Efficacy and safety of baricitinib in hospitalized adults with severe or critical COVID-19 (Bari-SolidAct): a randomised, double-blind, placebo-controlled phase 3 trial

Marius Trøseid, José R Arribas, Lambert Assoumou, Aleksander Rygh Holten, Julien Poissy, Vida Terzić, Fulvia Mazzaferri, Jesús Rodríguez Baño, Joe Eustace, Maya Hites, Michael Joannidis, José-Artur Paiva, Jean Reuter, Isabel Püntmann, Thale D J H Patrick-Brown, Elin Westerheim, Katerina Nezvalova-Henriksen, Lydie Beniguel, Tuva Børresdatter Dahl, Maude Bouscambert, Monika Halanova, Zoltán Péterfi, Sotirios Tsiodras, Michael Rezek, Matthias Briel, Serhat Ünal, Martin Schlegel, Florence Ader, Karine Lacombe, Cecilie Delphin Amdal, Serge Rodrigues, Kristian Tonby, Alexandre Gaudet, Lars Heggelund, Joy Mootien, Asgeir Johannessen, Jannicke Horjen Møller, Beatriz Diaz Pollan, Anders Aune Tveita, Anders Benjamin Kildal, Jean-Christophe Richard, Olav Dalgard, Victoria Charlotte Simensen, Aliou Baldé, Lucie de Gastines, Marta Del Álamo, Burç Aydin, Fridtjof Lund-Johansen, Mary-Anne Trabaud, Alpha Diallo, Bente Halvorsen, John-Arne Røttingen, Evelina Tacconelli, Yazdan Yazdanpanah, Inge C Olsen, Dominique Costagliola, EU SolidAct study group

Abstract

Background: Baricitinib has shown efficacy in hospitalized patients with COVID-19, but no placebo-controlled trials have focused specifically on severe/critical COVID, including vaccinated participants.

Methods: Bari-SolidAct is a phase-3, multicentre, randomised, double-blind, placebo-controlled trial, enrolling participants from June 3, 2021 to March 7, 2022, stopped prematurely for external evidence. Patients with severe/critical COVID-19 were randomised to Baricitinib 4 mg once daily or placebo, added to standard of care. The primary endpoint was all-cause mortality within 60 days. Participants were remotely followed to day 90 for safety and patient related outcome measures.

Results: Two hundred ninety-nine patients were screened, 284 randomised, and 275 received study drug or placebo and were included in the modified intent-to-treat analyses (139 receiving baricitinib and 136 placebo). Median age was 60 (IQR 49-69) years, 77% were male and 35% had received at least one dose of SARS-CoV2 vaccine. There were 21 deaths at day 60 in each group, 15.1% in the baricitinib group and 15.4% in the placebo group (adjusted absolute difference and 95% CI - 0.1% [- 8·3 to 8·0]). In sensitivity analysis censoring observations after drug discontinuation or rescue therapy (tocilizumab/increased steroid dose), proportions of death were 5.8% versus 8.8% (- 3.2% [- 9.0 to 2.7]), respectively. There were 148 serious adverse events in 46 participants (33.1%) receiving baricitinib and 155 in 51 participants (37.5%) receiving placebo. In subgroup analyses, there was a potential interaction between vaccination status and treatment allocation on 60-day mortality. In a subsequent post hoc analysis there was a significant interaction between vaccination status and treatment allocation on the occurrence of serious adverse events, with more respiratory complications and severe infections in vaccinated participants treated with baricitinib. Vaccinated participants were on average 11 years older, with more comorbidities.

Conclusion: This clinical trial was prematurely stopped for external evidence and therefore underpowered to conclude on a potential survival benefit of baricitinib in severe/critical COVID-19. We observed a possible safety signal in vaccinated participants, who were older with more comorbidities. Although based on a post-hoc analysis, these findings warrant further investigation in other trials and real-world studies. Trial registration Bari-SolidAct is registered at NCT04891133 (registered May 18, 2021) and EUClinicalTrials.eu ( 2022-500385-99-00 ).

Keywords: Baricitinib; COVID-19; Safety; Vaccination.

Conflict of interest statement

MT has been member of scientific advisory board for Lilly. JRA has received advisory fees from Lilly. JP reports lecture fees from Gilead; support for attending meetings from Gilead, Eumedica, Merck Sharp & Dohme, outside the submitted work. ARH reports personal fee from Pfizer (2021) for lectures outside the submitted work. MH(it) has received funding for other trials on COVID-19 from the Federal Belgian Center for Knowledge and the joint Université Libre de Bruxelles-Fonds Erasme-COVID-19 projects (2020–21), personal fees from Gilead (2020) and Pfizer (2021) for editing and lectures outside the submitted work, and travel/congress grants from Pfizer (2020, 2021), and Gilead (2022). MJ reports consulting or speakers fees from Baxter, Gilead, CLS Behring, AM-Pharma, Novartis, Fresenius and grant support from Fresenius, Baxter, outside the submitted work. JAP reports fees for lectures and advisory boards from MSD, Pfizer, Astra-Zeneca, Jansen, Gilead, AOP Orphan Pharmaceuticals, Cepheid MB reports an unrestricted grant for Moderna (2022) outside the submitted work. MB reports an unrestricted grant for Moderna (2022) outside the submitted work. KL reports personal fees from Gilead, MSD, Janssen and ViiV Healthcare for advisory boards and lectures outside of the submitted work. JM reports personal fees from Pfizer (2017) for lectures outside the submitted work and travel fees from Pfizer (2022) and Menarini (2021). JCR reports a grant from Hamilton medical (2019–2020) outside the submitted work. FLJ reports Helse Sør-Øst grant for developing COVID-19 serology (2020–2021) and Grant from CEPI to monitor responses in patients (2021–2023). DC reports an HIV grant from Janssen (2019–2020), personal fees from Gilead (2020) and Pfizer (2022) for lectures outside the submitted work. All other authors have nothing to declare.

© 2023. The Author(s).

Figures

Fig. 1
Fig. 1
Study Flowchart
Fig. 2
Fig. 2
Kaplan–Meier plot of the probability of death within 60 days (measured at day 61 after inclusion), using the modified Intention to Treat population (mITT), consisting of all randomised participants who received at least one dose of study drug; A All observations regardless of study intervention discontinuation and/or receipt of rescue therapy; B Sensitivity analysis with participants censored at date of rescue therapy or date of discontinuation

References

    1. Shi JG, Chen X, Lee F, et al. The pharmacokinetics, pharmacodynamics, and safety of baricitinib, an oral JAK 1/2 inhibitor, in healthy volunteers. J Clin Pharmacol. 2014;54:1354–1361. doi: 10.1002/jcph.354.
    1. Stebbing J, Phelan A, Griffin I, et al. COVID-19: combining antiviral and anti-inflammatory treatments. Lancet Infect Dis. 2020;20:400–402. doi: 10.1016/S1473-3099(20)30132-8.
    1. Kramer A, Prinz C, Fichtner F, et al. Janus kinase inhibitors for the treatment of COVID-19. Cochrane Database Syst Rev. 2022;6:Cd015209.
    1. Selvaraj V, Finn A, Lal A, et al. Baricitinib in hospitalised patients with COVID-19: A meta-analysis of randomised controlled trials. EClinicalMedicine. 2022;49:101489. doi: 10.1016/j.eclinm.2022.101489.
    1. Kalil AC, Patterson TF, Mehta AK, et al. Baricitinib plus Remdesivir for Hospitalized Adults with Covid-19. N Engl J Med. 2020.
    1. Wolfe CR, Tomashek KM, Patterson TF, et al. Baricitinib versus dexamethasone for adults hospitalised with COVID-19 (ACTT-4): a randomised, double-blind, double placebo-controlled trial. Lancet Respir Med. 2022.
    1. Marconi VC, Ramanan AV, de Bono S, et al. Efficacy and safety of baricitinib for the treatment of hospitalised adults with COVID-19 (COV-BARRIER): a randomised, double-blind, parallel-group, placebo-controlled phase 3 trial. Lancet Respir Med. 2021.
    1. Ely EW, Ramanan AV, Kartman CE, et al. Efficacy and safety of baricitinib plus standard of care for the treatment of critically ill hospitalised adults with COVID-19 on invasive mechanical ventilation or extracorporeal membrane oxygenation: an exploratory, randomised, placebo-controlled trial. Lancet Respir Med. 2022.
    1. Baricitinib in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial and updated meta-analysis. Lancet. 2022;400:359–68.
    1. Montejano R, de la Calle-Prieto F, Velasco M, et al. Tenofovir Disoproxil Fumarate/Emtricitabine and Baricitinib for Patients at High Risk of Severe COVID-19: The PANCOVID Randomized Clinical Trial. Clin Infect Dis. 2022.
    1. Update to living WHO guideline on drugs for covid-19. Bmj. 2020;371:m4475.
    1. Amdal CD, Taylor K, Kuliś D, et al. Health-related quality of life in patients with COVID-19; international development of a patient-reported outcome measure. J Patient Rep Outcomes. 2022;6:26. doi: 10.1186/s41687-022-00434-1.
    1. Ader F, Bouscambert-Duchamp M, Hites M, et al. Remdesivir plus standard of care versus standard of care alone for the treatment of patients admitted to hospital with COVID-19 (DisCoVeRy): a phase 3, randomised, controlled, open-label trial. Lancet Infect Dis. 2022;22:209–221. doi: 10.1016/S1473-3099(21)00485-0.
    1. Barratt-Due A, Olsen IC, Nezvalova-Henriksen K, et al. Evaluation of the effects of remdesivir and hydroxychloroquine on viral clearance in COVID-19: a randomized trial. Ann Intern Med. 2021;174:1261–1269. doi: 10.7326/M21-0653.
    1. Update to living WHO guideline on drugs for covid-19. Bmj. 2022;376:o80.
    1. Lamacchia G, Mazzoni A, Spinicci M, et al. Clinical and immunological features of SARS-CoV-2 breakthrough infections in vaccinated individuals requiring hospitalization. J Clin Immunol. 2022.
    1. Lipsitch M, Krammer F, Regev-Yochay G, et al. SARS-CoV-2 breakthrough infections in vaccinated individuals: measurement, causes and impact. Nat Rev Immunol. 2022;22:57–65. doi: 10.1038/s41577-021-00662-4.
    1. Douin DJ, Siegel L, Grandits G, et al. Evaluating primary endpoints for COVID-19 therapeutic trials to assess recovery. Am J Respir Crit Care Med. 2022.
    1. Richardson P, Griffin I, Tucker C, et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet. 2020;395:e30–e31. doi: 10.1016/S0140-6736(20)30304-4.
    1. Diallo A, Trøseid M, Simensen VC, et al. Accelerating clinical trial implementation in the context of the COVID-19 pandemic: challenges, lessons learned and recommendations from DisCoVeRy and the EU-SolidAct EU response group. Clin Microbiol Infect. 2022;28:1–5. doi: 10.1016/j.cmi.2021.10.011.
    1. Schandelmaier S, Briel M, Varadhan R, et al. Development of the Instrument to assess the Credibility of Effect Modification Analyses (ICEMAN) in randomized controlled trials and meta-analyses. CMAJ. 2020;192:E901–E906. doi: 10.1503/cmaj.200077.

Source: PubMed

3
Abonnieren