Point-of-Care Approaches for Meningitis Diagnosis in a Low-Resource Setting (Southwestern Uganda): Observational Cohort Study Protocol of the "PI-POC" Trial

Giulia Gaudenzi, Elias Kumbakumba, Reza Rasti, Deborah Nanjebe, Pedro Réu, Dan Nyehangane, Andreas Mårtensson, Milly Nassejje, Jens Karlsson, John Mzee, Peter Nilsson, Stephen Businge, Edmund Loh, Yap Boum Ii, Helene Andersson-Svahn, Jesper Gantelius, Juliet Mwanga-Amumpaire, Tobias Alfvén, Giulia Gaudenzi, Elias Kumbakumba, Reza Rasti, Deborah Nanjebe, Pedro Réu, Dan Nyehangane, Andreas Mårtensson, Milly Nassejje, Jens Karlsson, John Mzee, Peter Nilsson, Stephen Businge, Edmund Loh, Yap Boum Ii, Helene Andersson-Svahn, Jesper Gantelius, Juliet Mwanga-Amumpaire, Tobias Alfvén

Abstract

Background: A timely differential diagnostic is essential to identify the etiology of central nervous system (CNS) infections in children, in order to facilitate targeted treatment, manage patients, and improve clinical outcome.

Objective: The Pediatric Infection-Point-of-Care (PI-POC) trial is investigating novel methods to improve and strengthen the differential diagnostics of suspected childhood CNS infections in low-income health systems such as those in Southwestern Uganda. This will be achieved by evaluating (1) a novel DNA-based diagnostic assay for CNS infections, (2) a commercially available multiplex PCR-based meningitis/encephalitis (ME) panel for clinical use in a facility-limited laboratory setting, (3) proteomics profiling of blood from children with severe CNS infection as compared to outpatient controls with fever yet not severely ill, and (4) Myxovirus resistance protein A (MxA) as a biomarker in blood for viral CNS infection. Further changes in the etiology of childhood CNS infections after the introduction of the pneumococcal conjugate vaccine against Streptococcus pneumoniae will be investigated. In addition, the carriage and invasive rate of Neisseria meningitidis will be recorded and serotyped, and the expression of its major virulence factor (polysaccharide capsule) will be investigated.

Methods: The PI-POC trial is a prospective observational study of children including newborns up to 12 years of age with clinical features of CNS infection, and age-/sex-matched outpatient controls with fever yet not severely ill. Participants are recruited at 2 Pediatric clinics in Mbarara, Uganda. Cerebrospinal fluid (for cases only), blood, and nasopharyngeal (NP) swabs (for both cases and controls) sampled at both clinics are analyzed at the Epicentre Research Laboratory through gold-standard methods for CNS infection diagnosis (microscopy, biochemistry, and culture) and a commercially available ME panel for multiplex PCR analyses of the cerebrospinal fluid. An additional blood sample from cases is collected on day 3 after admission. After initial clinical analyses in Mbarara, samples will be transported to Stockholm, Sweden for (1) validation analyses of a novel nucleic acid-based POC test, (2) biomarker research, and (3) serotyping and molecular characterization of S. pneumoniae and N. meningitidis.

Results: A pilot study was performed from January to April 2019. The PI-POC trial enrollment of patients begun in April 2019 and will continue until September 2020, to include up to 300 cases and controls. Preliminary results from the PI-POC study are expected by the end of 2020.

Conclusions: The findings from the PI-POC study can potentially facilitate rapid etiological diagnosis of CNS infections in low-resource settings and allow for novel methods for determination of the severity of CNS infection in such environment.

Trial registration: ClinicalTrials.gov NCT03900091; https://ichgcp.net/clinical-trials-registry/NCT03900091.

International registered report identifier (irrid): DERR1-10.2196/21430.

Keywords: Uganda; central nervous system infections; children; diagnostics; global health; low-resource settings; meningitis; pediatrics.

Conflict of interest statement

Conflicts of Interest: We declare that we have no competing financial or nonfinancial interests. RR had, prior to the commencement of the PI-POC trial, owned a smaller amount of shares (<1500 Euros) in bioMérieux, the parent company of BioFire. All shares were sold in December 2018.

©Giulia Gaudenzi, Elias Kumbakumba, Reza Rasti, Deborah Nanjebe, Pedro Réu, Dan Nyehangane, Andreas Mårtensson, Milly Nassejje, Jens Karlsson, John Mzee, Peter Nilsson, Stephen Businge, Edmund Loh, Yap Boum II, Helene Andersson-Svahn, Jesper Gantelius, Juliet Mwanga-Amumpaire, Tobias Alfvén. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 04.11.2020.

References

    1. GBD 2016 Meningitis Collaborators Global, regional, and national burden of meningitis, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2018 Dec;17(12):1061–1082. doi: 10.1016/S1474-4422(18)30387-9.
    1. Furyk J, Swann O, Molyneux E. Systematic review: neonatal meningitis in the developing world. Trop Med Int Health. 2011 Jun;16(6):672–9. doi: 10.1111/j.1365-3156.2011.02750.x. doi: 10.1111/j.1365-3156.2011.02750.x.
    1. Edmond K, Clark A, Korczak VS, Sanderson C, Griffiths UK, Rudan I. Global and regional risk of disabling sequelae from bacterial meningitis: a systematic review and meta-analysis. Lancet Infect Dis. 2010 May;10(5):317–28. doi: 10.1016/S1473-3099(10)70048-7.
    1. Ramakrishnan M, Ulland A, Steinhardt L, Moïsi JC, Were F, Levine O. Sequelae due to bacterial meningitis among African children: a systematic literature review. BMC Med. 2009 Sep 14;7:47. doi: 10.1186/1741-7015-7-47.
    1. Schmidt H, Heimann B, Djukic M, Mazurek C, Fels C, Wallesch C, Nau R. Neuropsychological sequelae of bacterial and viral meningitis. Brain. 2006 Feb;129(Pt 2):333–45. doi: 10.1093/brain/awh711.
    1. Petti CA, Polage CR, Quinn TC, Ronald AR, Sande MA. Laboratory medicine in Africa: a barrier to effective health care. Clin Infect Dis. 2006 Feb 01;42(3):377–82. doi: 10.1086/499363.
    1. Huttunen P, Lappalainen M, Salo E, Lönnqvist T, Jokela P, Hyypiä T, Peltola H. Differential diagnosis of acute central nervous system infections in children using modern microbiological methods. Acta Paediatr. 2009 Aug;98(8):1300–6. doi: 10.1111/j.1651-2227.2009.01336.x.
    1. Yoshizato R, Koga H. Comparison of initial and final diagnoses in children with acute febrile illness: A retrospective, descriptive study: Initial and final diagnoses in children with acute fever. J Infect Chemother. 2020 Mar;26(3):251–256. doi: 10.1016/j.jiac.2019.09.015.
    1. Barbi E, Marzuillo P, Neri E, Naviglio S, Krauss BS. Fever in Children: Pearls and Pitfalls. Children (Basel) 2017 Sep 01;4(9):81. doi: 10.3390/children4090081.
    1. Oordt-Speets A, Bolijn R, van Hoorn RC, Bhavsar A, Kyaw M. Global etiology of bacterial meningitis: A systematic review and meta-analysis. PLoS One. 2018;13(6):e0198772. doi: 10.1371/journal.pone.0198772.
    1. Tacon C, Flower O. Diagnosis and management of bacterial meningitis in the paediatric population: a review. Emerg Med Int. 2012;2012:320309. doi: 10.1155/2012/320309. doi: 10.1155/2012/320309.
    1. Kemigisha E, Nanjebe D, Boum Y, Langendorf C, Aberrane S, Nyehangane D, Nackers F, Mueller Y, Charrel R, Murphy RA, Page A, Mwanga-Amumpaire J. Antimicrobial treatment practices among Ugandan children with suspicion of central nervous system infection. PLoS One. 2018;13(10):e0205316. doi: 10.1371/journal.pone.0205316.
    1. Caliendo AM, Gilbert DN, Ginocchio CC, Hanson KE, May L, Quinn TC, Tenover FC, Alland D, Blaschke AJ, Bonomo RA, Carroll KC, Ferraro MJ, Hirschhorn LR, Joseph WP, Karchmer T, MacIntyre AT, Reller LB, Jackson AF, Infectious Diseases Society of America (IDSA) Better tests, better care: improved diagnostics for infectious diseases. Clin Infect Dis. 2013 Dec;57 Suppl 3:S139–70. doi: 10.1093/cid/cit578.
    1. Page A, Boum Ii Yap, Kemigisha E, Salez N, Nanjebe D, Langendorf C, Aberrane S, Nyehangane D, Nackers F, Baron E, Charrel R, Mwanga-Amumpaire J. Aetiology and Outcomes of Suspected Infections of the Central Nervous System in Children in Mbarara, Uganda. Sci Rep. 2017 Jun 02;7(1):2728. doi: 10.1038/s41598-017-02741-w. doi: 10.1038/s41598-017-02741-w.
    1. Adams W. Decline of Childhood Haemophilus influenzae Type b (Hib) Disease in the Hib Vaccine Era. JAMA. 1993 Jan 13;269(2):221–6. doi: 10.1001/jama.1993.03500020055031.
    1. He T, Kaplan S, Kamboj M, Tang Y. Laboratory Diagnosis of Central Nervous System Infection. Curr Infect Dis Rep. 2016 Nov;18(11):35. doi: 10.1007/s11908-016-0545-6.
    1. Rasti R, Nanjebe D, Karlström J, Muchunguzi C, Mwanga-Amumpaire J, Gantelius J, Mårtensson A, Rivas L, Galban F, Reuterswärd P, Andersson Svahn H, Alvesson HM, Boum Y, Alfvén T. Health care workers' perceptions of point-of-care testing in a low-income country-A qualitative study in Southwestern Uganda. PLoS One. 2017;12(7):e0182005. doi: 10.1371/journal.pone.0182005.
    1. Nybond S, Réu P, Rhedin S, Svedberg G, Alfvén T, Gantelius J, Svahn HA. Adenoviral detection by recombinase polymerase amplification and vertical flow paper microarray. Anal Bioanal Chem. 2019 Feb;411(4):813–822. doi: 10.1007/s00216-018-1503-y.
    1. Reuterswärd P, Gantelius J, Andersson Svahn H. An 8 minute colorimetric paper-based reverse phase vertical flow serum microarray for screening of hyper IgE syndrome. Analyst. 2015 Nov 07;140(21):7327–34. doi: 10.1039/c5an01013f.
    1. Dias JT, Svedberg G, Nystrand M, Andersson-Svahn H, Gantelius J. Rapid signal enhancement method for nanoprobe-based biosensing. Sci Rep. 2017 Jul 28;7(1):6837. doi: 10.1038/s41598-017-07030-0. doi: 10.1038/s41598-017-07030-0.
    1. James A, Macdonald J. Recombinase polymerase amplification: Emergence as a critical molecular technology for rapid, low-resource diagnostics. Expert Rev Mol Diagn. 2015;15(11):1475–89. doi: 10.1586/14737159.2015.1090877.
    1. Poritz MA, Blaschke AJ, Byington CL, Meyers L, Nilsson K, Jones DE, Thatcher SA, Robbins T, Lingenfelter B, Amiott E, Herbener A, Daly J, Dobrowolski SF, Teng DH, Ririe KM. FilmArray, an automated nested multiplex PCR system for multi-pathogen detection: development and application to respiratory tract infection. PLoS One. 2011;6(10):e26047. doi: 10.1371/journal.pone.0026047.
    1. Soucek DK, Dumkow LE, VanLangen KM, Jameson AP. Cost Justification of the BioFire FilmArray Meningitis/Encephalitis Panel Versus Standard of Care for Diagnosing Meningitis in a Community Hospital. J Pharm Pract. 2019 Feb;32(1):36–40. doi: 10.1177/0897190017737697.
    1. Forster J, Schweizer M, Schumacher R, Kaufmehl K, Lob S. MxA protein in infants and children with respiratory tract infection. Acta Paediatr. 1996 Feb;85(2):163–7. doi: 10.1111/j.1651-2227.1996.tb13985.x.
    1. Engelmann I, Dubos F, Lobert P, Houssin C, Degas V, Sardet A, Decoster A, Dewilde A, Martinot A, Hober D. Diagnosis of viral infections using myxovirus resistance protein A (MxA) Pediatrics. 2015 Apr;135(4):e985–93. doi: 10.1542/peds.2014-1946.
    1. Nakabayashi M, Adachi Y, Itazawa T, Okabe Y, Kanegane H, Kawamura M, Tomita A, Miyawaki T. MxA-based recognition of viral illness in febrile children by a whole blood assay. Pediatr Res. 2006 Dec;60(6):770–4. doi: 10.1203/01.pdr.0000246098.65888.5b.
    1. Lampe J, Schneider-Schaulies S, Aguzzi A. Expression of the interferon-induced MxA protein in viral encephalitis. Neuropathol Appl Neurobiol. 2003 Jun;29(3):273–9. doi: 10.1046/j.1365-2990.2003.00468.x.
    1. Bachmann J, Burté F, Pramana S, Conte I, Brown BJ, Orimadegun AE, Ajetunmobi WA, Afolabi NK, Akinkunmi F, Omokhodion S, Akinbami FO, Shokunbi WA, Kampf C, Pawitan Y, Uhlén M, Sodeinde O, Schwenk JM, Wahlgren M, Fernandez-Reyes D, Nilsson P. Affinity proteomics reveals elevated muscle proteins in plasma of children with cerebral malaria. PLoS Pathog. 2014 Apr;10(4):e1004038. doi: 10.1371/journal.ppat.1004038.
    1. Reuterswärd P, Bergström S, Orikiiriza J, Lindquist E, Bergström S, Andersson Svahn H, Ayoglu B, Uhlén M, Wahlgren M, Normark J, Ribacke U, Nilsson P. Levels of human proteins in plasma associated with acute paediatric malaria. Malar J. 2018 Nov 15;17(1):426. doi: 10.1186/s12936-018-2576-y.
    1. Loh E, Lavender H, Tan F, Tracy A, Tang CM. Thermoregulation of Meningococcal fHbp, an Important Virulence Factor and Vaccine Antigen, Is Mediated by Anti-ribosomal Binding Site Sequences in the Open Reading Frame. PLoS Pathog. 2016 Aug;12(8):e1005794. doi: 10.1371/journal.ppat.1005794.
    1. Loh E, Kugelberg E, Tracy A, Zhang Q, Gollan B, Ewles H, Chalmers R, Pelicic V, Tang CM. Temperature triggers immune evasion by Neisseria meningitidis. Nature. 2013 Oct 10;502(7470):237–40. doi: 10.1038/nature12616.
    1. Karlsson J, Eichner H, Andersson C, Jacobsson S, Loh E. Identification and characterisation of novel hyper-capsulation RNA thermosensor variants in Neisseria meningitidis and their association with invasive meningococcal disease: a genetic and phenotypical investigation and molecular epidemiological study. The Lancet Microbe (Forthcoming) 2020 doi: 10.1016/S2666-5247(20)30146-4.
    1. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)--a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009 Apr;42(2):377–81. doi: 10.1016/j.jbi.2008.08.010.
    1. Cohen JF, Korevaar DA, Altman DG, Bruns DE, Gatsonis CA, Hooft L, Irwig L, Levine D, Reitsma JB, de Vet HCW, Bossuyt PMM. STARD 2015 guidelines for reporting diagnostic accuracy studies: explanation and elaboration. BMJ Open. 2016 Nov 14;6(11):e012799. doi: 10.1136/bmjopen-2016-012799.
    1. Thakur K, Mateyo K, Hachaambwa L, Kayamba V, Mallewa M, Mallewa J, Nwazor E, Lawal T, Mallum C, Atadzhanov M, Boulware D, Birbeck G, Siddiqi O. Lumbar puncture refusal in sub-Saharan Africa: A call for further understanding and intervention. Neurology. 2015 May 12;84(19):1988–90. doi: 10.1212/WNL.0000000000001561.
    1. Iroh Tam P, Obaro SK, Storch G. Challenges in the Etiology and Diagnosis of Acute Febrile Illness in Children in Low- and Middle-Income Countries. J Pediatric Infect Dis Soc. 2016 Jun;5(2):190–205. doi: 10.1093/jpids/piw016.
    1. Johansson E, Kitutu F, Mayora C, Awor P, Peterson S, Wamani H, Hildenwall H. It could be viral but you don't know, you have not diagnosed it: health worker challenges in managing non-malaria paediatric fevers in the low transmission area of Mbarara District, Uganda. Malar J. 2016 Apr 11;15:197. doi: 10.1186/s12936-016-1257-y.
    1. Pai N, Vadnais C, Denkinger C, Engel N, Pai M. Point-of-care testing for infectious diseases: diversity, complexity, and barriers in low- and middle-income countries. PLoS Med. 2012;9(9):e1001306. doi: 10.1371/journal.pmed.1001306.
    1. Pai M, Walia K, Boehme C. Essential medicines and essential diagnostics: a package deal. Lancet Public Health. 2019 Oct;4(10):e492. doi: 10.1016/S2468-2667(19)30165-3.
    1. COVID-19 Clinical Research Coalition. Electronic address: nick.white@covid19crc.org Global coalition to accelerate COVID-19 clinical research in resource-limited settings. Lancet. 2020 Apr 25;395(10233):1322–1325. doi: 10.1016/S0140-6736(20)30798-4.

Source: PubMed

3
Abonnieren