The Effects of Visual Cues, Blindfolding, Synesthetic Experience, and Musical Training on Pure-Tone Frequency Discrimination

Cho Kwan Tse, Calvin Kai-Ching Yu, Cho Kwan Tse, Calvin Kai-Ching Yu

Abstract

How perceptual limits can be reduced has long been examined by psychologists. This study investigated whether visual cues, blindfolding, visual-auditory synesthetic experience, and musical training could facilitate a smaller frequency difference limen (FDL) in a gliding frequency discrimination test. Ninety university students, with no visual or auditory impairment, were recruited for this one-between (blindfolded/visual cues) and one-within (control/experimental session) designed study. Their FDLs were tested by an alternative forced-choice task (gliding upwards/gliding downwards/no change) and two questionnaires (Vividness of Mental Imagery Questionnaire and Projector⁻Associator Test) were used to assess their tendency to synesthesia. The participants provided with visual cues and with musical training showed a significantly smaller FDL; on the other hand, being blindfolded or having a synesthetic experience before could not significantly reduce the FDL. However, no pattern was found between the perception of the gliding upwards and gliding downwards frequencies. Overall, the current study suggests that the inter-sensory perception can be enhanced through the training and facilitation of visual⁻auditory interaction under the multiple resource model. Future studies are recommended in order to verify the effects of music practice on auditory percepts, and the different mechanisms between perceiving gliding upwards and downwards frequencies.

Keywords: auditory-visual synesthesia; blindfold; frequency difference limens; gliding frequencies; multiple resource model; perceptual limit, common resource theory; visual cues.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Schematic representation of the stimulus presentation of the gliding upwards (left) and gliding downwards (right) pure-tones.
Figure 2
Figure 2
Schematic representation of the visual cues with the upper part showing gliding downwards and the lower part showing gliding upwards.
Figure 3
Figure 3
The frequency difference limens (FDLs) of the control session and experimental session of the significant results.

References

    1. Xu Q., Gong Q. Frequency difference beyond behavioral limen reflected by frequency following response of human auditory Brainstem. Biomed. Eng. Online. 2014;13:114. doi: 10.1186/1475-925X-13-114.
    1. Formby C. Differential sensitivity to tonal frequency and to the rate of amplitude modulation of broadband noise by normally hearing listeners. J. Acoust. Soc. Am. 1985;78:70–77. doi: 10.1121/1.392456.
    1. Nelson D.A., Stanton M.E., Freyman R.L. A general equation describing frequency discrimination as a function of frequency and sensation level. J. Acoust. Soc. Am. 1983;73:2117–2123. doi: 10.1121/1.389579.
    1. Micheyl C., Xiao L., Oxenham A.J. Characterizing the dependence of pure-tone frequency difference limens on frequency, duration, and level. Hear. Res. 2012;292:1–13. doi: 10.1016/j.heares.2012.07.004.
    1. Freyman R.L., Nelson D.A. Frequency discrimination as a function of tonal duration and excitation-pattern slopes in normal and hearing-impaired listeners. J. Acoust. Soc. Am. 1986;79:1034–1044. doi: 10.1121/1.393375.
    1. Wier C.C., Jesteadt W., Green D.M. Frequency discrimination as a function of frequency and sensation level. J. Acoust. Soc. Am. 1977;61:178–184. doi: 10.1121/1.381251.
    1. Dai H., Micheyl C. Psychometric functions for pure-tone frequency discrimination. J. Acoust. Soc. Am. 2011;130:263–272. doi: 10.1121/1.3598448.
    1. Harris J.D. Pitch discrimination. J. Acoust. Soc. Am. 1952;24:750–755. doi: 10.1121/1.1906970.
    1. Hartmann W.M., Rakerd B., Packard T.N. On measuring the frequency-difference limen for short tones. Percept. Psychophys. 1985;38:199–207. doi: 10.3758/BF03207145.
    1. Moore B.C.J. Frequency difference limens for short-duration tones. J. Acoust. Soc. Am. 1973;54:610–619. doi: 10.1121/1.1913640.
    1. Wier C.C., Jesteadt W., Green D.M. A comparison of method-of-adjustment and forced-choice procedures in frequency discrimination. Percept. Psychophys. 1976;19:75–79. doi: 10.3758/BF03199389.
    1. Lyzenga J., Carlyon R.P., Moore B.C.J. The effects of real and illusory glides on pure-tone frequency discrimination. J. Acoust. Soc. Am. 2004;116:491–501. doi: 10.1121/1.1756616.
    1. Demany L., Pressnitzer D., Semal C. Tuning properties of the auditory frequency-shift detectors. J. Acoust. Soc. Am. 2009;126:1342–1348. doi: 10.1121/1.3179675.
    1. Gottfried T.L., Riester D. Relation of pitch glide perception and Mandarin tone identification. J. Acoust. Soc. Am. 2000;108:2604. doi: 10.1121/1.4743698.
    1. Baharloo S., Johnston P.A., Service S.K., Gitschier J., Freimer N.B. Absolute Pitch: An Approach for Identification of Genetic and Nongenetic Components. Am. J. Hum. Genet. 1998;62:224–231. doi: 10.1086/301704.
    1. Bulkin D.A., Groh J.M. Seeing sounds: Visual and auditory interactions in the brain. Curr. Opin. Neurobiol. 2006;16:415–419. doi: 10.1016/j.conb.2006.06.008.
    1. Hirata Y., Kelly S.D. Effects of lips and hands on auditory learning of second-language speech sounds. J. Speech Lang. Hear. Res. 2010;53:298–310. doi: 10.1044/1092-4388(2009/08-0243).
    1. Wickens C.D. Multiple resources and performance prediction. Theor. Issues Ergon. Sci. 2002;3:159–177. doi: 10.1080/14639220210123806.
    1. Marks L.E. On cross-modal similarity: Auditory-visual interactions in speeded discrimination. J. Exp. Psychol. Hum. Percept. Perform. 1987;13:384–394. doi: 10.1037/0096-1523.13.3.384.
    1. Ben-Artzi E., Marks L.E. Visual-auditory interaction in speeded classification: Role of stimulus difference. Percept. Psychophys. 1995;57:1151–1162. doi: 10.3758/BF03208371.
    1. Busse L., Roberts K.C., Crist R.E., Weissman D.H., Woldorff M.G. The spread of attention across modalities and space in a multisensory object. Proc. Natl. Acad. Sci. USA. 2005;102:18751–18756. doi: 10.1073/pnas.0507704102.
    1. Stroop J.R. Studies of interference in serial verbal reactions. J. Exp. Psychol. 1935;18:643–662. doi: 10.1037/h0054651.
    1. Abadi R.V., Murphy J.S. Phenomenology of the sound-induced flash illusion. Exp. Brain Res. 2014;232:2207–2220. doi: 10.1007/s00221-014-3912-2.
    1. Alais D., Burr D. The ventriloquist effect results from near-optimal bimodal integration. Curr. Biol. 2004;14:257–262. doi: 10.1016/j.cub.2004.01.029.
    1. Mcgurk H., Macdonald J. Hearing lips and seeing voices. Nature. 1976;264:746–748. doi: 10.1038/264746a0.
    1. Kahneman D. Attention and Effort. Prentice-Hall; Englewood Cliffs, NJ, USA: 1973.
    1. Taylor M.M., Lindsay P.H., Forbes S.M. Quantification of shared capacity processing in auditory and visual discrimination. Acta Psychol. 1967;27:223–229. doi: 10.1016/0001-6918(67)99000-2.
    1. Ciaramitaro V.M., Chow H.M., Eglington L.G. Cross-modal attention influences auditory contrast sensitivity: Decreasing visual load improves auditory thresholds for amplitude- and frequency-modulated sounds. J. Vis. 2017;17:20. doi: 10.1167/17.3.20.
    1. Bonnel A.M., Hafter E.R. Divided attention between simultaneous auditory and visual signals. Percept. Psychophys. 1998;60:179–190. doi: 10.3758/BF03206027.
    1. Wahn B., König P. Audition and vision share spatial attentional resources, yet attentional load does not disrupt audiovisual integration. Front. Psychol. 2015;6 doi: 10.3389/fpsyg.2015.01084.
    1. Gherri E., Eimer M. Active listening impairs visual perception and selectivity: An ERP study of auditory dual-task costs on visual attention. J. Cogn. Neurosci. 2011;23:832–844. doi: 10.1162/jocn.2010.21468.
    1. Razon S., Basevitch I., Land W., Thompson B., Tenenbaum G. Perception of exertion and attention allocation as a function of visual and auditory conditions. Psychol. Sport Exerc. 2009;10:636–643. doi: 10.1016/j.psychsport.2009.03.007.
    1. Cowan N., Barron A. Cross-modal, auditory-visual Stroop interference and possible implications for speech memory. Percept. Psychophys. 1987;41:393–401. doi: 10.3758/BF03203031.
    1. Gaab N., Schulze K., Ozdemir E., Schlaug G. Neural correlates of absolute pitch differ between blind and sighted musicians. Neuroreport. 2006;17:1853–1857. doi: 10.1097/WNR.0b013e3280107bee.
    1. Hamilton R.H., Pascual-Leone A., Schlaug G. Absolute pitch in blind musicians. Neuroreport. 2004;15:803–806. doi: 10.1097/00001756-200404090-00012.
    1. Landry S.P., Shiller D.M., Champoux F. Short-term visual deprivation improves the perception of harmonicity. J. Exp. Psychol. Hum. Percept. Perform. 2013;39:1503–1507. doi: 10.1037/a0034015.
    1. Petrus E., Isaiah A., Jones A.P., Li D., Wang H., Lee H.K., Kanold P.O. Crossmodal induction of thalamocortical potentiation leads to enhanced information processing in the auditory cortex. Neuron. 2014;81:664–673. doi: 10.1016/j.neuron.2013.11.023.
    1. Meng X., Kao J.P., Lee H.K., Kanold P.O. Visual deprivation causes refinement of intracortical circuits in the auditory cortex. Cell Rep. 2015;12:955–964. doi: 10.1016/j.celrep.2015.07.018.
    1. Williams P. Visual Project Management. 1st ed. Lulu Com; Morrisville, NC, USA: 2015.
    1. Eagleman D.M., Kagan A.D., Nelson S.S., Sagaram D., Sarma A.K. A standardized test battery for the study of synesthesia. J. Neurosci. Methods. 2007;159:139–145. doi: 10.1016/j.jneumeth.2006.07.012.
    1. Lehman R.S. A multivariate model of synesthesia. Multivariate Behav. Res. 1972;7:403–439. doi: 10.1207/s15327906mbr0704_1.
    1. Sagiv N., Ward J. Crossmodal interactions: Lessons from synesthesia. Prog. Brain Res. 2006:259–271. doi: 10.1016/s0079-6123(06)55015-0.
    1. Hubbard E.M., Arman A.C., Ramachandran V.S., Boynton G.M. Individual differences among grapheme-color synesthetes: Brain-behavior correlations. Neuron. 2005;45:975–985. doi: 10.1016/j.neuron.2005.02.008.
    1. Neufeld J., Sinke C., Zedler M., Dillo W., Emrich H.M., Bleich S., Szycik G.R. Disinhibited feedback as a cause of synesthesia: Evidence from a functional connectivity study on auditory-visual synesthetes. Neuropsychologia. 2012;50:1471–1477. doi: 10.1016/j.neuropsychologia.2012.02.032.
    1. Barnett K.J., Newell F.N. Synaesthesia is associated with enhanced, self-rated visual imagery. Conscious. Cogn. 2008;17:1032–1039. doi: 10.1016/j.concog.2007.05.011.
    1. Bor D., Rothen N., Schwartzman D.J., Clayton S., Seth A.K. Adults can be trained to acquire synesthetic experiences. Sci. Rep. 2014;4 doi: 10.1038/srep07089.
    1. Neufeld J., Sinke C., Dillo W., Emrich H.M., Szycik G.R., Dima D., Bleich S., Zedler M. The neural correlates of coloured music: A functional MRI investigation of auditory–visual synaesthesia. Neuropsychologia. 2012;50:85–89. doi: 10.1016/j.neuropsychologia.2011.11.001.
    1. Saenz M., Koch C. The sound of change: Visually-induced auditory synesthesia. Curr. Biol. 2008;18:R650–R651. doi: 10.1016/j.cub.2008.06.014.
    1. Kishon-Rabin L., Amir O., Vexler Y., Zaltz Y. Pitch discrimination: Are professional musicians better than non-musicians? J. Basic Clin. Physiol. Pharmacol. 2001;12 doi: 10.1515/JBCPP.2001.12.2.125.
    1. Nikjeh D.A., Lister J.J., Frisch S.A. Hearing of note: An electrophysiologic and psychoacoustic comparison of pitch discrimination between vocal and instrumental musicians. Psychophysiology. 2008;45:994–1007. doi: 10.1111/j.1469-8986.2008.00689.x.
    1. Micheyl C., Delhommeau K., Perrot X., Oxenham A.J. Influence of musical and psychoacoustical training on pitch discrimination. Hear. Res. 2006;219:36–47. doi: 10.1016/j.heares.2006.05.004.
    1. Tervaniemi M., Just V., Koelsch S., Widmann A., Schröger E. Pitch discrimination accuracy in musicians vs nonmusicians: An event-related potential and behavioral study. Exp. Brain Res. 2004;161:1–10. doi: 10.1007/s00221-004-2044-5.
    1. Barrett K.C., Ashley R., Strait D.L., Kraus N. Art and science: How musical training shapes the brain. Front. Psychol. 2013;4:713. doi: 10.3389/fpsyg.2013.00713.
    1. Demany L., Carlyon R.P., Semal C. Continuous versus discrete frequency changes: Different detection mechanisms? J. Acoust. Soc. Am. 2009;125:1082–1090. doi: 10.1121/1.3050271.
    1. Note Names, MIDI Numbers and Frequencies. [(accessed on 17 August 2018)];2017 Available online: .
    1. Geringer J.M. Tuning preferences in recorded orchestral music. J. Res. Music Educ. 1976;24:169–176. doi: 10.2307/3345127.
    1. Lutman M.E. Frequency Discrimination Test. [(accessed on 17 August 2018)];2004 Available online: .
    1. Ingard K. Notes on Acoustics. Infinity Science Press; Hingham, MA, USA: Plymouth, UK: 2008. p. 3.
    1. Alais D., Morrone C., Burr D. Separate attentional resources for vision and audition. Proc. R. Soc. B. 2006;273:1339–1345. doi: 10.1098/rspb.2005.3420.
    1. Luo H., Boemio A., Gordon M., Poeppel D. The perception of FM sweeps by Chinese and English listeners. Hear. Res. 2007;224:75–83. doi: 10.1016/j.heares.2006.11.007.
    1. Dooley G.J., Moore B.C. Detection of linear frequency glides as a function of frequency and duration. J. Acoust. Soc. Am. 1988;84:2045–2057. doi: 10.1121/1.397048.
    1. Lewald J. More accurate sound localization induced by short-term light deprivation. Neuropsychologia. 2007;45:1215–1222. doi: 10.1016/j.neuropsychologia.2006.10.006.
    1. Banissy M.J., Walsh V., Ward J. Enhanced sensory perception in synaesthesia. Exp. Brain Res. 2009;196:565–571. doi: 10.1007/s00221-009-1888-0.
    1. Bianchi F., Santurette S., Wendt D., Dau T. Pitch discrimination in musicians and non-musicians: Effects of harmonic resolvability and processing effort. J. Assoc. Res. Otolaryngol. 2015;17:69–79. doi: 10.1007/s10162-015-0548-2.
    1. Schellenberg E.G., Moreno S. Music lessons, pitch processing, and g. Psychol. Music. 2009;38:209–221. doi: 10.1177/0305735609339473.
    1. Dixon M.J., Smilek D., Merikle P.M. Not all synaesthetes are created equal: Projector versus associator synaesthetes. Cogn. Affect. Behav. Neurosci. 2004;4:335–343. doi: 10.3758/CABN.4.3.335.
    1. Herholz S.C., Zatorre R.J. Musical training as a framework for brain plasticity: Behavior, function, and structure. Neuron. 2012;76:486–502. doi: 10.1016/j.neuron.2012.10.011.
    1. Wong Y.K., Gauthier I. Music-reading expertise alters visual spatial resolution for musical notation. Psychon. Bull. Rev. 2012;19:594–600. doi: 10.3758/s13423-012-0242-x.

Source: PubMed

3
Abonnieren