Age-Related Reductions in Cerebrovascular Reactivity Using 4D Flow MRI

Kathleen B Miller, Anna J Howery, Leonardo A Rivera-Rivera, Sterling C Johnson, Howard A Rowley, Oliver Wieben, Jill N Barnes, Kathleen B Miller, Anna J Howery, Leonardo A Rivera-Rivera, Sterling C Johnson, Howard A Rowley, Oliver Wieben, Jill N Barnes

Abstract

Cerebrovascular reactivity (CVR), is important for determining future risk of cerebrovascular disease. It is unclear if primary aging is associated with reductions in CVR because previous studies often include participants with vascular risk factors. Additionally, the inconsistency in the literature may be due to the inherent difficulty in quantifying intracranial cerebral blood flow and CVR. To address these limitations, we determined the effect of age on CVR in the large intracranial vessels in adults with low vascular risk using state-of-the-art MRI techniques. We also determined if the effect of age on CVR was sex-specific. Young (n = 20; 25 ± 3 years) and older (n = 19; 61 ± 5 years) healthy, physically active adults participated in the study. CVR was measured in response to hypercapnia using 4D flow MRI, which allows for simultaneous angiographic and quantitative blood flow measurements in the intracranial arteries. Older adults had lower global CVR and CVR in multiple intracranial arteries [right and left internal carotid arteries (ICA), right and left middle cerebral arteries (MCA), and basilar artery (BA)] compared with young adults (p < 0.05 for all). In addition, the MCA dilated significantly in response to hypercapnia in young (p < 0.05), but not older adults. Young men demonstrated higher global CVR and CVR in multiple intracranial arteries (ICAs, MCAs, and BA) compared with young women and older men (p < 0.05 for both); however, CVR did not differ between young women and older women. Our results demonstrate that, using 4D flow MRI, primary aging is associated with lower CVR in adults with low vascular risk. In addition, the effect of age on CVR may be driven by men. The 4D flow MRI technique may provide a promising new alternative to measure cerebrovascular physiology without the limitations of commonly used techniques. Future studies could utilize this MRI technique to examine interventions to maintain CVR with advancing age. This study was registered under clinicaltrials.gov # NCT02840851.

Keywords: cerebral blood flow; cerebrovascular conductance; middle cerebral artery; neuroimaging; sex differences.

Copyright © 2019 Miller, Howery, Rivera-Rivera, Johnson, Rowley, Wieben and Barnes.

Figures

FIGURE 1
FIGURE 1
This image shows an example participant’s 4D flow MRI scan during normocapnia. Warmer colors indicate higher flow. Blood flow and vessel cross sectional area (CSA) were averaged along the length of the vessel. The middle cerebral arteries (MCA) were measured along the M1 segment. The internal carotid arteries (ICA) were measured along the cervical and petrous portions below the carotid siphon. The basilar artery (BA) was measured below the superior cerebellar artery and above the bifurcation of the vertebral arteries. Global flow was calculated as the sum of the right and left ICA and the BA flows. End points or branches were removed from the vessel analysis.
FIGURE 2
FIGURE 2
This image displays cerebrovascular reactivity (CVR) to hypercapnia in young and older adults. (A) Global CVR in young and older adults. (B) CVR in each intracranial vessel of interest [basilar artery, left (L) and right (R) internal carotid arteries (ICA), and L and R middle cerebral arteries (MCA)]. CVR was calculated as the linear relationship between cerebrovascular conductance (CVC) (flow/mean arterial pressure × 100) and end-tidal carbon dioxide during 4 and 6% CO2 inhalation. Young adults are shown in black and older adults are shown in gray. Data are mean ± standard error. ∗p < 0.05. Global CVR was significantly lower in older adults compared with young adults. These results persisted in each vessel of interest (basilar artery, ICAs, and MCAs).
FIGURE 3
FIGURE 3
This image displays global cerebrovascular reactivity (CVR) to hypercapnia in young and older men and women. (A) Global CVR in young and older men and women. (B) CVR in each intracranial vessel of interest [basilar artery, left (L) and right (R) internal carotid arteries (ICA), and L and R middle cerebral arteries (MCA)]. CVR was calculated as the linear relationship between cerebrovascular conductance (CVC) (flow/mean arterial pressure × 100) and end-tidal carbon dioxide during 4 and 6% CO2 inhalation. Young men are shown in black, young women are shown in black stripes, older men are shown in gray and older women are shown in gray stripes. Data are mean ± standard error. ∗p < 0.05 compared with young of same sex. †p < 0.05 compared with men of same age. Young men demonstrated higher global CVR than younger women and older men. No sex-differences in global CVR were present in older adults. These results persisted in each vessel of interest (basilar artery, ICAs and MCAs).
FIGURE 4
FIGURE 4
This image displays the cross sectional area (CSA) of the left and right middle cerebral artery (MCA) during normocapnia and hypercapnia (6% CO2 inhalation) in (A) young and (B) older adults. The group average response is shown in black. Gray lines demonstrate individual responses. On average, the left MCA CSA significantly increased from normocapnia to 6% CO2 in young adults (p = 0.004) but the change in CSA was not significant in older adults (p = 0.08). The right MCA CSA significantly increased from normocapnia to 6% CO2 in young adults (p = 0.002) but the change in CSA was not significant in older adults (p = 0.19). There were no differences in the response to hypercapnia between the right MCA CSA compared with the left MCA CSA in young (p = 0.28) and older (p = 0.72) adults.

References

    1. Aaslid R., Markwalder T.-M., Nornes H. (1982). Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J. Neurosurg. 57 769–774. 10.3171/jns.1982.57.6.0769
    1. Al-Khazraji B. K., Shoemaker L. N., Gati J. S., Szekeres T., Shoemaker J. K. (2019). Reactivity of larger intracranial arteries using 7 T MRI in young adults. J. Cereb. Blood Flow Metab. 39 1204–1214. 10.1177/0271678X18762880
    1. Barnes J. N. (2017). Sex-specific factors regulating pressure and flow. Exp. Physiol. 102 1385–1392. 10.1113/EP086531
    1. Barnes J. N., Harvey R. E., Miller K. B., Jayachandran M., Malterer K. R., Lahr B. D., et al. (2018). Cerebrovascular reactivity and vascular activation in postmenopausal women with histories of preeclampsia. Hypertension 71 110–117. 10.1161/HYPERTENSIONAHA.117.10248
    1. Barnes J. N., Schmidt J. E., Nicholson W. T., Joyner M. J. (2012). Cyclooxygenase inhibition abolishes age-related differences in cerebral vasodilator responses to hypercapnia. J. Appl. Physiol. 112 1884–1890. 10.1152/japplphysiol.01270.2011
    1. Brothers R. M., Zhang R. (2016). CrossTalk opposing view: the middle cerebral artery diameter does not change during alterations in arterial blood gases and blood pressure. J. Physiol. 594 4077–4079. 10.1113/JP271884
    1. Carter C. L., Resnick E. M., Mallampalli M., Kalbarczyk A. (2012). Sex and gender differences in Alzheimer’s disease: recommendations for future research. J. Womens Health 2002 1018–1023. 10.1089/jwh.2012.3789
    1. Cermakova P., Ding J., Meirelles O., Reis J., Religa D., Schreiner P. J., et al. (2019). Carotid intima–media thickness and markers of brain health in a biracial middle-aged cohort: CARDIA brain MRI sub-study. J. Gerontol. Ser. A. 10.1093/gerona/glz039 [Epub ahead of print].
    1. Clark L. R., Berman S. E., Rivera-Rivera L. A., Hoscheidt S. M., Darst B. F., Engelman C. D., et al. (2017). Macrovascular and microvascular cerebral blood flow in adults at risk for Alzheimer’s disease. Alzheimers Dement. 7 48–55. 10.1016/j.dadm.2017.01.002
    1. Coverdale N. S., Badrov M. B., Shoemaker J. K. (2017). Impact of age on cerebrovascular dilation versus reactivity to hypercapnia. J. Cereb. Blood Flow Metab. 37 344–355. 10.1177/0271678X15626156
    1. Deer R. R., Stallone J. N. (2016). Effects of estrogen on cerebrovascular function: age-dependent shifts from beneficial to detrimental in small cerebral arteries of the rat. Am. J. Physiol. Heart Circ. Physiol. 310 H1285–H1294. 10.1152/ajpheart.00645.2015
    1. Galvin S. D., Celi L. A., Thomas K. N., Clendon T. R., Galvin I. F., Bunton R. W., et al. (2010). Effects of age and coronary artery disease on cerebrovascular reactivity to carbon dioxide in humans. Anaesth. Intensive Care 38 710–717. 10.1177/0310057X1003800415
    1. García-Río F., Villamor A., Gómez-Mendieta A., Lores V., Rojo B., Ramírez T., et al. (2007). The progressive effects of ageing on chemosensitivity in healthy subjects. Respir. Med. 101 2192–2198. 10.1016/j.rmed.2007.04.015
    1. Ghisleni C., Bollmann S., Biason-Lauber A., Poil S.-S., Brandeis D., Martin E., et al. (2015). Effects of steroid hormones on sex differences in cerebral perfusion. PLoS One 10:e0135827. 10.1371/journal.pone.0135827
    1. Godin G. (2011). The godin-shephard leisure-time physical activity questionnaire. Health Fit. J. Can. 4 18–22. 10.14288/hfjc.v4i1.82
    1. Gu T., Korosec F. R., Block W. F., Fain S. B., Turk Q., Lum D., et al. (2005). PC VIPR: a high-speed 3D phase-contrast method for flow quantification and high-resolution angiography. Am. J. Neuroradiol. 26 743–749.
    1. Gupta A., Chazen J. L., Hartman M., Delgado D., Anumula N., Shao H., et al. (2012). Cerebrovascular reserve and stroke risk in patients with carotid stenosis or occlusion: a systematic review and meta-analysis. Stroke 43 2884–2891. 10.1161/STROKEAHA.112.663716
    1. Haast R. A. M., Gustafson D. R., Kiliaan A. J. (2012). Sex differences in stroke. J. Cereb. Blood Flow Metab. 32 2100–2107. 10.1038/jcbfm.2012.141
    1. Hoiland R. L., Ainslie P. N. (2016). CrossTalk proposal: the middle cerebral artery diameter does change during alterations in arterial blood gases and blood pressure. J. Physiol. 594 4073–4075. 10.1113/JP271981
    1. Hoiland R. L., Fisher J. A., Ainslie P. N. (2019). Regulation of the cerebral circulation by arterial carbon dioxide. Compr. Physiol. 9 1101–1154. 10.1002/cphy.c180021
    1. Iadecola C. (2004). Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat. Rev. Neurosci. 5 347–360. 10.1038/nrn1387
    1. Johnson K. M., Lum D. P., Turski P. A., Block W. F., Mistretta C. A., Wieben O. (2008). Improved 3D phase contrast MRI with off-resonance corrected dual echo VIPR. Magn. Reson. Med. 60 1329–1336. 10.1002/mrm.21763
    1. Karnik R., Valentin A., Winkler W.-B., Khaffaf N., Donath P., Slany J. (1996). Sex-related differences in acetazolamide-induced cerebral vasomotor reactivity. Stroke 27 56–58. 10.1161/01.STR.27.1.56
    1. Kassner A., Winter J. D., Poublanc J., Mikulis D. J., Crawley A. P. (2010). Blood-oxygen level dependent MRI measures of cerebrovascular reactivity using a controlled respiratory challenge: reproducibility and gender differences. J. Magn. Reson. Imaging 31 298–304. 10.1002/jmri.22044
    1. Kastrup A., Happe V., Hartmann C., Schabet M. (1999). Gender-related effects of indomethacin on cerebrovascular CO2 reactivity. J. Neurol. Sci. 162 127–132. 10.1016/S0022-510X(98)00288-3
    1. Kastrup A., Thomas C., Hartmann C., Schabet M. (1997). Sex dependency of cerebrovascular CO2 reactivity in normal subjects. Stroke 28 2353–2356. 10.1161/01.STR.28.12.2353
    1. Kisler K., Nelson A. R., Montagne A., Zlokovic B. V. (2017). Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nat. Rev. Neurosci. 18 419–434. 10.1038/nrn.2017.48
    1. Liu J., Redmond M. J., Brodsky E. K., Alexander A. L., Lu A., Thornton F. J., et al. (2006). Generation and visualization of four-dimensional MR angiography data using an undersampled 3-D projection trajectory. IEEE Trans. Med. Imaging 25 148–157. 10.1109/TMI.2005.861706
    1. Liu W., Lou X., Ma L. (2016). Use of 3D pseudo-continuous arterial spin labeling to characterize sex and age differences in cerebral blood flow. Neuroradiology 58 943–948. 10.1007/s00234-016-1713-y
    1. Liu Y., Zhu X., Feinberg D., Guenther M., Gregori J., Weiner M. W., et al. (2012). Arterial spin labeling MRI study of age and gender effects on brain perfusion hemodynamics. Magn. Reson. Med. 68 912–922. 10.1002/mrm.23286
    1. Loecher M., Schrauben E., Johnson K. M., Wieben O. (2016). Phase unwrapping in 4D MR flow with a 4D single-step laplacian algorithm. J. Magn. Reson. Imaging 43 833–842. 10.1002/jmri.25045
    1. Madureira J., Castro P., Azevedo E. (2017). Demographic and systemic hemodynamic influences in mechanisms of cerebrovascular regulation in healthy adults. J. Stroke Cerebrovasc. Dis. 26 500–508. 10.1016/j.jstrokecerebrovasdis.2016.12.003
    1. Matteis M., Troisi E., Monaldo B. C., Caltagirone C., Silvestrini M. (1998). Age and sex differences in cerebral hemodynamics: a transcranial Doppler study. Stroke 29 963–967. 10.1161/01.STR.29.5.963
    1. Mikhail Kellawan J., Harrell J. W., Roldan-Alzate A., Wieben O., Schrage W. G. (2017). Regional hypoxic cerebral vasodilation facilitated by diameter changes primarily in anterior versus posterior circulation. J. Cereb. Blood Flow Metab. 37 2025–2034. 10.1177/0271678X16659497
    1. Mikhail Kellawan J., Harrell J. W., Schrauben E. M., Hoffman C. A., Roldan-Alzate A., Schrage W. G., et al. (2016). Quantitative cerebrovascular 4D flow MRI at rest and during hypercapnia challenge. Magn. Reson. Imaging 34 422–428. 10.1016/j.mri.2015.12.016
    1. Miller K. B., Howery A. J., Harvey R. E., Eldridge M. W., Barnes J. N. (2018). Cerebrovascular reactivity and central arterial stiffness in habitually exercising healthy adults. Front. Physiol. 9:1096. 10.3389/fphys.2018.01096
    1. Miller V. M., Garovic V. D., Kantarci K., Barnes J. N., Jayachandran M., Mielke M. M., et al. (2013). Sex-specific risk of cardiovascular disease and cognitive decline: pregnancy and menopause. Biol. Sex Differ. 4:6. 10.1186/2042-6410-4-6
    1. Mitchell G. F., van Buchem M. A., Sigurdsson S., Gotal J. D., Jonsdottir M. K., Kjartansson Ó, et al. (2011). Arterial stiffness, pressure and flow pulsatility and brain structure and function: the age, gene/environment susceptibility – Reykjavik study. Brain 134 3398–3407. 10.1093/brain/awr253
    1. Monk B. A., George S. J. (2015). The effect of ageing on vascular smooth muscle cell behaviour - a mini-review. Gerontology 61 416–426. 10.1159/000368576
    1. Niiranen T. J., Lyass A., Larson M. G., Hamburg N. M., Benjamin E. J., Mitchell G. F., et al. (2017). Prevalence, correlates, and prognosis of healthy vascular aging in a western community-dwelling cohort: the Framingham heart study. Hypertension 70 267–274. 10.1161/HYPERTENSIONAHA.117.09026
    1. Oláh L., Valikovics A., Bereczki D., Fülesdi B., Munkácsy C., Csiba L. (2000). Gender-related differences in acetazolamide-induced cerebral vasodilatory response: a transcranial Doppler study. J. Neuroimaging 10 151–156. 10.1161/01.STR.27.1.56
    1. Oudegeest-Sander M. H., van Beek A. H., Abbink K., Olde Rikkert M. G. M., Hopman M. T. E., Claassen J. A. (2014). Assessment of dynamic cerebral autoregulation and cerebrovascular CO2 reactivity in ageing by measurements of cerebral blood flow and cortical oxygenation. Exp. Physiol. 99 586–598. 10.1113/expphysiol.2013.076455
    1. Peltonen G. L., Harrell J. W., Rousseau C. L., Ernst B. S., Marino M. L., Crain M. K., et al. (2015). Cerebrovascular regulation in men and women: stimulus-specific role of cyclooxygenase. Physiol. Rep. 3:e12451. 10.14814/phy2.12451
    1. Piercy K. L., Troiano R. P., Ballard R. M., Carlson S. A., Fulton J. E., Galuska D. A., et al. (2018). The physical activity guidelines for Americans. JAMA 320 2020–2028. 10.1001/jama.2018.14854
    1. Portegies M. L., Bruijn R. F., de Hofman A., Koudstaal P. J., Ikram M. A. (2014). Cerebral vasomotor reactivity and risk of mortality: the Rotterdam study. Stroke 45 42–47. 10.1161/STROKEAHA.113.002348
    1. Rivera-Rivera L. A., Schubert T., Turski P., Johnson K. M., Berman S. E., Rowley H. A., et al. (2017). Changes in intracranial venous blood flow and pulsatility in Alzheimer’s disease: A 4D flow MRI study. J. Cereb. Blood Flow Metab. 37 2149–2158. 10.1177/0271678X16661340
    1. Schrauben E., Wåhlin A., Ambarki K., Spaak E., Malm J., Wieben O., et al. (2015). Fast 4D flow MRI intracranial segmentation and quantification in tortuous arteries. J. Magn. Reson. Imaging 42 1458–1464. 10.1002/jmri.24900
    1. Schwertfeger N., Neu P., Schlattmann P., Lemke H., Heuser I., Bajbouj M. (2006). Cerebrovascular reactivity over time course in healthy subjects. J. Neurol. Sci. 249 135–139. 10.1016/j.jns.2006.06.009
    1. Serrador J. M., Picot P. A., Rutt B. K., Shoemaker J. K., Bondar R. L. (2000). MRI measures of middle cerebral artery diameter in conscious humans during simulated orthostasis. Stroke 31 1672–1678. 10.1161/01.STR.31.7.1672
    1. Shim Y., Yoon B., Shim D. S., Kim W., An J.-Y., Yang D.-W. (2015). Cognitive correlates of cerebral vasoreactivity on transcranial Doppler in older adults. J. Stroke Cerebrovasc. Dis. 24 1262–1269. 10.1016/j.jstrokecerebrovasdis.2015.01.031
    1. Tomoto T., Riley J., Turner M., Zhang R., Tarumi T. (2019). Cerebral vasomotor reactivity during hypo- and hypercapnia across the adult lifespan. J. Cereb. Blood Flow Metab 10.1177/0271678X19828327 [Epub ahead of print].
    1. Toth P., Tarantini S., Csiszar A., Ungvari Z. (2017). Functional vascular contributions to cognitive impairment and dementia: mechanisms and consequences of cerebral autoregulatory dysfunction, endothelial impairment, and neurovascular uncoupling in aging. Am. J. Physiol. Heart Circ. Physiol. 312 H1–H20. 10.1152/ajpheart.00581.2016
    1. Usselman C. W., Gimon T. I., Nielson C. A., Luchyshyn T. A., Coverdale N. S., Van Uum S. H. M., et al. (2015). Menstrual cycle and sex effects on sympathetic responses to acute chemoreflex stress. Am. J. Physiol. Heart Circ. Physiol. 308 H664–H671. 10.1152/ajpheart.00345.2014
    1. Verbree J., Bronzwaer A.-S., Ghariq E., Versluis M. J., Daemen M. J., van Buchem M. A., et al. (2014). Assessment of middle cerebral artery diameter during hypocapnia and hypercapnia in humans using ultra-high-field MRI. J. Appl. Physiol. 117 1084–1089. 10.1152/japplphysiol.00651.2014
    1. Wåhlin A., Ambarki K., Birgander R., Wieben O., Johnson K. M., Malm J., et al. (2013). Measuring pulsatile flow in cerebral arteries using 4D phase-contrast MR imaging. Am. J. Neuroradiol. 34 1740–1745. 10.3174/ajnr.A3442
    1. Watson N. L., Sutton-Tyrrell K., Rosano C., Boudreau R. M., Hardy S. E., Simonsick E. M., et al. (2011). Arterial stiffness and cognitive decline in well-functioning older adults. J. Gerontol. Ser. A 66A 1336–1342. 10.1093/gerona/glr119
    1. Wen B., Tian S., Cheng J., Li Y., Zhang H., Xue K., et al. (2019). Test–retest multisite reproducibility of neurovascular 4D flow MRI. J. Magn. Reson. Imaging 49 1543–1552. 10.1002/jmri.26564
    1. Wu C., Honarmand A. R., Schnell S., Kuhn R., Schoeneman S. E., Ansari S. A., et al. (2016). Age-related changes of normal cerebral and cardiac blood flow in children and adults aged 7 months to 61 years. J. Am. Heart Assoc. 5:e002657. 10.1161/JAHA.115.002657
    1. Zhu Y.-S., Tarumi T., Tseng B. Y., Palmer D. M., Levine B. D., Zhang R. (2013). Cerebral vasomotor reactivity during hypo- and hypercapnia in sedentary elderly and Masters athletes. J. Cereb. Blood Flow Metab. 33 1190–1196. 10.1038/jcbfm.2013.66

Source: PubMed

3
Abonnieren