Functional MRI evidence for the decline of word retrieval and generation during normal aging

M Baciu, N Boudiaf, E Cousin, M Perrone-Bertolotti, C Pichat, N Fournet, H Chainay, L Lamalle, A Krainik, M Baciu, N Boudiaf, E Cousin, M Perrone-Bertolotti, C Pichat, N Fournet, H Chainay, L Lamalle, A Krainik

Abstract

This fMRI study aimed to explore the effect of normal aging on word retrieval and generation. The question addressed is whether lexical production decline is determined by a direct mechanism, which concerns the language operations or is rather indirectly induced by a decline of executive functions. Indeed, the main hypothesis was that normal aging does not induce loss of lexical knowledge, but there is only a general slowdown in retrieval mechanisms involved in lexical processing, due to possible decline of the executive functions. We used three tasks (verbal fluency, object naming, and semantic categorization). Two groups of participants were tested (Young, Y and Aged, A), without cognitive and psychiatric impairment and showing similar levels of vocabulary. Neuropsychological testing revealed that older participants had lower executive function scores, longer processing speeds, and tended to have lower verbal fluency scores. Additionally, older participants showed higher scores for verbal automatisms and overlearned information. In terms of behavioral data, older participants performed as accurate as younger adults, but they were significantly slower for the semantic categorization and were less fluent for verbal fluency task. Functional MRI analyses suggested that older adults did not simply activate fewer brain regions involved in word production, but they actually showed an atypical pattern of activation. Significant correlations between the BOLD (Blood Oxygen Level Dependent) signal of aging-related (A > Y) regions and cognitive scores suggested that this atypical pattern of the activation may reveal several compensatory mechanisms (a) to overcome the slowdown in retrieval, due to the decline of executive functions and processing speed and (b) to inhibit verbal automatic processes. The BOLD signal measured in some other aging-dependent regions did not correlate with the behavioral and neuropsychological scores, and the overactivation of these uncorrelated regions would simply reveal dedifferentiation that occurs with aging. Altogether, our results suggest that normal aging is associated with a more difficult access to lexico-semantic operations and representations by a slowdown in executive functions, without any conceptual loss.

Keywords: Executive; Fluency; Lexical; Normal aging; Semantic; fMRI.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
a Activated regions during the Verbal Fluency (VF) task (N = 30) projected onto 3D anatomical templates and 2D axial slices. b Cerebral regions, which are more activated in AG than in YG during VF. The color scale indicates the T value of the activation. AG, aged group; YG young group
Fig. 2
Fig. 2
a shows activated regions during the Object Naming (ON) task (N = 30), projected onto 3D anatomical templates and 2D axial slices. b Cerebral regions, which are more activated in AG than in YG during ON. c Cerebral regions, which are more activated in YG than in AG during ON. The color scale indicates the T value of the activation. AG, aged group; YG, young group
Fig. 3
Fig. 3
a Activated regions during the Semantic Categorization with the Pyramid Palm and Tree Test (PPTT) (N = 30) projected onto 3D anatomical templates and 2D axial slices. b Cerebral regions, which are more activated in AG than in YG during PPTT. The color scale indicates the T value of the activation. AG, aged group; YG, young group
Fig. 4
Fig. 4
Significant correlation (positive or negative) between the BOLD signal measured in the aging-dependent regions with the neuropsychological scores for Verbal Fluency (VF, a) and Pyramid Palm Tree Test (PPTT, c) and with Age for Object Naming (ON, b). Activated regions were projected onto 2D axial slices and were shown next to the corresponding graphics. L, left hemisphere; R, right hemisphere

References

    1. Aine CJ, et al. Aging: compensation or maturation? NeuroImage. 2006;32:1891–1904. doi: 10.1016/j.neuroimage.2006.05.005.
    1. Alario F-X, et al. The role of the supplementary motor area (SMA) in word production. Brain Res. 2006;1076:129–143. doi: 10.1016/j.brainres.2005.11.104.
    1. Ansado J, et al. The adaptive aging brain: evidence from the preservation of communication abilities with age. Eur J Neurosci. 2013;37:1887–1895. doi: 10.1111/ejn.12252.
    1. Beauregard D (1971) Le Test des Automatismes Verbaux. Editions Scientifiques et Psychotechniques, IssylesMoulineaux, France, 1971
    1. Benton AL. Differential behavioral effects in frontal lobe disease. Neuropsychologia. 1968;6:53–60. doi: 10.1016/0028-3932(68)90038-9.
    1. Bherer L, et al. Le déclin des fonctions exécutives au cours du vieillissement normal, dans la maladie d’Alzheimer et dans la démence frontotemporale. Psychol Neurol Psychiatrie du Vieillissement. 2004;2:181–189.
    1. Binder J, et al. Distinct brain systems for processing concrete and abstract concepts. J Cogn Neurosci. 2005;17:905–917. doi: 10.1162/0898929054021102.
    1. Binder JR, et al. Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb Cortex. 2009;19:2767–2796. doi: 10.1093/cercor/bhp055.
    1. Birn RM, et al. Neural systems supporting lexical search guided by letter and semantic category cues: a self-paced overt response fMRI study of verbal fluency. NeuroImage. 2010;49:1099–1107. doi: 10.1016/j.neuroimage.2009.07.036.
    1. Bolla KI, et al. Predictors of verbal fluency (FAS) in the healthy older adults. J Clin Psychol. 1990;46:623–628. doi: 10.1002/1097-4679(199009)46:5<623::AID-JCLP2270460513>;2-C.
    1. Bolla KI, et al. Category and letter fluency in highly educated older adults. Clin Neuropsychol. 1998;12:330–338. doi: 10.1076/clin.12.3.330.1986.
    1. Botvinick MM, et al. Conflict monitoring and cognitive control. Psychol Rev. 2001;108:624. doi: 10.1037/0033-295X.108.3.624.
    1. Bowles EA (1993) Semantic processes that serve picture naming. In: Cerella J, Rybash J, Hoyer W, Commons ML (eds). Adult information processing: limits on loss. American press, San Diego, CA, p 303–326
    1. Braver TS, Barch DM. A theory of cognitive control, aging cognition, and neuromodulation. Neurosci Biobehav Rev. 2002;26:809–817. doi: 10.1016/S0149-7634(02)00067-2.
    1. Brickman AM, et al. Category and letter verbal fluency across the adult lifespan: relationship to EEG theta power. Arch Clin Neuropsychol. 2005;20:561–573. doi: 10.1016/j.acn.2004.12.006.
    1. Burke DM, MacKay DG. Memory, language, and aging. Philosophical Transactions of the Royal Society of London. Ser B: Biol Sci. 1997;352:1845–1856.
    1. Burke DM, Shafto MA. Aging and language production. Curr Dir Psychol Sci. 2004;13:21–24. doi: 10.1111/j.0963-7214.2004.01301006.x.
    1. Caramazza A. How many levels of processing are there in lexical access? Cogn Neuropsychol. 1997;14:177–208. doi: 10.1080/026432997381664.
    1. Cardebat D, et al. Formal and semantic lexical evocation in normal subjects. Performance and dynamics of production as a function of sex, age and educational level. Acta Neurol Belg. 1989;90:207–217.
    1. Chao L, Martin A. Cortical regions associated with perceiving, naming, and knowing about colors. J Cogn Neurosci. 1999;11:25–35. doi: 10.1162/089892999563229.
    1. Clark LJ, et al. Longitudinal verbal fluency in normal aging, preclinical, and prevalent Alzheimer’s disease. American Journal of Alzheimer’s Disease and other Dementias. 2009;24:461–468. doi: 10.1177/1533317509345154.
    1. Cotelli M, et al. Naming ability changes in physiological and pathological aging. Front Neurosci. 2012;6:1–13. doi: 10.3389/fnins.2012.00120.
    1. Craik FI and Byrd M (1982) Aging and cognitive deficits. Aging and cognitive processes. Springer, pp 191–211
    1. Crossley M, et al. Letter and category fluency in community-dwelling Canadian older adults: a comparison of normal participants to those with dementia of the Alzheimer or vascular type. J Clin Exp Neuropsychol. 1997;19:52–62. doi: 10.1080/01688639708403836.
    1. Damasio AR, et al. Neural regionalization of knowledge access: preliminary evidence. Woodbury: Cold Spring Harbor Symposia on Quantitative Biology. Cold Spring Harbor Laboratory Press; 1990. pp. 1039–1047.
    1. Dartinet V, Martinaud O. La BREF, une batterie rapide d’évaluation frontale. NPG Neurologie-Psychiatrie-Gériatrie. 2005;5:43–46. doi: 10.1016/S1627-4830(05)82606-6.
    1. Dell GS, O’Seaghdha PG. Stages of lexical access in language production. Cognition. 1992;42:287–314. doi: 10.1016/0010-0277(92)90046-K.
    1. Deltour JJ (1993). Echelle de vocabulaire de Mill Hill de J.C. Raven. Adaptation française et normes europeennes du Mill Hill et du Standard Progressive Matrices de Raven (PM38). Braine-le-Chateau: Editions l’application des techniques modernes
    1. Dennis NA, Cabeza R. Neuroimaging of healthy cognitive aging. The handbook of aging and cognition. 2008;3:1–54.
    1. DiGirolamo GJ, et al. General and task-specific frontal lobe recruitment in older adults during executive processes: a fMRI investigation of task-switching. Neuroreport. 2001;12:2065–2071. doi: 10.1097/00001756-200107030-00054.
    1. Dubois B, et al. [" The 5 words": a simple and sensitive test for the diagnosis of Alzheimer’s disease] Press Med (Paris, France: 1983) 2002;31:1696–1699.
    1. Duffau H, et al. Delayed onset of the supplementary motor area syndrome after surgical resection of the mesial frontal lobe: a time course study using intraoperative mapping in an awake patient. Stereotact Funct Neurosurg. 2000;76:74–82. doi: 10.1159/000056496.
    1. Evrard M. Aging and lexical access to common and proper names in picture naming. Brain Lang. 2002;81:174–179. doi: 10.1006/brln.2001.2515.
    1. Feyereisen P. A meta-analytic procedure shows an age-related decline in Picture NamingComments on Goulet, Ska, and Kahn (1994) J Speech, Lang, Hear Res. 1997;40:1328–1333. doi: 10.1044/jslhr.4006.1328.
    1. Folstein MF, et al. “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12:189–198. doi: 10.1016/0022-3956(75)90026-6.
    1. Fontaine D, et al. Somatotopy of the supplementary motor area: evidence from correlation of the extent of surgical resection with the clinical patterns of deficit. Neurosurgery. 2002;50:297–305.
    1. Friston KJ, et al. Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp. 1994;2:189–210. doi: 10.1002/hbm.460020402.
    1. Friston KJ, et al. Analysis of fMRI time-series revisited. NeuroImage. 1995;2:45–53. doi: 10.1006/nimg.1995.1007.
    1. Fu CH, et al. A functional magnetic resonance imaging study of overt letter verbal fluency using a clustered acquisition sequence: greater anterior cingulate activation with increased task demand. NeuroImage. 2002;17:871–879. doi: 10.1006/nimg.2002.1189.
    1. Gilboa A, et al. Remembering our past: functional neuroanatomy of recollection of recent and very remote personal events. Cereb Cortex. 2004;14:1214–1225. doi: 10.1093/cercor/bhh082.
    1. Gleissner U, Elger CE. The hippocampal contribution to verbal fluency in patients with temporal lobe epilepsy. Cortex. 2001;37:55–63. doi: 10.1016/S0010-9452(08)70557-4.
    1. Gollan TH, Brown AS. From tip-of-the-tongue (TOT) data to theoretical implications in two steps: when more TOTs means better retrieval. J Exp Psychol Gen. 2006;135:462. doi: 10.1037/0096-3445.135.3.462.
    1. Grady CL. Cognitive neuroscience of aging. Ann N Y Acad Sci. 2008;1124:127–144. doi: 10.1196/annals.1440.009.
    1. Hamamé CM, et al. High frequency gamma activity in the left hippocampus predicts visual object naming performance. Brain Lang. 2014;135:104–114. doi: 10.1016/j.bandl.2014.05.007.
    1. Heim S, et al. Specialisation in Broca’s region for semantic, phonological, and syntactic fluency? NeuroImage. 2008;40:1362–1368. doi: 10.1016/j.neuroimage.2008.01.009.
    1. Hirshorn EA, Thompson-Schill SL. Role of the left inferior frontal gyrus in covert word retrieval: neural correlates of switching during verbal fluency. Neuropsychologia. 2006;44:2547–2557. doi: 10.1016/j.neuropsychologia.2006.03.035.
    1. Hodges JR, Patterson K. Semantic dementia: a unique clinicopathological syndrome. The Lancet Neurology. 2007;6:1004–1014. doi: 10.1016/S1474-4422(07)70266-1.
    1. Hoenig K, Scheef L (2005). Mediotemporal contributions to semantic processing: fMRI evidence from ambiguity processing during semantic context verification. Hippocampus 15:597–609
    1. Howard D, Patterson K. E. Pyramids and palm trees: a test of semantic access from pictures and words. Bury St Edmunds, Suffolk: Thames Valley Test Company; 1992.
    1. Huang H-W, et al. A “concrete view” of aging: event related potentials reveal age-related changes in basic integrative processes in language. Neuropsychologia. 2012;50:26–35. doi: 10.1016/j.neuropsychologia.2011.10.018.
    1. Indefrey P. The spatial and temporal signatures of word production components: a critical update. Front Psychol. 2011;2:1–16. doi: 10.3389/fpsyg.2011.00255.
    1. Indefrey P, Levelt WJ. The spatial and temporal signatures of word production components. Cognition. 2004;92:101–144. doi: 10.1016/j.cognition.2002.06.001.
    1. Ishai A, et al. Distributed representation of objects in the human ventral visual pathway. Proc Natl Acad Sci. 1999;96:9379–9384. doi: 10.1073/pnas.96.16.9379.
    1. Kalafat M, et al. Standardisation et étalonnage français du “Mini Mental State”(MMS) version GRECO. Rev Neuropsychol. 2003;13:209–236.
    1. Kaplan E, et al. The Boston naming test, 2nd. Philadelphia: Lea & Febiger; 1983.
    1. Kavé G, et al. The association between age and the frequency of nouns selected for production. Psychol Aging. 2009;24:17. doi: 10.1037/a0014579.
    1. Kemper S, et al. Longitudinal change in language production: effects of aging and dementia on grammatical complexity and propositional content. Psychol Aging. 2001;16:600–614. doi: 10.1037/0882-7974.16.4.600.
    1. Kiyosawa M, et al. Functional neuroanatomy of visual object naming: a PET study. Graefe’s Arch Clin Exp Ophthalmol. 1996;234:110–115. doi: 10.1007/BF00695250.
    1. Krainik A, et al. Role of the supplementary motor area in motor deficit following medial frontal lobe surgery. Neurology. 2001;57:871–878. doi: 10.1212/WNL.57.5.871.
    1. Krainik A, et al. Postoperative speech disorder after medial frontal surgery role of the supplementary motor area. Neurology. 2003;60:587–594. doi: 10.1212/01.WNL.0000048206.07837.59.
    1. Leech R, Sharp DJ. The role of the posterior cingulate cortex in cognition and disease. Brain. 2014;137:12–32. doi: 10.1093/brain/awt162.
    1. Levelt WJ. Accessing words in speech production: stages, processes and representations. Cognition. 1992;42:1–22. doi: 10.1016/0010-0277(92)90038-J.
    1. Li SC. Connecting the many levels and facets of cognitive aging. Curr Dir Psychol Sci. 2002;11:38–43. doi: 10.1111/1467-8721.00164.
    1. Li S-C, Lindenberger U. Cross-level unification: a computational exploration of the link between deterioration of neurotransmitter systems and dedifferentiation of cognitive abilities in old age. In: Nilsson L.G., Markowitsch H., editors. Cognitive neuroscience of memory. Toronto: Hogrefe; 1999.
    1. MacKay DG, Burke DM. Chapter five cognition and aging: a theory of new learning and the use of old connections. Adv Psychol. 1990;71:213–263. doi: 10.1016/S0166-4115(08)60159-4.
    1. Maguire EA, et al. Knowing where and getting there: a human navigation network. Science. 1998;280:921–924. doi: 10.1126/science.280.5365.921.
    1. Marsolais Y, et al. Marginal neurofunctional changes in high-performing older adults in a verbal fluency task. Brain Lang. 2015;140:13–23. doi: 10.1016/j.bandl.2014.10.010.
    1. Martin A, Chao LL. Semantic memory and the brain: structure and processes. Curr Opin Neurobiol. 2001;11:194–201. doi: 10.1016/S0959-4388(00)00196-3.
    1. Martin A, et al. Word retrieval to letter and semantic cues: a double dissociation in normal subjects using interference tasks. Neuropsychologia. 1994;32:1487–1494. doi: 10.1016/0028-3932(94)90120-1.
    1. Mayberg HS, et al. Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness. Am J Psychiatry. 2014;156:675–682.
    1. McNair D, Kahn R (1983) Self-assessment of cognitive defi cits. In: Crook T, Ferris A, Baltus R, (eds). Assessment in clinical psychopharmacology. Mark Powley, New Canaan, CT, p 137–43
    1. Meinzer M, et al. Neural signatures of semantic and phonemic fluency in young and old adults. J Cogn Neurosci. 2009;21:2007–2018. doi: 10.1162/jocn.2009.21219.
    1. Meinzer M, et al. Impact of changed positive and negative task-related brain activity on word-retrieval in aging. Neurobiol Aging. 2012;33:656–669. doi: 10.1016/j.neurobiolaging.2010.06.020.
    1. Metz-Lutz M, et al. Standardisation d’un test de dénomination orale: contrôle des effets de l’âge, du sexe et du niveau de scolarité chez les sujets adultes normaux. Rev Neuropsychol. 1991;1:73–95.
    1. Meyer AM, Federmeier KD. Event-related potentials reveal the effects of aging on meaning selection and revision. Psychophysiology. 2010;47:673–686.
    1. Mummery C, et al. Functional neuroanatomy of the semantic system: divisible by what? J Cogn Neurosci. 1998;10:766–777. doi: 10.1162/089892998563059.
    1. Newman SD, et al. Differential effects of syntactic and semantic processing on the subregions of Broca’s area. Cogn Brain Res. 2003;16:297–307. doi: 10.1016/S0926-6410(02)00285-9.
    1. Nielson KA, et al. Differences in the functional neuroanatomy of inhibitory control across the adult life span. Psychol Aging. 2002;17:56. doi: 10.1037/0882-7974.17.1.56.
    1. Niendam TA, et al. Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cogn, Affect, Behav Neurosci. 2012;12:241–268. doi: 10.3758/s13415-011-0083-5.
    1. Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971;9:97–113. doi: 10.1016/0028-3932(71)90067-4.
    1. Pai M-C. Supplementary motor area aphasia: a case report. Clin Neurol Neurosurg. 1999;101:29–32. doi: 10.1016/S0303-8467(98)00068-7.
    1. Pasquier F, et al. Verbal fluency in dementia of frontal lobe type and dementia of Alzheimer type. J Neurol Neurosurg Psychiatry. 1995;58:81–84. doi: 10.1136/jnnp.58.1.81.
    1. Picard N, Strick PL. Motor areas of the medial wall: a review of their location and functional activation. Cereb Cortex. 1996;6:342–353. doi: 10.1093/cercor/6.3.342.
    1. Pihlajamaki M, et al. Verbal fluency activates the left medial temporal lobe: a functional magnetic resonance imaging study. Neurobiol Aging. 2000;21:106. doi: 10.1016/S0197-4580(00)82275-7.
    1. Price CJ, et al. Meta-analyses of object naming: effect of baseline. Hum Brain Mapp. 2005;25:70–82. doi: 10.1002/hbm.20132.
    1. Raz N, et al. Brain aging and its modifiers. Ann N Y Acad Sci. 2007;1097:84–93. doi: 10.1196/annals.1379.018.
    1. Rypma B, D’Esposito M. Isolating the neural mechanisms of age-related changes in human working memory. Nat Neurosci. 2000;3:509–515. doi: 10.1038/74889.
    1. Salthouse TA. The processing-speed theory of adult age differences in cognition. Psychol Rev. 1996;103:403. doi: 10.1037/0033-295X.103.3.403.
    1. Salthouse T. Major issues in cognitive aging. New York: Oxford University Press; 2009.
    1. Sawrie SM, et al. Visual confrontation naming and hippocampal function: a neural network study using quantitative 1 H magnetic resonance spectroscopy. Brain. 2000;123:770–780. doi: 10.1093/brain/123.4.770.
    1. Seghier ML. Laterality index in functional MRI: methodological issues. Magn Reson Imaging. 2008;26:594–601. doi: 10.1016/j.mri.2007.10.010.
    1. Seidenberg M, et al. Investigating temporal lobe contribution to confrontation naming using MRI quantitative volumetrics. J Int Neuropsychol Soc. 2005;11:358–366.
    1. Shadden BB. Discourse behaviors in older adults. Semin Speech Lang. 1997;18:143–157. doi: 10.1055/s-2008-1064069.
    1. Shafto MA, et al. Word retrieval failures in old age: the relationship between structure and function. J Cogn Neurosci. 2010;22:1530–1540. doi: 10.1162/jocn.2009.21321.
    1. Stine-Morrow E, Shake M. Language in aged persons. Encycl Neurosci. 2009;5:337–342. doi: 10.1016/B978-008045046-9.01872-6.
    1. Thompson-Schill SL, et al. Effects of repetition and competition on activity in left prefrontal cortex during word generation. Neuron. 1999;23:513–522. doi: 10.1016/S0896-6273(00)80804-1.
    1. Tombaugh TN. Trail making test A and B: normative data stratified by age and education. Arch Clin Neuropsychol. 2004;19:203–214. doi: 10.1016/S0887-6177(03)00039-8.
    1. Townsend J, et al. Changing channels: an fMRI study of aging and cross-modal attention shifts. NeuroImage. 2006;31:1682–1692. doi: 10.1016/j.neuroimage.2006.01.045.
    1. Tsang H-L, Lee TM. The effect of aging on confrontational naming ability. Arch Clin Neuropsychol. 2003;18:81–89. doi: 10.1093/arclin/18.1.81.
    1. Tzourio-Mazoyer N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage. 2002;15:273–289. doi: 10.1006/nimg.2001.0978.
    1. Ullman MT, Pierpont EI. Specific language impairment is not specific to language: the procedural deficit hypothesis. Cortex. 2005;41:399–433. doi: 10.1016/S0010-9452(08)70276-4.
    1. Vellas B, Michel B. “Les 5 mots”, épreuve simple et sensible pour le diagnostic de la maladie d’Alzheimer. Presse Med. 2002;31:1696–1699.
    1. Verhaegen C, Poncelet M. Changes in naming and semantic abilities with aging from 50 to 90 years. J Int Neuropsychol Soc. 2013;19:119–126. doi: 10.1017/S1355617712001178.
    1. Vitali P, et al. Generating animal and tool names: an fMRI study of effective connectivity. Brain Lang. 2005;93:32–45. doi: 10.1016/j.bandl.2004.08.005.
    1. Warrington EK, Shallice T. Category specific semantic impairments. Brain. 1984;107:829–853. doi: 10.1093/brain/107.3.829.
    1. Weschler D. Weschler adult intelligence scale. San Antonio, Texas USA: Pearson; 1997.
    1. West R. In defense of the frontal lobe hypothesis of cognitive aging. J Int Neuropsychol Soc. 2000;6:727–729. doi: 10.1017/S1355617700666109.
    1. Wierenga CE, et al. Age-related changes in word retrieval: role of bilateral frontal and subcortical networks. Neurobiol Aging. 2008;29:436–451. doi: 10.1016/j.neurobiolaging.2006.10.024.
    1. Zigmond AS, Snaith RP. The hospital anxiety and depression scale. Acta Psychiatr Scand. 1983;67:361–370. doi: 10.1111/j.1600-0447.1983.tb09716.x.

Source: PubMed

3
Abonnieren