., Kengne A.P. Metabolic syndrome in people living with human immunodeficiency virus: An assessment of the prevalence and the agreement between diagnostic criteria. Int. J. Endocrinol. 2017;2017:1613657. doi: 10.1155/2017/1613657.
    1. Arrive E., Viard J.P., Salanave B., Dollfus C., Matheron S., Reliquet V., Arezes E., Nailler L., Vigouroux C., Warszawski J., et al. Metabolic risk factors in young adults infected with HIV since childhood compared with the general population. PLoS ONE. 2018;13:e0206745. doi: 10.1371/journal.pone.0206745.
    1. Tarr P.E., Telenti A. Genetic screening for metabolic and age-related complications in HIV-infected persons. F1000 Med. Rep. 2010;2:83.
    1. Haas D.W., Tarr P.E. Perspectives on pharmacogenomics of antiretroviral medications and HIV-associated comorbidities. Curr. Opin. HIV AIDS. 2015;10:116–122. doi: 10.1097/COH.0000000000000134.
    1. Patel K., Hernan M.A., Williams P.L., Seeger J.D., McIntosh K., Dyke R.B., Seage G.R., 3rd, Pediatric AIDS Clinical Trials Group 219/219C Study Team Long-term effects of highly active antiretroviral therapy on cd4+ cell evolution among children and adolescents infected with HIV: 5 years and counting. Clin. Infect. Dis. 2008;46:1751–1760. doi: 10.1086/587900.
    1. Walker A.S., Doerholt K., Sharland M., Gibb D.M., Collaborative HIV Paediatric Study (CHIPS) Steering Committee Response to highly active antiretroviral therapy varies with age: The UK and ireland collaborative HIV paediatric study. AIDS. 2004;18:1915–1924. doi: 10.1097/00002030-200409240-00007.
    1. Prendergast A.J., Klenerman P., Goulder P.J. The impact of differential antiviral immunity in children and adults. Nature Rev. Immunol. 2012;12:636–648. doi: 10.1038/nri3277.
    1. Roider J.M., Muenchhoff M., Goulder P.J. Immune activation and paediatric HIV-1 disease outcome. Curr. Opin. HIV AIDS. 2016;11:146–155. doi: 10.1097/COH.0000000000000231.
    1. Palma P., Foster C., Rojo P., Zangari P., Yates A., Cotugno N., Klein N., Luzuriaga K., Pahwa S., Nastouli E., et al. The epiical project: An emerging global collaboration to investigate immunotherapeutic strategies in HIV-infected children. J. Virus Erad. 2015;1:134–139.
    1. Chiappini E., Bianconi M., Dalzini A., Petrara M.R., Galli L., Giaquinto C., de Rossi A. Accelerated aging in perinatally HIV-infected children: Clinical manifestations and pathogenetic mechanisms. Aging. 2018;10:3610–3625. doi: 10.18632/aging.101622.
    1. Koay W.L.A., Lindsey J.C., Uprety P., Bwakura-Dangarembizi M., Weinberg A., Levin M.J., Persaud D. Intestinal integrity biomarkers in early antiretroviral-treated perinatally HIV-1-infected infants. J. Infect. Dis. 2018;218:1085–1089. doi: 10.1093/infdis/jiy271.
    1. Sessa L., Reddel S., Manno E., Quagliariello A., Cotugno N., Del Chierico F., Amodio D., Capponi C., Leone F., Bernardi S., et al. Distinct gut microbiota profile in art-treated perinatally HIV-infected patients associated with cardiac and inflammatory biomarkers. AIDS. 2019 doi: 10.1097/QAD.0000000000002131.
    1. Hazra R., Siberry G.K., Mofenson L.M. Growing up with HIV: Children, adolescents, and young adults with perinatally acquired HIV infection. Annu. Rev. Med. 2010;61:169–185. doi: 10.1146/annurev.med.050108.151127.
    1. Brady M.T., Oleske J.M., Williams P.L., Elgie C., Mofenson L.M., Dankner W.M., van Dyke R.B., Pediatric AIDS Clinical Trials Group219/219C Team Declines in mortality rates and changes in causes of death in HIV-1-infected children during the haart era. J. Acquir. Immune Defic. Syndr. 2010;53:86–94. doi: 10.1097/QAI.0b013e3181b9869f.
    1. Augustemak de Lima L.R., Petroski E.L., Moreno Y.M.F., Silva D.A.S., Trindade E., Carvalho A.P., Back I.C. Dyslipidemia, chronic inflammation, and subclinical atherosclerosis in children and adolescents infected with HIV: The posithive health study. PLoS ONE. 2018;13:e0190785. doi: 10.1371/journal.pone.0190785.
    1. Alvarez P., Mwamzuka M., Marshed F., Kravietz A., Ilmet T., Ahmed A., Borkowsky W., Khaitan A. Immune activation despite preserved cd4 t cells in perinatally HIV-infected children and adolescents. PLoS ONE. 2017;12:e0190332. doi: 10.1371/journal.pone.0190332.
    1. Ikomey G., Assoumou M.C., Atashili J., Mesembe M., Mukwele B., Lyonga E., Eyoh A., Kafando A., Ndumbe P.M. The potentials of fas receptors and ligands in monitoring HIV-1 disease in children in yaounde, cameroon. J. Int. Asso. Prov. AIDS Care. 2016;15:418–422. doi: 10.1177/2325957413488202.
    1. Trautmann L., Janbazian L., Chomont N., Said E.A., Gimmig S., Bessette B., Boulassel M.R., Delwart E., Sepulveda H., Balderas R.S., et al. Upregulation of pd-1 expression on HIV-specific cd8+ t cells leads to reversible immune dysfunction. Nat. Med. 2006;12:1198–1202. doi: 10.1038/nm1482.
    1. Mansoor N., Abel B., Scriba T.J., Hughes J., de Kock M., Tameris M., Mlenjeni S., Denation L., Little F., Gelderbloem S., et al. Significantly skewed memory cd8+ t cell subsets in HIV-1 infected infants during the first year of life. Clin. Immunol. 2009;130:280–289. doi: 10.1016/j.clim.2008.09.006.
    1. Rinaldi S., Pallikkuth S., George V.K., de Armas L.R., Pahwa R., Sanchez C.M., Pallin M.F., Pan L., Cotugno N., Dickinson G., et al. Paradoxical aging in HIV: Immune senescence of b cells is most prominent in young age. Aging. 2017;9:1307–1325. doi: 10.18632/aging.101229.
    1. Cagigi A., Rinaldi S., di Martino A., Manno E.C., Zangari P., Aquilani A., Cotugno N., Nicolosi L., Villani A., Bernardi S., et al. Premature immune senescence during HIV-1 vertical infection relates with response to influenza vaccination. J. Allergy Clin. Immunol. 2014;133:592–594. doi: 10.1016/j.jaci.2013.10.003.
    1. Palma P., Rinaldi S., Cotugno N., Santilli V., Pahwa S., Rossi P., Cagigi A. Premature b-cell senescence as a consequence of chronic immune activation. Hum. Vaccin. Immunother. 2014;10:2083–2088. doi: 10.4161/hv.28698.
    1. Cagigi A., Rinaldi S., Santilli V., Mora N., Manno E.C., Cotugno N., Zangari P., Aquilani A., Guzzo I., Dello Strologo L., et al. Premature ageing of the immune system relates to increased anti-lymphocyte antibodies (ala) after an immunization in HIV-1-infected and kidney-transplanted patients. Clin. Exp. Immunol. 2013;174:274–280.
    1. Cotugno N., de Armas L., Pallikkuth S., Rinaldi S., Issac B., Cagigi A., Rossi P., Palma P., Pahwa S. Perturbation of b cell gene expression persists in HIV-infected children despite effective antiretroviral therapy and predicts h1n1 response. Front. Immunol. 2017;8:1083. doi: 10.3389/fimmu.2017.01083.
    1. Chiappini E., Berti E., Gianesin K., Petrara M.R., Galli L., Giaquinto C., de Martino M., de Rossi A. Pediatric human immunodeficiency virus infection and cancer in the highly active antiretroviral treatment (haart) era. Cancer let. 2014;347:38–45. doi: 10.1016/j.canlet.2014.02.002.
    1. Figueroa M.I., Sued O.G., Gun A.M., Belloso W.H., Cecchini D.M., Lopardo G., Pryluka D., Rolon M.J., Fink V.I., Lloret S.P., Cahn P. Drv/r/3tc fdc for HIV-1 treatment naive patients: Week 48 results of the andes study; Proceedings of the Conference on Retroviruses and Oppurtunistic Infections (CROI); Boston, MA, USA. 4–7 March 2018.
    1. Cahn P., Madero J.S., Arribas J.R., Antinori A., Ortiz R., Clarke A.E., Hung C.C., Rockstroh J.K., Girard P.M., Sievers J., et al. Dolutegravir plus lamivudine versus dolutegravir plus tenofovir disoproxil fumarate and emtricitabine in antiretroviral-naive adults with HIV-1 infection (gemini-1 and gemini-2): Week 48 results from two multicentre, double-blind, randomised, non-inferiority, phase 3 trials. Lancet. 2019;393:143–155.
    1. Llibre J.M., Hung C.C., Brinson C., Castelli F., Girard P.M., Kahl L.P., Blair E.A., Angelis K., Wynne B., Vandermeulen K., et al. Efficacy, safety, and tolerability of dolutegravir-rilpivirine for the maintenance of virological suppression in adults with HIV-1: Phase 3, randomised, non-inferiority sword-1 and sword-2 studies. Lancet. 2018;391:839–849. doi: 10.1016/S0140-6736(17)33095-7.
    1. Ruzagira E., Baisley K., Kamali A., Biraro S., Grosskurth H., Working Group on Linkage to HIV Care Linkage to HIV care after home-based HIV counselling and testing in sub-saharan africa: A systematic review. Trop. Med. Int. Health. 2017;22:807–821. doi: 10.1111/tmi.12888.
    1. Quiros-Roldan E., Magro P., Raffetti E., Izzo I., Borghetti A., Lombardi F., Saracino A., Maggiolo F., Castelli F., Cohort M. Biochemical and inflammatory modifications after switching to dual antiretroviral therapy in HIV-infected patients in Italy: A multicenter retrospective cohort study from 2007 to 2015. BMC Infect. Dis. 2018;18:285. doi: 10.1186/s12879-018-3198-2.
    1. Pontrelli G., Cotugno N., Amodio D., Zangari P., Tchidjou H.K., Baldassari S., Palma P., Bernardi S. Renal function in HIV-infected children and adolescents treated with tenofovir disoproxil fumarate and protease inhibitors. BMC Infect. Dis. 2012;12:18. doi: 10.1186/1471-2334-12-18.
    1. Bedimo R., Maalouf N.M., Zhang S., Drechsler H., Tebas P. Osteoporotic fracture risk associated with cumulative exposure to tenofovir and other antiretroviral agents. AIDS. 2012;26:825–831. doi: 10.1097/QAD.0b013e32835192ae.
    1. Paton N.I., Stohr W., Oddershede L., Arenas-Pinto A., Walker S., Sculpher M., Dunn D.T. The protease inhibitor monotherapy versus ongoing triple therapy (pivot) trial: A randomised controlled trial of a protease inhibitor monotherapy strategy for long-term management of human immunodeficiency virus infection. Health Technol. Assess. 2016;20:1–158. doi: 10.3310/hta20210.
    1. Argyropoulos C., Mouzaki A. Immunosuppressive drugs in HIV disease. Curr. Top. Med. Chem. 2006;6:1769–1789. doi: 10.2174/156802606778194271.
    1. Bandera A., Colella E., Rizzardini G., Gori A., Clerici M. Strategies to limit immune-activation in HIV patients. Exp. Rev. Anti-Infect. Ther. 2017;15:43–54. doi: 10.1080/14787210.2017.1250624.
    1. Soare A.Y., Durham N.D., Gopal R., Tweel B., Hoffman K.W., Brown J.A., O’Brien M., Bhardwaj N., Lim J.K., Chen B.K., et al. P2x antagonists inhibit hiv-1 productive infection and inflammatory cytokines interleukin-10 (il-10) and il-1beta in a human tonsil explant model. J. Virol. 2019;93 doi: 10.1101/366179.
    1. Chastain D.B., Stover K.R., Riche D.M. Evidence-based review of statin use in patients with HIV on antiretroviral therapy. J. Clin. Transl. Endocrinol. 2017;8:6–14. doi: 10.1016/j.jcte.2017.01.004.
    1. Nakanjako D., Ssinabulya I., Nabatanzi R., Bayigga L., Kiragga A., Joloba M., Kaleebu P., Kambugu A.D., Kamya M.R., Sekaly R., et al. Atorvastatin reduces t-cell activation and exhaustion among HIV-infected cart-treated suboptimal immune responders in Uganda: A randomised crossover placebo-controlled trial. Trop. Med. Int. Health. 2015;20:380–390. doi: 10.1111/tmi.12442.
    1. Gilbert J.M., Fitch K.V., Grinspoon S.K. HIV-related cardiovascular disease, statins, and the reprieve trial. Top. Antiviral Med. 2015;23:146–149.
    1. Hsue P., Deeks S.G., Ishai A.E., Hur S., Li D., Sterman F., Lalezari J., Rupert A., Ganz P., Tawakol A. Il-1β inhibition significantly reduces atherosclerotic inflammation in treated HIV; Proceedings of the Conference on Retroviruses and Opportunistic Infections (CROI); Seattle, WA, USA. 13–16 February 2017.
    1. Navarro-Gonzalez J.F., Mora-Fernandez C., Muros de Fuentes M., Donate-Correa J., Cazana-Perez V., Garcia-Perez J. Effect of phosphate binders on serum inflammatory profile, soluble cd14, and endotoxin levels in hemodialysis patients. Clin. J. Am. Soc. Nephrol. 2011;6:2272–2279. doi: 10.2215/CJN.01650211.
    1. Sandler N.G., Zhang X., Bosch R.J., Funderburg N.T., Choi A.I., Robinson J.K., Fine D.M., Coombs R.W., Jacobson J.M., Landay A.L., et al. Sevelamer does not decrease lipopolysaccharide or soluble cd14 levels but decreases soluble tissue factor, low-density lipoprotein (ldl) cholesterol, and oxidized ldl cholesterol levels in individuals with untreated HIV infection. J. Infect. Dis. 2014;210:1549–1554. doi: 10.1093/infdis/jiu305.
    1. Piconi S., Parisotto S., Rizzardini G., Passerini S., Terzi R., Argenteri B., Meraviglia P., Capetti A., Biasin M., Trabattoni D., et al. Hydroxychloroquine drastically reduces immune activation in HIV-infected, antiretroviral therapy-treated immunologic nonresponders. Blood. 2011;118:3263–3272. doi: 10.1182/blood-2011-01-329060.
    1. Routy J.P., Angel J.B., Patel M., Kanagaratham C., Radzioch D., Kema I., Gilmore N., Ancuta P., Singer J., Jenabian M.A. Assessment of chloroquine as a modulator of immune activation to improve cd4 recovery in immune nonresponding HIV-infected patients receiving antiretroviral therapy. HIV Med. 2015;16:48–56. doi: 10.1111/hiv.12171.

Source: PubMed

3
Abonnieren