Bone Marrow-Derived Mesenchymal Stromal Cell Therapy in Severe COVID-19: Preliminary Results of a Phase I/II Clinical Trial

Céline Grégoire, Nathalie Layios, Bernard Lambermont, Chantal Lechanteur, Alexandra Briquet, Virginie Bettonville, Etienne Baudoux, Marie Thys, Nadia Dardenne, Benoît Misset, Yves Beguin, Céline Grégoire, Nathalie Layios, Bernard Lambermont, Chantal Lechanteur, Alexandra Briquet, Virginie Bettonville, Etienne Baudoux, Marie Thys, Nadia Dardenne, Benoît Misset, Yves Beguin

Abstract

Background: Treatment of acute respiratory distress syndrome (ARDS) associated with COronaVIrus Disease-2019 (COVID-19) currently relies on dexamethasone and supportive mechanical ventilation, and remains associated with high mortality. Given their ability to limit inflammation, induce immune cells into a regulatory phenotype and stimulate tissue repair, mesenchymal stromal cells (MSCs) represent a promising therapy for severe and critical COVID-19 disease, which is associated with an uncontrolled immune-mediated inflammatory response.

Methods: In this phase I-II trial, we aimed to evaluate the safety and efficacy of 3 intravenous infusions of bone marrow (BM)-derived MSCs at 3-day intervals in patients with severe COVID-19. All patients also received dexamethasone and standard supportive therapy. Between June 2020 and September 2021, 8 intensive care unit patients requiring supplemental oxygen (high-flow nasal oxygen in 7 patients, invasive mechanical ventilation in 1 patient) were treated with BM-MSCs. We retrospectively compared the outcomes of these MSC-treated patients with those of 24 matched control patients. Groups were compared by paired statistical tests.

Results: MSC infusions were well tolerated, and no adverse effect related to MSC infusions were reported (one patient had an ischemic stroke related to aortic endocarditis). Overall, 3 patients required invasive mechanical ventilation, including one who required extracorporeal membrane oxygenation, but all patients ultimately had a favorable outcome. Survival was significantly higher in the MSC group, both at 28 and 60 days (100% vs 79.2%, p = 0.025 and 100% vs 70.8%, p = 0.0082, respectively), while no significant difference was observed in the need for mechanical ventilation nor in the number of invasive ventilation-free days, high flow nasal oxygenation-free days, oxygen support-free days and ICU-free days. MSC-treated patients also had a significantly lower day-7 D-dimer value compared to control patients (median 821.0 µg/L [IQR 362.0-1305.0] vs 3553 µg/L [IQR 1155.0-6433.5], p = 0.0085).

Conclusions: BM-MSC therapy is safe and shows very promising efficacy in severe COVID-19, with a higher survival in our MSC cohort compared to matched control patients. These observations need to be confirmed in a randomized controlled trial designed to demonstrate the efficacy of BM-MSCs in COVID-19 ARDS.

Clinical trial registration: (www.ClinicalTrials.gov), identifier NCT04445454.

Keywords: COVID-19; SARS-CoV-2; acute respiratory distress syndrome; cellular therapy; intensive care unit (ICU); mesenchymal stromal cells.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2022 Grégoire, Layios, Lambermont, Lechanteur, Briquet, Bettonville, Baudoux, Thys, Dardenne, Misset and Beguin.

Figures

Figure 1
Figure 1
Evolution of oxygen support in patients treated with BM-MSCs. The bars represent the length of hospitalization (in days), and the left column indicates the day of the first positive PCR test, with day 0 being the day of hospital admission. The lines above the bars represent the length of ICU stay, and the “star” symbols represent MSC administrations. ECMO, extracorporeal membrane oxygenation; MSC, mesenchymal stromal cells; ICU, intensive care unit.
Figure 2
Figure 2
Survival curves in MSC and control groups. p-values refers to comparisons between the MSC and control groups at day 60 (using the Fisher test for non-matched analysis and Wilcoxon test for the matched analysis).
Figure 3
Figure 3
Day-0 and day-7 CRP and D-dimer values in the MSC and control groups. Boxes extend from the 25th to 75th percentiles, and the line in the box is plotted at the median, while whiskers represent minimum and maximum, and points represent individual values.

References

    1. COVID-ICU Group on behalf of the REVA Network and the COVID-ICU Investigators . Clinical Characteristics and Day-90 Outcomes of 4244 Critically Ill Adults With COVID-19: A Prospective Cohort Study. Intensive Care Med (2021) 47(1):60–73. doi: 10.1007/s00134-020-06294-x
    1. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. . SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell (2020) 181(2):271–80.e8. doi: 10.1016/j.cell.2020.02.052
    1. Osuchowski MF, Winkler MS, Skirecki T, Cajander S, Shankar-Hari M, Lachmann G, et al. . The COVID-19 Puzzle: Deciphering Pathophysiology and Phenotypes of a New Disease Entity. Lancet Respir Med (2021) 9(6):622–42. doi: 10.1016/S2213-2600(21)00218-6
    1. Grifoni A, Weiskopf D, Ramirez SI, Mateus J, Dan JM, Moderbacher CR, et al. . Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans With COVID-19 Disease and Unexposed Individuals. Cell (2020) 181(7):1489–501.e15. doi: 10.1016/j.cell.2020.05.015
    1. Liao M, Liu Y, Yuan J, Wen Y, Xu G, Zhao J, et al. . Single-Cell Landscape of Bronchoalveolar Immune Cells in Patients With COVID-19. Nat Med (2020) 26(6):842–4. doi: 10.1038/s41591-020-0901-9
    1. Robbiani DF, Gaebler C, Muecksch F, Lorenzi JCC, Wang Z, Cho A, et al. . Convergent Antibody Responses to SARS-CoV-2 in Convalescent Individuals. Nature (2020) 584(7821):437–42. doi: 10.1038/s41586-020-2456-9
    1. Laing AG, Lorenc A, Del Molino Del Barrio I, Das A, Fish M, Monin L, et al. . A Dynamic COVID-19 Immune Signature Includes Associations With Poor Prognosis. Nat Med (2020) 26(10):1623–35. doi: 10.1038/s41591-020-1038-6
    1. Bermejo-Martin JF, González-Rivera M, Almansa R, Micheloud D, Tedim AP, Domínguez-Gil M, et al. . Viral RNA Load in Plasma is Associated With Critical Illness and a Dysregulated Host Response in COVID-19. Crit Care (2020) 24(1):691. doi: 10.1186/s13054-020-03398-0
    1. De Biasi S, Meschiari M, Gibellini L, Bellinazzi C, Borella R, Fidanza L, et al. . Marked T Cell Activation, Senescence, Exhaustion and Skewing Towards TH17 in Patients With COVID-19 Pneumonia. Nat Commun (2020) 11(1):3434. doi: 10.21203/-23957/v1
    1. Mathew D, Giles JR, Baxter AE, Oldridge DA, Greenplate AR, Wu JE, et al. . Deep Immune Profiling of COVID-19 Patients Reveals Distinct Immunotypes With Therapeutic Implications. Science (2020) 369(6508):eabc8511. doi: 10.1126/science.abc8511
    1. Grasselli G, Tonetti T, Protti A, Langer T, Girardis M, Bellani G, et al. . Pathophysiology of COVID-19-Associated Acute Respiratory Distress Syndrome: A Multicentre Prospective Observational Study. Lancet Respir Med (2020) 8(12):1201–8. doi: 10.1016/S2213-2600(20)30370-2
    1. Ader F, Bouscambert-Duchamp M, Hites M, Peiffer-Smadja N, Poissy J, Belhadi D, et al. . Remdesivir Plus Standard of Care Versus Standard of Care Alone for the Treatment of Patients Admitted to Hospital With COVID-19 (DisCoVeRy): A Phase 3, Randomised, Controlled, Open-Label Trial. Lancet Infect Dis (2022) 22(2):209–21. doi: 10.1016/S1473-3099(21)00485-0
    1. Pan H, Peto R, Henao-Restrepo AM, Preziosi MP, Sathiyamoorthy V, Abdool Karim Q, et al. . Repurposed Antiviral Drugs for Covid-19 - Interim WHO Solidarity Trial Results. N Engl J Med (2021) 384(6):497–511. doi: 10.1056/NEJMoa2023184
    1. RECOVERY Collaborative Group. Horby P, Lim WS, Emberson JR, Mafham M, Bell JL, et al. . Dexamethasone in Hospitalized Patients With Covid-19. N Engl J Med (2021) 384(8):693–704. doi: 10.1056/NEJMoa2021436
    1. World Health Organization (WHO) Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group . Association Between Administration of IL-6 Antagonists and Mortality Among Patients Hospitalized for COVID-19: A Meta-Analysis. JAMA (2021) 326(6):499–518. doi: 10.1001/jama.2021.11330
    1. Ely EW, Ramanan AV, Kartman CE, de Bono S, Liao R, Piruzeli MLB, et al. . Efficacy and Safety of Baricitinib Plus Standard of Care for the Treatment of Critically Ill Hospitalised Adults With COVID-19 on Invasive Mechanical Ventilation or Extracorporeal Membrane Oxygenation: An Exploratory, Randomised, Placebo-Controlled Trial. Lancet Respir Med (2022) 10(4):327–36. doi: 10.1016/S2213-2600(22)00006-6
    1. Lambermont B, Rousseau AF, Seidel L, Thys M, Cavalleri J, Delanaye P, et al. . Outcome Improvement Between the First Two Waves of the Coronavirus Disease 2019 Pandemic in a Single Tertiary-Care Hospital in Belgium. Crit Care Explor (2021) 3(5):e0438. doi: 10.1097/CCE.0000000000000438
    1. Le Blanc K, Mougiakakos D. Multipotent Mesenchymal Stromal Cells and the Innate Immune System. Nat Rev Immunol (2012) 12(5):383–96. doi: 10.1038/nri3209
    1. Rohban R, Pieber TR. Mesenchymal Stem and Progenitor Cells in Regeneration: Tissue Specificity and Regenerative Potential. Stem Cells Int (2017) 2017:5173732. doi: 10.1155/2017/5173732
    1. Servais S, Grégoire C, Baron F, Willems E, Briquet A, Baudoux E, et al. . Multipotent Mesenchymal Stromal Cell Therapy for Steroid-Refractory Acute Graft-Versus-Host Disease After Allogeneic Stem Cell Transplantation. Belgian J Hematol (2016) 7:229–35.
    1. Grégoire C, Lechanteur C, Briquet A, Baudoux E, Baron F, Louis E, et al. . Review Article: Mesenchymal Stromal Cell Therapy for Inflammatory Bowel Diseases. Aliment Pharmacol Ther (2017) 45(2):205–21. doi: 10.1111/apt.13864
    1. Ren G, Zhang L, Zhao X, Xu G, Zhang Y, Roberts AI, et al. . Mesenchymal Stem Cell-Mediated Immunosuppression Occurs via Concerted Action of Chemokines and Nitric Oxide. Cell Stem Cell (2008) 2(2):141–50. doi: 10.1016/j.stem.2007.11.014
    1. Hung SC, Pochampally RR, Hsu SC, Sanchez C, Chen SC, Spees J, et al. . Short-Term Exposure of Multipotent Stromal Cells to Low Oxygen Increases Their Expression of CX3CR1 and CXCR4 and Their Engraftment In Vivo. PloS One (2007) 2(5):e416. doi: 10.1371/journal.pone.0000416
    1. Hung SC, Pochampally RR, Chen SC, Hsu SC, Prockop DJ. Angiogenic Effects of Human Multipotent Stromal Cell Conditioned Medium Activate the PI3K-Akt Pathway in Hypoxic Endothelial Cells to Inhibit Apoptosis, Increase Survival, and Stimulate Angiogenesis. Stem Cells (2007) 25(9):2363–70. doi: 10.1634/stemcells.2006-0686
    1. Leng Z, Zhu R, Hou W, Feng Y, Yang Y, Han Q, et al. . Transplantation of ACE2- Mesenchymal Stem Cells Improves the Outcome of Patients With COVID-19 Pneumonia. Aging Dis (2020) 11(2):216–28. doi: 10.14336/AD.2020.0228
    1. Atluri S, Manchikanti L, Hirsch JA. Expanded Umbilical Cord Mesenchymal Stem Cells (UC-MSCs) as a Therapeutic Strategy in Managing Critically Ill COVID-19 Patients: The Case for Compassionate Use. Pain Phys (2020) 23(2):E71–83.
    1. Lechanteur C, Briquet A, Giet O, Delloye O, Baudoux E, Beguin Y. Clinical-Scale Expansion of Mesenchymal Stromal Cells: A Large Banking Experience. J Trans Med (2016) 14(1):145–. doi: 10.1186/s12967-016-0892-y
    1. Lechanteur C, Briquet A, Bettonville V, Baudoux E, Beguin Y. MSC Manufacturing for Academic Clinical Trials: From a Clinical-Grade to a Full GMP-Compliant Process. Cells (2021) 10(6):1320. doi: 10.3390/cells10061320
    1. WHO Working Group on the Clinical Characterisation and Management of COVID-19 infection . A Minimal Common Outcome Measure Set for COVID-19 Clinical Research. Lancet Infect Dis (2020) 20(8):e192–e7. doi: 10.1016/S1473-3099(20)30483-7
    1. Lim ZJ, Subramaniam A, Ponnapa Reddy M, Blecher G, Kadam U, Afroz A, et al. . Case Fatality Rates for Patients With COVID-19 Requiring Invasive Mechanical Ventilation. A Meta-Analysis. Am J Respir Crit Care Med (2021) 203(1):54–66. doi: 10.1164/rccm.202006-2405OC
    1. Aranda J, Oriol I, Martín M, Feria L, Vázquez N, Rhyman N, et al. . Long-Term Impact of COVID-19 Associated Acute Respiratory Distress Syndrome. J Infect (2021) 83(5):581–8. doi: 10.1016/j.jinf.2021.08.018
    1. Rousseau AF, Minguet P, Colson C, Kellens I, Chaabane S, Delanaye P, et al. . Post-Intensive Care Syndrome After a Critical COVID-19: Cohort Study From a Belgian Follow-Up Clinic. Ann Intensive Care (2021) 11(1):118. doi: 10.1186/s13613-021-00910-9
    1. Boucher PE, Taplin J, Clement F. The Cost of ARDS: A Systematic Review. Chest (2022) 161(3):684–96. doi: 10.1016/j.chest.2021.08.057
    1. Galleu A, Riffo-Vasquez Y, Trento C, Lomas C, Dolcetti L, Cheung TS, et al. . Apoptosis in Mesenchymal Stromal Cells Induces In Vivo Recipient-Mediated Immunomodulation. Sci Trans Med (2017) 9(416):eaam7828–eaam. doi: 10.1126/scitranslmed.aam7828
    1. Lee RH, Pulin AA, Seo MJ, Kota DJ, Ylostalo J, Larson BL, et al. . Intravenous hMSCs Improve Myocardial Infarction in Mice Because Cells Embolized in Lung are Activated to Secrete the Anti-Inflammatory Protein TSG-6. Cell Stem Cell (2009) 5(1):54–63. doi: 10.1016/j.stem.2009.05.003
    1. Lopes-Pacheco M, Robba C, Rocco PRM, Pelosi P. Current Understanding of the Therapeutic Benefits of Mesenchymal Stem Cells in Acute Respiratory Distress Syndrome. Cell Biol Toxicol (2020) 36(1):83–102. doi: 10.1007/s10565-019-09493-5
    1. Zheng G, Huang L, Tong H, Shu Q, Hu Y, Ge M, et al. . Treatment of Acute Respiratory Distress Syndrome With Allogeneic Adipose-Derived Mesenchymal Stem Cells: A Randomized, Placebo-Controlled Pilot Study. Respir Res (2014) 15(1):39. doi: 10.1186/1465-9921-15-39
    1. Wilson JG, Liu KD, Zhuo H, Caballero L, McMillan M, Fang X, et al. . Mesenchymal Stem (Stromal) Cells for Treatment of ARDS: A Phase 1 Clinical Trial. Lancet Respir Med (2015) 3(1):24–32. doi: 10.1016/S2213-2600(14)70291-7
    1. Matthay MA, Calfee CS, Zhuo H, Thompson BT, Wilson JG, Levitt JE, et al. . Treatment With Allogeneic Mesenchymal Stromal Cells for Moderate to Severe Acute Respiratory Distress Syndrome (START Study): A Randomised Phase 2a Safety Trial. Lancet Respir Med (2019) 7(2):154–62. doi: 10.1016/S2213-2600(18)30418-1
    1. Ringdén O, Moll G, Gustafsson B, Sadeghi B. Mesenchymal Stromal Cells for Enhancing Hematopoietic Engraftment and Treatment of Graft-Versus-Host Disease, Hemorrhages and Acute Respiratory Distress Syndrome. Front Immunol (2022) 13:839844. doi: 10.3389/fimmu.2022.839844
    1. Meng F, Xu R, Wang S, Xu Z, Zhang C, Li Y, et al. . Human Umbilical Cord-Derived Mesenchymal Stem Cell Therapy in Patients With COVID-19: A Phase 1 Clinical Trial. Signal Transduct Target Ther (2020) 5(1):172. doi: 10.1038/s41392-020-00286-5
    1. Guo Z, Chen Y, Luo X, He X, Zhang Y, Wang J. Administration of Umbilical Cord Mesenchymal Stem Cells in Patients With Severe COVID-19 Pneumonia. Crit Care (2020) 24(1):420. doi: 10.1186/s13054-020-03142-8
    1. Xu X, Jiang W, Chen L, Xu Z, Zhang Q, Zhu M, et al. . Evaluation of the Safety and Efficacy of Using Human Menstrual Blood-Derived Mesenchymal Stromal Cells in Treating Severe and Critically Ill COVID-19 Patients: An Exploratory Clinical Trial. Clin Transl Med (2021) 11(2):e297. doi: 10.1002/ctm2.297
    1. Hashemian SR, Aliannejad R, Zarrabi M, Soleimani M, Vosough M, Hosseini SE, et al. . Mesenchymal Stem Cells Derived From Perinatal Tissues for Treatment of Critically Ill COVID-19-Induced ARDS Patients: A Case Series. Stem Cell Res Ther (2021) 12(1):91. doi: 10.1186/s13287-021-02165-4
    1. Iglesias M, Butrón P, Torre-Villalvazo I, Torre-Anaya EA, Sierra-Madero J, Rodriguez-Andoney JJ, et al. . Mesenchymal Stem Cells for the Compassionate Treatment of Severe Acute Respiratory Distress Syndrome Due to COVID 19. Aging Dis (2021) 12(2):360–70. doi: 10.14336/AD.2020.1218
    1. Häberle H, Magunia H, Lang P, Gloeckner H, Körner A, Koeppen M, et al. . Mesenchymal Stem Cell Therapy for Severe COVID-19 ARDS. J Intensive Care Med (2021) 36(6):681–8. doi: 10.1177/0885066621997365.
    1. Ercelen N, Pekkoc-Uyanik KC, Alpaydin N, Gulay GR, Simsek M. Clinical Experience on Umbilical Cord Mesenchymal Stem Cell Treatment in 210 Severe and Critical COVID-19 Cases in Turkey. Stem Cell Rev Rep (2021) 17(5):1917–25. doi: 10.1007/s12015-021-10214-x
    1. Lanzoni G, Linetsky E, Correa D, Messinger Cayetano S, Alvarez RA, Kouroupis D, et al. . Umbilical Cord Mesenchymal Stem Cells for COVID-19 Acute Respiratory Distress Syndrome: A Double-Blind, Phase 1/2a, Randomized Controlled Trial. Stem Cells Transl Med (2021). doi: 10.1002/sctm.20-0472
    1. Monsel A, Hauw-Berlemont C, Mebarki M, Heming N, Mayaux J, Nguekap Tchoumba O, et al. . Treatment of COVID-19-Associated ARDS With Mesenchymal Stromal Cells: A Multicenter Randomized Double-Blind Trial. Crit Care (2022) 26(1):48. doi: 10.1186/s13054-022-03930-4
    1. Shi L, Huang H, Lu X, Yan X, Jiang X, Xu R, et al. . Effect of Human Umbilical Cord-Derived Mesenchymal Stem Cells on Lung Damage in Severe COVID-19 Patients: A Randomized, Double-Blind, Placebo-Controlled Phase 2 Trial. Signal Transduct Target Ther (2021) 6(1):58. doi: 10.1038/s41392-021-00488-5
    1. Dilogo IH, Aditianingsih D, Sugiarto A, Burhan E, Damayanti T, Sitompul PA, et al. . Umbilical Cord Mesenchymal Stromal Cells as Critical COVID-19 Adjuvant Therapy: A Randomized Controlled Trial. Stem Cells Transl Med (2021) 10(9):1279–87. doi: 10.1002/sctm.21-0046
    1. Shu L, Niu C, Li R, Huang T, Wang Y, Huang M, et al. . Treatment of Severe COVID-19 With Human Umbilical Cord Mesenchymal Stem Cells. Stem Cell Res Ther (2020) 11(1):361. doi: 10.1186/s13287-020-01875-5
    1. Bikdeli B, Madhavan MV, Jimenez D, Chuich T, Dreyfus I, Driggin E, et al. . COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-Up: JACC State-Of-the-Art Review. J Am Coll Cardiol (2020) 75(23):2950–73. doi: 10.1016/j.jacc.2020.04.031
    1. Grégoire C, Ritacco C, Hannon M, Seidel L, Delens L, Belle L, et al. . Comparison of Mesenchymal Stromal Cells From Different Origins for the Treatment of Graft-Vs.-Host-Disease in a Humanized Mouse Model. Front Immunol (2019) 10:619. doi: 10.3389/fimmu.2019.00619
    1. Moll G, Ignatowicz L, Catar R, Luecht C, Sadeghi B, Hamad O, et al. . Different Procoagulant Activity of Therapeutic Mesenchymal Stromal Cells Derived From Bone Marrow and Placental Decidua. Stem Cells Dev (2015) 24(19):2269–79. doi: 10.1089/scd.2015.0120
    1. Moll G, Drzeniek N, Kamhieh-Milz J, Geissler S, Volk H-D, Reinke P. MSC Therapies for COVID-19: Importance of Patient Coagulopathy, Thromboprophylaxis, Cell Product Quality and Mode of Delivery for Treatment Safety and Efficacy. Front Immunol (2020) 11:1091. doi: 10.3389/fimmu.2020.01091.
    1. Wiersinga WJ, Rhodes A, Cheng AC, Peacock SJ, Prescott HC. Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19): A Review. JAMA (2020) 324(8):782–93. doi: 10.1001/jama.2020.12839
    1. Moll G, Ankrum JA, Olson SD, Nolta JA. Improved MSC Minimal Criteria to Maximize Patient Safety: A Call to Embrace Tissue Factor and Hemocompatibility Assessment of MSC Products. Stem Cells Trans Med (2022) 11(1):2–13. doi: 10.1093/stcltm/szab005
    1. Pires AO, Mendes-Pinheiro B, Teixeira FG, Anjo SI, Ribeiro-Samy S, Gomes ED, et al. . Unveiling the Differences of Secretome of Human Bone Marrow Mesenchymal Stem Cells, Adipose Tissue-Derived Stem Cells, and Human Umbilical Cord Perivascular Cells: A Proteomic Analysis. Stem Cells Dev (2016) 25(14):1073–83. doi: 10.1089/scd.2016.0048
    1. Cottle C, AP P, Lipat A, Turner-Lyles C, Nguyen J, Moll G, et al. . Impact of Cryopreservation and Freeze-Thawing on Therapeutic Properties of Mesenchymal Stromal/Stem Cells and Other Common Cellular Therapeutics. Curr Stem Cell Rep (2022) 8(2):72–92. doi: 10.1007/s40778-022-00212-1

Source: PubMed

3
Abonnieren