Role of Protein Carbonylation in Skeletal Muscle Mass Loss Associated with Chronic Conditions

Esther Barreiro, Esther Barreiro

Abstract

Muscle dysfunction, characterized by a reductive remodeling of muscle fibers, is a common systemic manifestation in highly prevalent conditions such as chronic heart failure (CHF), chronic obstructive pulmonary disease (COPD), cancer cachexia, and critically ill patients. Skeletal muscle dysfunction and impaired muscle mass may predict morbidity and mortality in patients with chronic diseases, regardless of the underlying condition. High levels of oxidants may alter function and structure of key cellular molecules such as proteins, DNA, and lipids, leading to cellular injury and death. Protein oxidation including protein carbonylation was demonstrated to modify enzyme activity and DNA binding of transcription factors, while also rendering proteins more prone to proteolytic degradation. Given the relevance of protein oxidation in the pathophysiology of many chronic conditions and their comorbidities, the current review focuses on the analysis of different studies in which the biological and clinical significance of the modifications induced by reactive carbonyls on proteins have been explored so far in skeletal muscles of patients and animal models of chronic conditions such as COPD, disuse muscle atrophy, cancer cachexia, sepsis, and physiological aging. Future research will elucidate the specific impact and sites of reactive carbonyls on muscle protein content and function in human conditions.

Keywords: COPD; aging; cancer-induced cachexia; cigarette smoking; disuse muscle atrophy; oxidants; protein carbonylation; septic muscles; skeletal muscle wasting and dysfunction.

Figures

Figure 1
Figure 1
Oxidative stress results from the imbalance between the production of oxidants and the effects of antioxidants in favor of the former.
Figure 2
Figure 2
Reactive oxygen species (ROS) that are not scavenged by cellular antioxidants oxidize key cellular structures such as membrane lipids, nuclear DNA, and proteins. Oxidative damage of proteins exerts different effects such as alteration of enzyme activity and DNA binding of transcription factors and may also render the proteins more susceptible to be degraded.
Figure 3
Figure 3
Representative 1D immunoblot with molecular weights corresponding to the detection of carbonylated proteins in crude muscle homogenates of the diaphragm muscle in three patients with severe chronic obstructive pulmonary disease (COPD). For detailed information see reference [23].
Figure 4
Figure 4
Representative 2D immunoblot with molecular weights corresponding to the detection of carbonylated proteins in crude muscle homogenates of the diaphragm muscle in one patient with COPD. For detailed information see reference [23].
Figure 5
Figure 5
Representative example of reactive carbonyl immunostaining in the extensor digitorum longus muscle of a tumor-bearing rat. Note that the intensity of the protein carbonylation staining differed among the fibers. A darker intensity was observed in the fast-twitch fibers compared to the slow-twitch fibers. For more information see reference [33].

References

    1. Barreiro E., Bustamante V., Cejudo P., Galdiz J.B., Gea J., de Lucas P., Martinez-Llorens J., Ortega F., Puente-Maestu L., Roca J., et al. Guidelines for the Evaluation and Treatment of Muscle Dysfunction in Patients With Chronic Obstructive Pulmonary Disease. Arch. Bronconeumol. 2015;51:384–395. doi: 10.1016/j.arbres.2015.04.011.
    1. Maltais F., Decramer M., Casaburi R., Barreiro E., Burelle Y., Debigare R., Dekhuijzen P.N., Franssen F., Gayan-Ramirez G., Gea J., et al. An official American Thoracic Society/European Respiratory Society statement: Update on limb muscle dysfunction in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care. Med. 2014;189:e15–e62. doi: 10.1164/rccm.201402-0373ST.
    1. Miravitlles M., Soler-Cataluna J.J., Calle M., Molina J., Almagro P., Antonio Q.J., Antonio R.J., Antonio T.J., Pinera P., Simon A., et al. Spanish Guideline for COPD (GesEPOC). Update 2014. Arch. Bronconeumol. 2014;50:1–16. doi: 10.1016/S0300-2896(14)70070-5.
    1. Vestbo J., Hurd S.S., Agusti A.G., Jones P.W., Vogelmeier C., Anzueto A., Barnes P.J., Fabbri L.M., Martinez F.J., Nishimura M., et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am. J. Respir. Crit. Care. Med. 2013;187:347–365. doi: 10.1164/rccm.201204-0596PP.
    1. Miravitlles M. What was the impact of the Spanish COPD guidelines (GesEPOC) and how can they be improved? Arch. Bronconeumol. 2016;52:1–2. doi: 10.1016/j.arbres.2015.04.001.
    1. Marquis K., Debigare R., Lacasse Y., LeBlanc P., Jobin J., Carrier G., Maltais F. Midthigh muscle cross-sectional area is a better predictor of mortality than body mass index in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care. Med. 2002;166:809–813. doi: 10.1164/rccm.2107031.
    1. Seymour J.M., Spruit M.A., Hopkinson N.S., Natanek S.A., Man W.D., Jackson A., Gosker H.R., Schols A.M., Moxham J., Polkey M.I., et al. The prevalence of quadriceps weakness in COPD and the relationship with disease severity. Eur. Respir. J. 2010;36:81–88. doi: 10.1183/09031936.00104909.
    1. Shrikrishna D., Patel M., Tanner R.J., Seymour J.M., Connolly B.A., Puthucheary Z.A., Walsh S.L., Bloch S.A., Sidhu P.S., Hart N., et al. Quadriceps wasting and physical inactivity in patients with COPD. Eur. Respir. J. 2012;40:1115–1122. doi: 10.1183/09031936.00170111.
    1. Swallow E.B., Reyes D., Hopkinson N.S., Man W.D., Porcher R., Cetti E.J., Moore A.J., Moxham J., Polkey M.I. Quadriceps strength predicts mortality in patients with moderate to severe chronic obstructive pulmonary disease. Thorax. 2007;62:115–120. doi: 10.1136/thx.2006.062026.
    1. Anker S.D., Ponikowski P., Varney S., Chua T.P., Clark A.L., Webb-Peploe K.M., Harrington D., Kox W.J., Poole-Wilson P.A., Coats A.J. Wasting as independent risk factor for mortality in chronic heart failure. Lancet. 1997;349:1050–1053. doi: 10.1016/S0140-6736(96)07015-8.
    1. Fearon K., Strasser F., Anker S.D., Bosaeus I., Bruera E., Fainsinger R.L., Jatoi A., Loprinzi C., MacDonald N., Mantovani G., et al. Definition and classification of cancer cachexia: An international consensus. Lancet Oncol. 2011;12:489–495. doi: 10.1016/S1470-2045(10)70218-7.
    1. Muscaritoli M., Bossola M., Aversa Z., Bellantone R., Rossi F.F. Prevention and treatment of cancer cachexia: new insights into an old problem. Eur. J. Cancer. 2006;42:31–41. doi: 10.1016/j.ejca.2005.07.026.
    1. Von Haehling S., Anker S.D. Cachexia as a major underestimated and unmet medical need: facts and numbers. J. Cachexia Sarcopenia Muscle. 2010;1:1–5. doi: 10.1007/s13539-010-0002-6.
    1. Barreiro E., de la Puente B., Minguella J., Corominas J.M., Serrano S., Hussain S.N., Gea J. Oxidative stress and respiratory muscle dysfunction in severe chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care. Med. 2005;171:1116–1124. doi: 10.1164/rccm.200407-887OC.
    1. Barreiro E., Gea J., Matar G., Hussain S.N. Expression and carbonylation of creatine kinase in the quadriceps femoris muscles of patients with chronic obstructive pulmonary disease. Am. J. Respir. Cell Mol. Biol. 2005;33:636–642. doi: 10.1165/rcmb.2005-0114OC.
    1. Barreiro E., Rabinovich R., Marin-Corral J., Barbera J.A., Gea J., Roca J. Chronic endurance exercise induces quadriceps nitrosative stress in patients with severe COPD. Thorax. 2009;64:13–19. doi: 10.1136/thx.2008.105163.
    1. Barreiro E., Peinado V.I., Galdiz J.B., Ferrer E., Marin-Corral J., Sanchez F., Gea J., Barbera J.A. Cigarette smoke-induced oxidative stress: A role in chronic obstructive pulmonary disease skeletal muscle dysfunction. Am. J. Respir. Crit. Care Med. 2010;182:477–488. doi: 10.1164/rccm.200908-1220OC.
    1. Bustamante V., Casanova J., de Lopez S.E., Mas S., Sellares J., Gea J., Galdiz J.B., Barreiro E. Redox balance following magnetic stimulation training in the quadriceps of patients with severe COPD. Free Radic. Res. 2008;42:939–948. doi: 10.1080/10715760802555569.
    1. Fermoselle C., Rabinovich R., Ausin P., Puig-Vilanova E., Coronell C., Sanchez F., Roca J., Gea J., Barreiro E. Does oxidative stress modulate limb muscle atrophy in severe COPD patients? Eur. Respir. J. 2012;40:851–862. doi: 10.1183/09031936.00137211.
    1. Koechlin C., Couillard A., Simar D., Cristol J.P., Bellet H., Hayot M., Prefaut C. Does oxidative stress alter quadriceps endurance in chronic obstructive pulmonary disease? Am. J. Respir. Crit. Care Med. 2004;169:1022–1027. doi: 10.1164/rccm.200310-1465OC.
    1. Koechlin C., Couillard A., Cristol J.P., Chanez P., Hayot M., Le G.D., Prefaut C. Does systemic inflammation trigger local exercise-induced oxidative stress in COPD? Eur. Respir. J. 2004;23:538–544. doi: 10.1183/09031936.04.00069004.
    1. Koechlin C., Maltais F., Saey D., Michaud A., LeBlanc P., Hayot M., Prefaut C. Hypoxaemia enhances peripheral muscle oxidative stress in chronic obstructive pulmonary disease. Thorax. 2005;60:834–841. doi: 10.1136/thx.2004.037531.
    1. Marin-Corral J., Minguella J., Ramirez-Sarmiento A.L., Hussain S.N., Gea J., Barreiro E. Oxidised proteins and superoxide anion production in the diaphragm of severe COPD patients. Eur. Respir. J. 2009;33:1309–1319. doi: 10.1183/09031936.00072008.
    1. Mercken E.M., Hageman G.J., Schols A.M., Akkermans M.A., Bast A., Wouters E.F. Rehabilitation decreases exercise-induced oxidative stress in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2005;172:994–1001. doi: 10.1164/rccm.200411-1580OC.
    1. Mercken E.M., Hageman G.J., Langen R.C., Wouters E.F., Schols A.M. Decreased exercise-induced expression of nuclear factor-kappaB-regulated genes in muscle of patients with COPD. Chest. 2011;139:337–346. doi: 10.1378/chest.10-0275.
    1. Pascual-Guardia S., Wodja E., Gorostiza A., de Lopez S.E., Gea J., Galdiz J.B., Sliwinski P., Barreiro E. (Improvement in quality of life and exercise capacity without muscular biology changes after general training in patients with severe chronic obstructive pulmonary disease) Med. Clin. 2013;140:200–206. doi: 10.1016/j.medcli.2012.01.025.
    1. Puente-Maestu L., Tejedor A., Lázaro A., de Miguel J., Alvarez-Sala L., Gonzalez-Aragoneses F., Simon C., Agusti A. Site of mitochondrial reactive oxygen species production in skeletal muscle of chronic obstructive pulmonary disease and its relationship with exercise oxidative stress. Am. J. Respir. Cell Mol. Biol. 2012;47:358–362. doi: 10.1165/rcmb.2011-0382OC.
    1. Rabinovich R.A., Ardite E., Troosters T., Carbo N., Alonso J., de Suso G.J.M., Vilaro J., Barbera J.A., Polo M.F., Argiles J.M., et al. Reduced muscle redox capacity after endurance training in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2001;164:1114–1118. doi: 10.1164/ajrccm.164.7.2103065.
    1. Rabinovich R.A., Ardite E., Mayer A.M., Polo M.F., Vilaro J., Argiles J.M., Roca J. Training depletes muscle glutathione in patients with chronic obstructive pulmonary disease and low body mass index. Respiration. 2006;73:757–761. doi: 10.1159/000094395.
    1. Rodriguez D.A., Kalko S., Puig-Vilanova E., Perez-Olabarria M., Falciani F., Gea J., Cascante M., Barreiro E., Roca J. Muscle and blood redox status after exercise training in severe COPD patients. Free Radic. Biol. Med. 2012;52:88–94. doi: 10.1016/j.freeradbiomed.2011.09.022.
    1. Barreiro E., de la Puente B., Busquets S., Lopez-Soriano F.J., Gea J., Argiles J.M. Both oxidative and nitrosative stress are associated with muscle wasting in tumour-bearing rats. FEBS Lett. 2005;579:1646–1652. doi: 10.1016/j.febslet.2005.02.017.
    1. Barreiro E., Garcia-Martinez C., Mas S., Ametller E., Gea J., Argiles J.M., Busquets S., Lopez-Soriano F.J. UCP3 overexpression neutralizes oxidative stress rather than nitrosative stress in mouse myotubes. FEBS Lett. 2009;583:350–356. doi: 10.1016/j.febslet.2008.12.023.
    1. Marin-Corral J., Fontes C.C., Pascual-Guardia S., Sanchez F., Olivan M., Argiles J.M., Busquets S., Lopez-Soriano F.J., Barreiro E. Redox balance and carbonylated proteins in limb and heart muscles of cachectic rats. Antioxid. Redox Signal. 2010;12:365–380. doi: 10.1089/ars.2009.2818.
    1. Barreiro E., Comtois A.S., Mohammed S., Lands L.C., Hussain S.N. Role of heme oxygenases in sepsis-induced diaphragmatic contractile dysfunction and oxidative stress. Am. J. Physiol. Lung Cell Mol. Physiol. 2002;283:L476–L484. doi: 10.1152/ajplung.00495.2001.
    1. Barreiro E., Sanchez D., Galdiz J.B., Hussain S.N., Gea J. N-acetylcysteine increases manganese superoxide dismutase activity in septic rat diaphragms. Eur. Respir. J. 2005;26:1032–1039. doi: 10.1183/09031936.05.00003705.
    1. Barreiro E., Gea J., di Falco M., Kriazhev L., James S., Hussain S.N. Protein carbonyl formation in the diaphragm. Am. J. Respir. Cell Mol. Biol. 2005;32:9–17. doi: 10.1165/rcmb.2004-0021OC.
    1. Buck M., Chojkier M. Muscle wasting and dedifferentiation induced by oxidative stress in a murine model of cachexia is prevented by inhibitors of nitric oxide synthesis and antioxidants. EMBO. J. 1996;15:1753–1765.
    1. Gomes-Marcondes M.C., Tisdale M.J. Induction of protein catabolism and the ubiquitin-proteasome pathway by mild oxidative stress. Cancer Lett. 2002;180:69–74. doi: 10.1016/S0304-3835(02)00006-X.
    1. Pascual-Guardia S., Arbol F., Sanchez E., Casadevall C., Merlo V., Gea J., Barreiro E. (Inflammation and oxidative stress in respiratory and limb muscles of patients with severe sepsis) Med. Clin. 2013;141:194–200.
    1. Taille C., Foresti R., Lanone S., Zedda C., Green C., Aubier M., Motterlini R., Boczkowski J. Protective role of heme oxygenases against endotoxin-induced diaphragmatic dysfunction in rats. Am. J. Respir. Crit. Care Med. 2001;163:753–761. doi: 10.1164/ajrccm.163.3.2004202.
    1. Barreiro E., Coronell C., Lavina B., Ramirez-Sarmiento A., Orozco-Levi M., Gea J. Aging, sex differences, and oxidative stress in human respiratory and limb muscles. Free Radic. Biol. Med. 2006;41:797–809. doi: 10.1016/j.freeradbiomed.2006.05.027.
    1. Pansarasa O., Bertorelli L., Vecchiet J., Felzani G., Marzatico F. Age-dependent changes of antioxidant activities and markers of free radical damage in human skeletal muscle. Free Radic. Biol. Med. 1999;27:617–622. doi: 10.1016/S0891-5849(99)00108-2.
    1. Pansarasa O., Castagna L., Colombi B., Vecchiet J., Felzani G., Marzatico F. Age and sex differences in human skeletal muscle: Role of reactive oxygen species. Free Radic. Res. 2000;33:287–293. doi: 10.1080/10715760000301451.
    1. Davies K.J., Quintanilha A.T., Brooks G.A., Packer L. Free radicals and tissue damage produced by exercise. Biochem. Biophys. Res. Commun. 1982;107:1198–1205. doi: 10.1016/S0006-291X(82)80124-1.
    1. Souza J.M., Choi I., Chen Q., Weisse M., Daikhin E., Yudkoff M., Obin M., Ara J., Horwitz J., Ischiropoulos H. Proteolytic degradation of tyrosine nitrated proteins. Arch. Biochem. Biophys. 2000;380:360–366. doi: 10.1006/abbi.2000.1940.
    1. Wolff S.P., Dean R.T. Fragmentation of proteins by free radicals and its effect on their susceptibility to enzymic hydrolysis. Biochem. J. 1986;234:399–403. doi: 10.1042/bj2340399.
    1. Kaur N., Lu B., Monroe R.K., Ward S.M., Halvorsen S.W. Inducers of oxidative stress block ciliary neurotrophic factor activation of Jak/STAT signaling in neurons. J. Neurochem. 2005;92:1521–1530. doi: 10.1111/j.1471-4159.2004.02990.x.
    1. 48 Starke P.E., Oliver C.N., Stadtman E.R. Modification of hepatic proteins in rats exposed to high oxygen concentration. FASEB. J. 1987;1:36–39.
    1. Weiss S.J. Tissue destruction by neutrophils. N. Engl. J. Med. 1989;320:365–376.
    1. Zweier J.L., Kuppusamy P., Williams R., Rayburn B.K., Smith D., Weisfeldt M.L., Flaherty J.T. Measurement and characterization of postischemic free radical generation in the isolated perfused heart. J. Biol. Chem. 1989;264:18890–18895.
    1. Powers S.K., Jackson M.J. Exercise-induced oxidative stress: Cellular mechanisms and impact on muscle force production. Physiol. Rev. 2008;88:1243–1276. doi: 10.1152/physrev.00031.2007.
    1. Powers S.K., Duarte J., Kavazis A.N., Talbert E.E. Reactive oxygen species are signalling molecules for skeletal muscle adaptation. Exp. Physiol. 2010;95:1–9. doi: 10.1113/expphysiol.2009.050526.
    1. Grandhee S.K., Monnier V.M. Mechanism of formation of the Maillard protein cross-link pentosidine. Glucose, fructose, and ascorbate as pentosidine precursors. J. Biol. Chem. 1991;266:11649–11653.
    1. Stadtman E.R., Levine R.L. Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino. Acids. 2003;25:207–218. doi: 10.1007/s00726-003-0011-2.
    1. Friguet B., Stadtman E.R., Szweda L.I. Modification of glucose-6-phosphate dehydrogenase by 4-hydroxy-2-nonenal. Formation of cross-linked protein that inhibits the multicatalytic protease. J. Biol. Chem. 1994;269:21639–21643.
    1. Requena J.R., Fu M.X., Ahmed M.U., Jenkins A.J., Lyons T.J., Thorpe S.R. Lipoxidation products as biomarkers of oxidative damage to proteins during lipid peroxidation reactions. Nephrol. Dial. Transplant. 1996;11:48–53. doi: 10.1093/ndt/11.supp5.48.
    1. Meany D.L., Xie H., Thompson L.V., Arriaga E.A., Griffin T.J. Identification of carbonylated proteins from enriched rat skeletal muscle mitochondria using affinity chromatography-stable isotope labeling and tandem mass spectrometry. Proteomics. 2007;7:1150–1163. doi: 10.1002/pmic.200600450.
    1. Mirzaei H., Regnier F. Affinity chromatographic selection of carbonylated proteins followed by identification of oxidation sites using tandem mass spectrometry. Anal. Chem. 2005;77:2386–2392. doi: 10.1021/ac0484373.
    1. Yoo B.S., Regnier F.E. Proteomic analysis of carbonylated proteins in two-dimensional gel electrophoresis using avidin-fluorescein affinity staining. Electrophoresis. 2004;25:1334–1341. doi: 10.1002/elps.200405890.
    1. Levine R.L., Williams J.A., Stadtman E.R., Shacter E. Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol. 1994;233:346–357.
    1. Barreiro E., Gea J., Corominas J.M., Hussain S.N. Nitric oxide synthases and protein oxidation in the quadriceps femoris of patients with chronic obstructive pulmonary disease. Am. J. Respir. Cell Mol. Biol. 2003;29:771–778. doi: 10.1165/rcmb.2003-0138OC.
    1. Barreiro E., Galdiz J.B., Marinan M., Alvarez F.J., Hussain S.N., Gea J. Respiratory loading intensity and diaphragm oxidative stress: N-acetyl-cysteine effects. J. Appl. Physiol. 2006;100:555–563. doi: 10.1152/japplphysiol.00780.2005.
    1. Barreiro E., Schols A.M., Polkey M.I., Galdiz J.B., Gosker H.R., Swallow E.B., Coronell C., Gea J. Cytokine profile in quadriceps muscles of patients with severe COPD. Thorax. 2008;63:100–107. doi: 10.1136/thx.2007.078030.
    1. Barreiro E., del Puerto-Nevado L., Puig-Vilanova E., Perez-Rial S., Sanchez F., Martinez-Galan L., Rivera S., Gea J., Gonzalez-Mangado N., Peces-Barba G. Cigarette smoke-induced oxidative stress in skeletal muscles of mice. Respir. Physiol. Neurobiol. 2012;182:9–17. doi: 10.1016/j.resp.2012.02.001.
    1. Couillard A., Maltais F., Saey D., Debigare R., Michaud A., Koechlin C., LeBlanc P., Prefaut C. Exercise-induced quadriceps oxidative stress and peripheral muscle dysfunction in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2003;167:1664–1669. doi: 10.1164/rccm.200209-1028OC.
    1. Fermoselle C., Sanchez F., Barreiro E. (Reduction of muscle mass mediated by myostatin in an experimental model of pulmonary emphysema) Arch. Bronconeumol. 2011;47:590–598. doi: 10.1016/j.arbres.2011.07.008.
    1. Van Den B.B., Slot I.G., Hellwig V.A., Vosse B.A., Kelders M.C., Barreiro E., Schols A.M., Gosker H.R. Loss of quadriceps muscle oxidative phenotype and decreased endurance in patients with mild-to-moderate COPD. J. Appl. Physiol. 2013;114:1319–1328. doi: 10.1152/japplphysiol.00508.2012.
    1. Puig-Vilanova E., Rodriguez D.A., Lloreta J., Ausin P., Pascual-Guardia S., Broquetas J., Roca J., Gea J., Barreiro E. Oxidative stress, redox signaling pathways, and autophagy in cachectic muscles of male patients with advanced COPD and lung cancer. Free Radic. Biol. Med. 2015;79:91–108. doi: 10.1016/j.freeradbiomed.2014.11.006.
    1. Berlett B.S., Stadtman E.R. Protein oxidation in aging, disease, and oxidative stress. J. Biol. Chem. 1997;272:20313–20316. doi: 10.1074/jbc.272.33.20313.
    1. Botto N., Masetti S., Petrozzi L., Vassalle C., Manfredi S., Biagini A., Andreassi M.G. Elevated levels of oxidative DNA damage in patients with coronary artery disease. Coron. Artery Dis. 2002;13:269–274. doi: 10.1097/00019501-200208000-00004.
    1. Jackson M.J., Pye D., Palomero J. The production of reactive oxygen and nitrogen species by skeletal muscle. J. Appl. Physiol. 2007;102:1664–1670. doi: 10.1152/japplphysiol.01102.2006.
    1. Reid M.B., Shoji T., Moody M.R., Entman M.L. Reactive oxygen in skeletal muscle. II. Extracellular release of free radicals. J. Appl. Physiol. 1992;73:1805–1809.
    1. Reid M.B., Khawli F.A., Moody M.R. Reactive oxygen in skeletal muscle. III. Contractility of unfatigued muscle. J. Appl. Physiol. 1993;75:1081–1087.
    1. Reid M.B. Nitric oxide, reactive oxygen species, and skeletal muscle contraction. Med. Sci. Sports. Exerc. 2001;33:371–376. doi: 10.1097/00005768-200103000-00006.
    1. Reid M.B. Invited Review: Redox modulation of skeletal muscle contraction: what we know and what we don't. J. Appl. Physiol. 2001;90:724–731.
    1. Javesghani D., Magder S.A., Barreiro E., Quinn M.T., Hussain S.N. Molecular characterization of a superoxide-generating NAD(P)H oxidase in the ventilatory muscles. Am. J. Respir. Crit. Care Med. 2002;165:412–418. doi: 10.1164/ajrccm.165.3.2103028.
    1. Powers S.K., Kavazis A.N., DeRuisseau K.C. Mechanisms of disuse muscle atrophy: Role of oxidative stress. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005;288:R337–R344. doi: 10.1152/ajpregu.00469.2004.
    1. Supinski G. Free radical induced respiratory muscle dysfunction. Mol. Cell Biochem. 1998;179:99–110. doi: 10.1023/A:1006859920875.
    1. Vassilakopoulos T., Deckman G., Kebbewar M., Rallis G., Harfouche R., Hussain S.N. Regulation of nitric oxide production in limb and ventilatory muscles during chronic exercise training. Am. J. Physiol. Lung. Cell Mol. Physiol. 2003;284:L452–L457. doi: 10.1152/ajplung.00270.2002.
    1. Ferreira L.F., Reid M.B. Muscle-derived ROS and thiol regulation in muscle fatigue. J. Appl. Physiol. 2008;104:853–860. doi: 10.1152/japplphysiol.00953.2007.
    1. Booth F.W. Effect of limb immobilization on skeletal muscle. J. Appl. Physiol. 1982;52:1113–1118.
    1. Kondo H., Miura M., Itokawa Y. Oxidative stress in skeletal muscle atrophied by immobilization. Acta. Physiol. Scand. 1991;142:527–528. doi: 10.1111/j.1748-1716.1991.tb09191.x.
    1. Kondo H., Miura M., Nakagaki I., Sasaki S., Itokawa Y. Trace element movement and oxidative stress in skeletal muscle atrophied by immobilization. Am. J. Physiol. 1992;262:E583–E590.
    1. Kondo H., Nakagaki I., Sasaki S., Hori S., Itokawa Y. Mechanism of oxidative stress in skeletal muscle atrophied by immobilization. Am. J. Physiol. 1993;265:E839–E844.
    1. Lawler J.M., Song W., Demaree S.R. Hindlimb unloading increases oxidative stress and disrupts antioxidant capacity in skeletal muscle. Free Radic. Biol. Med. 2003;35:9–16. doi: 10.1016/S0891-5849(03)00186-2.
    1. Shanely R.A., Zergeroglu M.A., Lennon S.L., Sugiura T., Yimlamai T., Enns D., Belcastro A., Powers S.K. Mechanical ventilation-induced diaphragmatic atrophy is associated with oxidative injury and increased proteolytic activity. Am. J. Respir. Crit. Care Med. 2002;166:1369–1374. doi: 10.1164/rccm.200202-088OC.
    1. Zergeroglu M.A., McKenzie M.J., Shanely R.A., van Gammeren D., DeRuisseau K.C., Powers S.K. Mechanical ventilation-induced oxidative stress in the diaphragm. J. Appl. Physiol. 2003;95:1116–1124. doi: 10.1152/japplphysiol.00824.2002.
    1. Levine S., Nguyen T., Taylor N., Friscia M.E., Budak M.T., Rothenberg P., Zhu J., Sachdeva R., Sonnad S., Kaiser L.R., et al. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N. Engl. J. Med. 2008;358:1327–1335. doi: 10.1056/NEJMoa070447.
    1. Kavazis A.N., Talbert E.E., Smuder A.J., Hudson M.B., Nelson W.B., Powers S.K. Mechanical ventilation induces diaphragmatic mitochondrial dysfunction and increased oxidant production. Free Radic. Biol. Med. 2009;46:842–850. doi: 10.1016/j.freeradbiomed.2009.01.002.
    1. Whidden M.A., McClung J.M., Falk D.J., Hudson M.B., Smuder A.J., Nelson W.B., Powers S.K. Xanthine oxidase contributes to mechanical ventilation-induced diaphragmatic oxidative stress and contractile dysfunction. J. Appl. Physiol. 2009;106:385–394. doi: 10.1152/japplphysiol.91106.2008.
    1. Sahin E., Gumuslu S. Stress-dependent induction of protein oxidation, lipid peroxidation and anti-oxidants in peripheral tissues of rats: comparison of three stress models (immobilization, cold and immobilization-cold) Clin. Exp. Pharmacol. Physiol. 2007;34:425–431. doi: 10.1111/j.1440-1681.2007.04584.x.
    1. Sahin E., Gumuslu S. Immobilization stress in rat tissues: alterations in protein oxidation, lipid peroxidation and antioxidant defense system. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2007;144:342–347. doi: 10.1016/j.cbpc.2006.10.009.
    1. Primeau A.J., Adhihetty P.J., Hood D.A. Apoptosis in heart and skeletal muscle. Can. J. Appl. Physiol. 2002;27:349–395. doi: 10.1139/h02-020.
    1. Li Y.P., Chen Y., Li A.S., Reid M.B. Hydrogen peroxide stimulates ubiquitin-conjugating activity and expression of genes for specific E2 and E3 proteins in skeletal muscle myotubes. Am. J. Physiol. Cell Physiol. 2003;285:C806–C812. doi: 10.1152/ajpcell.00129.2003.
    1. Kujoth G.C., Hiona A., Pugh T.D., Someya S., Panzer K., Wohlgemuth S.E., Hofer T., Seo A.Y., Sullivan R., Jobling W.A., et al. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science. 2005;309:481–484. doi: 10.1126/science.1112125.
    1. Orlander J., Kiessling K.H., Larsson L., Karlsson J., Aniansson A. Skeletal muscle metabolism and ultrastructure in relation to age in sedentary men. Acta. Physiol. Scand. 1978;104:249–261. doi: 10.1111/j.1748-1716.1978.tb06277.x.
    1. Shigenaga M.K., Hagen T.M., Ames B.N. Oxidative damage and mitochondrial decay in aging. Proc. Natl. Acad. Sci. USA. 1994;91:10771–10778. doi: 10.1073/pnas.91.23.10771.
    1. Mecocci P., Fano G., Fulle S., MacGarvey U., Shinobu L., Polidori M.C., Cherubini A., Vecchiet J., Senin U., Beal M.F. Age-dependent increases in oxidative damage to DNA, lipids, and proteins in human skeletal muscle. Free Radic. Biol. Med. 1999;26:303–308. doi: 10.1016/S0891-5849(98)00208-1.
    1. Marzani B., Felzani G., Bellomo R.G., Vecchiet J., Marzatico F. Human muscle aging: ROS-mediated alterations in rectus abdominis and vastus lateralis muscles. Exp. Gerontol. 2005;40:959–965. doi: 10.1016/j.exger.2005.08.010.
    1. Fulle S., di Donna S., Puglielli C., Pietrangelo T., Beccafico S., Bellomo R., Protasi F., Fano G. Age-dependent imbalance of the antioxidative system in human satellite cells. Exp. Gerontol. 2005;40:189–197. doi: 10.1016/j.exger.2004.11.006.
    1. Kamel H.K., Maas D., Duthie E.H., Jr. Role of hormones in the pathogenesis and management of sarcopenia. Drugs Aging. 2002;19:865–877. doi: 10.2165/00002512-200219110-00004.
    1. Carmeli E., Coleman R., Reznick A.Z. The biochemistry of aging muscle. Exp. Gerontol. 2002;37:477–489. doi: 10.1016/S0531-5565(01)00220-0.
    1. Leeuwenburgh C., Hansen P., Shaish A., Holloszy J.O., Heinecke J.W. Markers of protein oxidation by hydroxyl radical and reactive nitrogen species in tissues of aging rats. Am. J. Physiol. 1998;274:R453–R461.
    1. Stadtman E.R. Role of oxidant species in aging. Curr. Med. Chem. 2004;11:1105–1112. doi: 10.2174/0929867043365341.
    1. Powers S.K., Lawler J., Criswell D., Lieu F.K., Dodd S. Alterations in diaphragmatic oxidative and antioxidant enzymes in the senescent Fischer 344 rat. J. Appl. Physiol. 1992;72:2317–2321.
    1. Oh-ishi S., Toshinai K., Kizaki T., Haga S., Fukuda K., Nagata N., Ohno H. Effects of aging and/or training on antioxidant enzyme system in diaphragm of mice. Respir. Physiol. 1996;105:195–202. doi: 10.1016/0034-5687(96)00057-6.
    1. Schoneich C., Viner R.I., Ferrington D.A., Bigelow D.J. Age-related chemical modification of the skeletal muscle sarcoplasmic reticulum Ca-ATPase of the rat. Mech. Ageing Dev. 1999;107:221–231. doi: 10.1016/S0047-6374(98)00158-4.
    1. Figueiredo P.A., Powers S.K., Ferreira R.M., Appell H.J., Duarte J.A. Aging impairs skeletal muscle mitochondrial bioenergetic function. J. Gerontol. A Biol. Sci. Med. Sci. 2009;64:21–33. doi: 10.1093/gerona/gln048.
    1. Feng J., Xie H., Meany D.L., Thompson L.V., Arriaga E.A., Griffin T.J. Quantitative proteomic profiling of muscle type-dependent and age-dependent protein carbonylation in rat skeletal muscle mitochondria. J. Gerontol. A Biol. Sci. Med. Sci. 2008;63:1137–1152. doi: 10.1093/gerona/63.11.1137.
    1. Guerassimov A., Hoshino Y., Takubo Y., Turcotte A., Yamamoto M., Ghezzo H., Triantafillopoulos A., Whittaker K., Hoidal J.R., Cosio M.G. The development of emphysema in cigarette smoke-exposed mice is strain dependent. Am. J. Respir. Crit. Care Med. 2004;170:974–980. doi: 10.1164/rccm.200309-1270OC.
    1. Ardite E., Peinado V.I., Rabinovich R.A., Fernandez-Checa J.C., Roca J., Barbera J.A. Systemic effects of cigarette smoke exposure in the guinea pig. Respir. Med. 2006;100:1186–1194. doi: 10.1016/j.rmed.2005.10.023.
    1. Frei B., Forte T.M., Ames B.N., Cross C.E. Gas phase oxidants of cigarette smoke induce lipid peroxidation and changes in lipoprotein properties in human blood plasma. Protective effects of ascorbic acid. Biochem. J. 1991;277:133–138. doi: 10.1042/bj2770133.
    1. Jensen E.X., Fusch C., Jaeger P., Peheim E., Horber F.F. Impact of chronic cigarette smoking on body composition and fuel metabolism. J. Clin. Endocrinol. Metab. 1995;80:2181–2185.
    1. Kalra J., Chaudhary A.K., Prasad K. Increased production of oxygen free radicals in cigarette smokers. Int. J. Exp. Pathol. 1991;72:1–7.
    1. Morrow J.D., Frei B., Longmire A.W., Gaziano J.M., Lynch S.M., Shyr Y., Strauss W.E., Oates J.A., Roberts L.J. Increase in circulating products of lipid peroxidation (F2-isoprostanes) in smokers. Smoking as a cause of oxidative damage. N. Engl. J. Med. 1995;332:1198–1203. doi: 10.1056/NEJM199505043321804.
    1. Park E.M., Park Y.M., Gwak Y.S. Oxidative damage in tissues of rats exposed to cigarette smoke. Free Radic. Biol. Med. 1998;25:79–86. doi: 10.1016/S0891-5849(98)00041-0.
    1. Reznick A.Z., Cross C.E., Hu M.L., Suzuki Y.J., Khwaja S., Safadi A., Motchnik P.A., Packer L., Halliwell B. Modification of plasma proteins by cigarette smoke as measured by protein carbonyl formation. Biochem. J. 1992;286:607–611. doi: 10.1042/bj2860607.
    1. Colombo G., Clerici M., Giustarini D., Rossi R., Milzani A., Dalle-Donne I. Redox albuminomics: oxidized albumin in human diseases. Antioxid. Redox. Signal. 2012;17:1515–1527. doi: 10.1089/ars.2012.4702.
    1. Colombo G., Rossi R., Gagliano N., Portinaro N., Clerici M., Annibal A., Giustarini D., Colombo R., Milzani A., Dalle-Donne I. Red blood cells protect albumin from cigarette smoke-induced oxidation. PLoS ONE. 2012;7:e29930. doi: 10.1371/journal.pone.0029930.
    1. Gosselink R., Troosters T., Decramer M. Peripheral muscle weakness contributes to exercise limitation in COPD. Am. J. Respir. Crit. Care Med. 1996;153:976–980. doi: 10.1164/ajrccm.153.3.8630582.
    1. Barreiro E., Gea J. Respiratory and Limb Muscle Dysfunction in COPD. COPD. 2015;12:413–426. doi: 10.3109/15412555.2014.974737.
    1. Mador M.J., Bozkanat E. Skeletal muscle dysfunction in chronic obstructive pulmonary disease. Respir. Res. 2001;2:216–224. doi: 10.1186/rr60.
    1. Levine S., Bashir M.H., Clanton T.L., Powers S.K., Singhal S. COPD elicits remodeling of the diaphragm and vastus lateralis muscles in humans. J. Appl. Physiol. 2013;114:1235–1245. doi: 10.1152/japplphysiol.01121.2012.
    1. Levine S., Kaiser L., Leferovich J., Tikunov B. Cellular adaptations in the diaphragm in chronic obstructive pulmonary disease. N. Engl. J. Med. 1997;337:1799–1806. doi: 10.1056/NEJM199712183372503.
    1. Levine S., Gregory C., Nguyen T., Shrager J., Kaiser L., Rubinstein N., Dudley G. Bioenergetic adaptation of individual human diaphragmatic myofibers to severe COPD. J. Appl. Physiol. 2002;92:1205–1213. doi: 10.1152/japplphysiol.00116.2001.
    1. Levine S., Nguyen T., Kaiser L.R., Rubinstein N.A., Maislin G., Gregory C., Rome L.C., Dudley G.A., Sieck G.C., Shrager J.B. Human diaphragm remodeling associated with chronic obstructive pulmonary disease: Clinical implications. Am. J. Respir. Crit. Care Med. 2003;168:706–713. doi: 10.1164/rccm.200209-1070OC.
    1. Testelmans D., Crul T., Maes K., Agten A., Crombach M., Decramer M., Gayan-Ramirez G. Atrophy and hypertrophy signalling in the diaphragm of patients with COPD. Eur. Respir. J. 2010;35:549–556. doi: 10.1183/09031936.00091108.
    1. Ottenheijm C.A., Heunks L.M., Sieck G.C., Zhan W.Z., Jansen S.M., Degens H., de Boo T., Dekhuijzen P.N. Diaphragm dysfunction in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2005;172:200–205. doi: 10.1164/rccm.200502-262OC.
    1. Ottenheijm C.A., Heunks L.M., Li Y.P., Jin B., Minnaard R., van Hees H.W., Dekhuijzen P.N. Activation of the ubiquitin-proteasome pathway in the diaphragm in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2006;174:997–1002. doi: 10.1164/rccm.200605-721OC.
    1. Ottenheijm C.A., Heunks L.M., Dekhuijzen P.N. Diaphragm muscle fiber dysfunction in chronic obstructive pulmonary disease: Toward a pathophysiological concept. Am. J. Respir. Crit. Care Med. 2007;175:1233–1240. doi: 10.1164/rccm.200701-020PP.
    1. Puente-Maestu L., Perez-Parra J., Godoy R., Moreno N., Tejedor A., Gonzalez-Aragoneses F., Bravo J.L., Alvarez F.V., Camano S., Agusti A. Abnormal mitochondrial function in locomotor and respiratory muscles of COPD patients. Eur. Respir. J. 2009;33:1045–1052. doi: 10.1183/09031936.00112408.
    1. Barreiro E., Ferrer D., Sanchez F., Minguella J., Marin-Corral J., Martinez-Llorens J., Lloreta J., Gea J. Inflammatory cells and apoptosis in respiratory and limb muscles of patients with COPD. J. Appl. Physiol. 2011;111:808–817. doi: 10.1152/japplphysiol.01017.2010.
    1. Van Helvoort H.A., Heijdra Y.F., Thijs H.M., Vina J., Wanten G.J., Dekhuijzen P.N. Exercise-induced systemic effects in muscle-wasted patients with COPD. Med. Sci. Sports. Exerc. 2006;38:1543–1552. doi: 10.1249/01.mss.0000228331.13123.53.
    1. MacMillan-Crow L.A., Crow J.P., Kerby J.D., Beckman J.S., Thompson J.A. Nitration and inactivation of manganese superoxide dismutase in chronic rejection of human renal allografts. Proc. Natl. Acad. Sci. USA. 1996;93:11853–11858. doi: 10.1073/pnas.93.21.11853.
    1. MacMillan-Crow L.A., Crow J.P., Thompson J.A. Peroxynitrite-mediated inactivation of manganese superoxide dismutase involves nitration and oxidation of critical tyrosine residues. Biochemistry. 1998;37:1613–1622. doi: 10.1021/bi971894b.
    1. Mihm M.J., Coyle C.M., Schanbacher B.L., Weinstein D.M., Bauer J.A. Peroxynitrite induced nitration and inactivation of myofibrillar creatine kinase in experimental heart failure. Cardiovasc. Res. 2001;49:798–807. doi: 10.1016/S0008-6363(00)00307-2.
    1. Souza J.M., Daikhin E., Yudkoff M., Raman C.S., Ischiropoulos H. Factors determining the selectivity of protein tyrosine nitration. Arch. Biochem. Biophys. 1999;371:169–178. doi: 10.1006/abbi.1999.1480.
    1. White M.Y., Cordwell S.J., McCarron H.C., Prasan A.M., Craft G., Hambly B.D., Jeremy R.W. Proteomics of ischemia/reperfusion injury in rabbit myocardium reveals alterations to proteins of essential functional systems. Proteomics. 2005;5:1395–1410. doi: 10.1002/pmic.200400995.
    1. Panda K., Chattopadhyay R., Ghosh M.K., Chattopadhyay D.J., Chatterjee I.B. Vitamin C prevents cigarette smoke induced oxidative damage of proteins and increased proteolysis. Free Radic. Biol. Med. 1999;27:1064–1079. doi: 10.1016/S0891-5849(99)00154-9.
    1. Requena J.R., Levine R.L., Stadtman E.R. Recent advances in the analysis of oxidized proteins. Amino. Acids. 2003;25:221–226. doi: 10.1007/s00726-003-0012-1.
    1. Puente-Maestu L., Tena T., Trascasa C., Perez-Parra J., Godoy R., Garcia M.J., Stringer W.W. Training improves muscle oxidative capacity and oxygenation recovery kinetics in patients with chronic obstructive pulmonary disease. Eur. J. Appl. Physiol. 2003;88:580–587. doi: 10.1007/s00421-002-0743-9.
    1. Momken I., Lechene P., Koulmann N., Fortin D., Mateo P., Doan B.T., Hoerter J., Bigard X., Veksler V., Ventura-Clapier R. Impaired voluntary running capacity of creatine kinase-deficient mice. J. Physiol. 2005;565:951–964. doi: 10.1113/jphysiol.2005.086397.
    1. Spindler M., Engelhardt S., Niebler R., Wagner H., Hein L., Lohse M.J., Neubauer S. Alterations in the myocardial creatine kinase system precede the development of contractile dysfunction in β1-adrenergic receptor transgenic mice. J. Mol. Cell Cardiol. 2003;35:389–397. doi: 10.1016/S0022-2828(03)00015-4.
    1. Harvey K.B., Bothe A., Jr., Blackburn G.L. Nutritional assessment and patient outcome during oncological therapy. Cancer. 1979;43:2065–2069. doi: 10.1002/1097-0142(197905)43:5+<2065::AID-CNCR2820430714>;2-1.
    1. Brand M.D., Affourtit C., Esteves T.C., Green K., Lambert A.J., Miwa S., Pakay J.L., Parker N. Mitochondrial superoxide: Production, biological effects, and activation of uncoupling proteins. Free Radic. Biol. Med. 2004;37:755–767. doi: 10.1016/j.freeradbiomed.2004.05.034.
    1. Brand M.D., Esteves T.C. Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3. Cell Metab. 2005;2:85–93. doi: 10.1016/j.cmet.2005.06.002.
    1. Echtay K.S., Esteves T.C., Pakay J.L., Jekabsons M.B., Lambert A.J., Portero-Otin M., Pamplona R., Vidal-Puig A.J., Wang S., Roebuck S.J., et al. A signalling role for 4-hydroxy-2-nonenal in regulation of mitochondrial uncoupling. EMBO J. 2003;22:4103–4110. doi: 10.1093/emboj/cdg412.
    1. Lexell J., Taylor C.C., Sjostrom M. What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. J. Neurol. Sci. 1988;84:275–294. doi: 10.1016/0022-510X(88)90132-3.
    1. Lexell J., Downham D. What determines the muscle cross-sectional area? J. Neurol. Sci. 1992;111:113–114. doi: 10.1016/0022-510X(92)90119-6.
    1. Lexell J., Downham D. What is the effect of ageing on type 2 muscle fibres? J. Neurol. Sci. 1992;107:250–251. doi: 10.1016/0022-510X(92)90297-X.
    1. Lexell J. Human aging, muscle mass, and fiber type composition. J. Gerontol. A Biol. Sci. Med. Sci. 1995;50:11–16.
    1. Anderson E.J., Neufer P.D. Type II skeletal myofibers possess unique properties that potentiate mitochondrial H2O2 generation. Am. J. Physiol. Cell Physiol. 2006;290:C844–C851. doi: 10.1152/ajpcell.00402.2005.
    1. Stadtman E.R. Metal ion-catalyzed oxidation of proteins: biochemical mechanism and biological consequences. Free Radic. Biol. Med. 1990;9:315–325. doi: 10.1016/0891-5849(90)90006-5.
    1. Hussain S.N. Respiratory muscle dysfunction in sepsis. Mol. Cell Biochem. 1998;179:125–134. doi: 10.1023/A:1006864021783.
    1. Hussain S.N., Simkus G., Roussos C. Respiratory muscle fatigue: A cause of ventilatory failure in septic shock. J. Appl. Physiol. 1985;58:2033–2040.
    1. Hussain S.N., Matar G., Barreiro E., Florian M., Divangahi M., Vassilakopoulos T. Modifications of proteins by 4-hydroxy-2-nonenal in the ventilatory muscles of rats. Am. J. Physiol. Lung. Cell Mol. Physiol. 2006;290:L996–L1003. doi: 10.1152/ajplung.00337.2005.
    1. Lanone S., Taille C., Boczkowski J., Aubier M. Diaphragmatic fatigue during sepsis and septic shock. Intensive Care Med. 2005;31:1611–1617. doi: 10.1007/s00134-005-2748-4.
    1. Colzani M., Aldini G., Carini M. Mass spectrometric approaches for the identification and quantification of reactive carbonyl species protein adducts. J. Proteomics. 2013;92:28–50. doi: 10.1016/j.jprot.2013.03.030.
    1. Grimsrud P.A., Xie H., Griffin T.J., Bernlohr D.A. Oxidative stress and covalent modification of protein with bioactive aldehydes. J. Biol. Chem. 2008;283:21837–21841. doi: 10.1074/jbc.R700019200.
    1. Powers S.K., Smuder A.J., Kavazis A.N., Hudson M.B. Experimental guidelines for studies designed to investigate the impact of antioxidant supplementation on exercise performance. Int. J. Sport Nutr. Exerc. Metab. 2010;20:2–14.
    1. Butterfield D.A., Dalle-Donne I. Redox proteomics. Antioxid. Redox. Signal. 2012;17:1487–1489. doi: 10.1089/ars.2012.4742.

Source: PubMed

3
Abonnieren