Evaluation of the Oxiris Membrane in Cardiogenic Shock Requiring Extracorporeal Membrane Oxygenation Support: Study Protocol for a Single Center, Single-Blind, Randomized Controlled Trial

Stefan Andrei, Maxime Nguyen, Vivien Berthoud, Marie-Catherine Morgant, Belaid Bouhemad, Pierre-Grégoire Guinot, ECMORIX Study Group, Audrey Martin, Mohamed Radhouani, Tiberiu Constandache, Sandrine Grosjean, Pierre Voizeux, Emel Rafrafi, Chloe Bernard, Saed Jazayeri, Ghislain Malapert, Olivier Bouchot, Stefan Andrei, Maxime Nguyen, Vivien Berthoud, Marie-Catherine Morgant, Belaid Bouhemad, Pierre-Grégoire Guinot, ECMORIX Study Group, Audrey Martin, Mohamed Radhouani, Tiberiu Constandache, Sandrine Grosjean, Pierre Voizeux, Emel Rafrafi, Chloe Bernard, Saed Jazayeri, Ghislain Malapert, Olivier Bouchot

Abstract

Background: Veno-arterial extracorporeal membrane oxygenation (VA-ECMO) is the rescue treatment proposed to patients with refractory cardiogenic shock. The VA-ECMO implantation promotes inflammation and ischemia-reperfusion injuries through the VA-ECMO flow, causing digestive mucosa barrier disrupture and inducing translocation of bacterial wall components-Lipopolysaccharides (LPS) with further inflammation and circulatory impairment. LPS is a well-studied surrogate indicator of bacterial translocation. Oxiris membrane is a promising and well-tolerated device that can specifically remove LPS. The main study aim is to compare the LPS elimination capacity of Oxiris membrane vs. a non-absorbant classical renal replacement (RRT) membrane in patients with cardiogenic shock requiring VA-ECMO. Methods: ECMORIX is a randomized, prospective, single-center, single-blind, parallel-group, controlled study. It compares the treatment with Oxiris membrane vs. the standard continuous renal replacement therapy care in patients with cardiogenic shock support by peripheral VA-ECMO. Forty patients will be enrolled in both treatment groups. The primary endpoint is the value of LPS serum levels after 24 h of treatment. LPS serum levels will be monitored during the first 72 h of treatment, as clinical and cardiac ultrasound parameters, biological markers of inflammation and 30-day mortality. Discussion: Oxiris membrane appears to be beneficial in controlling the VA-ECMO-induced ischemia-reperfusion inflammation by LPS removal. ECMORIX results will be of major importance in the management of severe cases requiring VA-ECMO and will bring pathophysiological insights about the LPS role in this context. Clinical Trial Registration: www.ClinicalTrials.gov, identifier: NCT04886180.

Keywords: artificial membrane; cardiogenic shock; continuous renal replacement therapy; cytokines/blood; endotoxin/blood; extracorporeal membrane oxygenation; heart failure; oxiris.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Andrei, Nguyen, Berthoud, Morgant, Bouhemad, Guinot and the ECMORIX Study Group.

References

    1. Vahdatpour C, Collins D, Goldberg S. Cardiogenic shock. J Am Heart Assoc. (2019) 8:e011991. 10.1161/JAHA.119.011991
    1. Hamm CW, Bassand JP, Agewall S, Bax J, Boersma E, Bueno H, et al. . ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: the Task Force for the management of acute coronary syndromes (ACS) in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. (2011) 32:2999–3054. 10.1093/eurheartj/ehr236
    1. Kolte D, Khera S, Aronow WS, Mujib M, Palaniswamy C, Sule S, et al. . Trends in incidence, management, and outcomes of cardiogenic shock complicating ST-elevation myocardial infarction in the United States. J Am Heart Assoc. (2014) 3:e000590. 10.1161/JAHA.113.000590
    1. Debrunner M, Schuiki E, Minder E, Straumann E, Naegeli B, Mury R, et al. . Proinflammatory cytokines in acute myocardial infarction with and without cardiogenic shock. Clin Res Cardiol. (2008) 97:298–305. 10.1007/s00392-007-0626-5
    1. Prondzinsky R, Unverzagt S, Lemm H, Wegener N, Heinroth K, Buerke U, et al. . Acute myocardial infarction and cardiogenic shock: prognostic impact of cytokines: INF-γ, TNF-α, MIP-1β, G-CSF, and MCP-1β. Medizinische Klinik Intensivmedizin Notfallmedizin. (2012) 107:476–84. 10.1007/s00063-012-0117-y
    1. Jentzer JC, Lawler PR, van Diepen S, Henry TD, Menon V, Baran DA, et al. . Systemic inflammatory response syndrome is associated with increased mortality across the spectrum of shock severity in cardiac intensive care patients. Circulation. (2020) 13:e006956. 10.1161/CIRCOUTCOMES.120.006956
    1. Millar JE, Fanning JP, McDonald CI, McAuley DF, Fraser JF. The inflammatory response to extracorporeal membrane oxygenation (ECMO): a review of the pathophysiology. Crit Care. (2016) 20:387. 10.1186/s13054-016-1570-4
    1. Al-Fares A, Pettenuzzo T, Del Sorbo L. Extracorporeal life support and systemic inflammation. Intens Care Med Exp. (2019) 7(Suppl 1):46. 10.1186/s40635-019-0249-y
    1. de Jong PR, González-Navajas JM, Jansen NJ. The digestive tract as the origin of systemic inflammation. Crit Care. (2016) 20:279. 10.1186/s13054-016-1458-3
    1. Brunkhorst FM, Clark AL, Forycki ZF, Anker SD. Pyrexia, procalcitonin, immune activation and survival in cardiogenic shock: the potential importance of bacterial translocation. Int J Cardiol. (1999) 72:3–10. 10.1016/S0167-5273(99)00118-7
    1. Kurundkar AR, Killingsworth CR, McIlwain RB, Timpa JG, Hartman YE, He D, et al. . Extracorporeal membrane oxygenation causes loss of intestinal epithelial barrier in the newborn piglet. Pediatr Res. (2010) 68:128–33. 10.1203/PDR.0b013e3181e4c9f8
    1. McILwain RB, Timpa JG, Kurundkar AR, Holt DW, Kelly DR, Hartman YE, et al. . Plasma concentrations of inflammatory cytokines rise rapidly during ECMO-related SIRS due to the release of preformed stores in the intestine. Lab Investig. (2010) 90:128–39. 10.1038/labinvest.2009.119
    1. MohanKumar K, Killingsworth CR, McIlwain RB, Timpa JG, Jagadeeswaran R, Namachivayam K, et al. . Intestinal epithelial apoptosis initiates gut mucosal injury during extracorporeal membrane oxygenation in the newborn piglet. Lab Investig. (2014) 94:150–60. 10.1038/labinvest.2013.149
    1. Zhou X, Li J, Guo J, Geng B, Ji W, Zhao Q, et al. . Gut-dependent microbial translocation induces inflammation and cardiovascular events after ST-elevation myocardial infarction. Microbiome. (2018) 6:66. 10.1186/s40168-018-0441-4
    1. Lu YC, Yeh WC, Ohashi PS. LPS/TLR4 signal transduction pathway. Cytokine. (2008) 42:145–51. 10.1016/j.cyto.2008.01.006
    1. Malard B, Lambert C, Kellum JA. In vitro comparison of the adsorption of inflammatory mediators by blood purification devices. Intens Care Med Exp. (2018) 6:12. 10.1186/s40635-018-0177-2
    1. Broman ME, Hansson F, Vincent JL, Bodelsson M. Endotoxin and cytokine reducing properties of the oXiris membrane in patients with septic shock: a randomized crossover double-blind study. PLoS ONE. (2019) 14:e0220444. 10.1371/journal.pone.0220444
    1. Ellouze O, Soudry Faure A, Radhouani M, Abou-Arab O, Besnier E, Moussa M, et al. . Levosimendan in venoarterial ECMO weaning. Rational and design of a randomized double blind multicentre trial. ESC Heart Failure. (2021) 8:3339–47. 10.1002/ehf2.13427
    1. Ellouze O, Lamirel J, Perrot J, Missaoui A, Daily T, Aho S, et al. . Extubation of patients undergoing extracorporeal life support. A retrospective study. Perfusion. (2019) 34:50–7. 10.1177/0267659118791072
    1. Reintam Blaser A, Starkopf J, Alhazzani W, Berger MM, Casaer MP, Deane AM, et al. . Early enteral nutrition in critically ill patients: ESICM clinical practice guidelines. Intens Care Med. (2017) 43:380–98. 10.1007/s00134-016-4665-0
    1. Nguyen M, Tavernier A, Gautier T, Aho S, Morgant MC, Bouhemad B, et al. . Glucagon-like peptide-1 is associated with poor clinical outcome, lipopolysaccharide translocation and inflammation in patients undergoing cardiac surgery with cardiopulmonary bypass. Cytokine. (2020) 133:155182. 10.1016/j.cyto.2020.155182
    1. Napp LC, Ziegeler S, Kindgen-Milles D. Rationale of hemoadsorption during extracorporeal membrane oxygenation support. Blood Purif. (2019) 48:203–14. 10.1159/000500015
    1. Zuccari S, Damiani E, Domizi R, Scorcella C, D'Arezzo M, Carsetti A, et al. . Changes in cytokines, haemodynamics and microcirculation in patients with sepsis/septic shock undergoing continuous renal replacement therapy and blood purification with cytosorb. Blood Purif. (2020) 49:107–13. 10.1159/000502540
    1. Huber W, Algül H, Lahmer T, Mayr U, Lehmann M, Schmid RM, et al. . Pancreatitis cytosorbents (CytoSorb) inflammatory cytokine removal: a prospective study (PACIFIC). Medicine. (2019) 98:e13044. 10.1097/MD.0000000000013044
    1. Scharf C, Liebchen U, Paal M, Irlbeck M, Zoller M, Schroeder I. Blood purification with a cytokine adsorber for the elimination of myoglobin in critically ill patients with severe rhabdomyolysis. Crit Care. (2021) 25:41. 10.1186/s13054-021-03468-x
    1. Tomescu D, Popescu M, David C, Sima R, Dima S. Haemoadsorption by CytoSorb® in patients with acute liver failure: a case series. Int J Artif Organs. (2020) 44:560–64. 10.1177/0391398820981383
    1. Zhang L, Feng Y, Fu P. Blood purification for sepsis: an overview. Precis Clin Med. (2021) 4:45–55. 10.1093/pcmedi/pbab005
    1. Monard C, Rimmelé T, Ronco C. Extracorporeal blood purification therapies for sepsis. Blood Purif. (2019) 47(Suppl. 3):1–14. 10.1159/000499786
    1. Harm S, Schildböck C, Hartmann J. Cytokine removal in extracorporeal blood purification: an in vitro study. Blood Purif. (2020) 49:33–43. 10.1159/000502680
    1. Poli EC, Alberio L, Bauer-Doerries A, Marcucci C, Roumy A, Kirsch M, et al. . Cytokine clearance with CytoSorb® during cardiac surgery: a pilot randomized controlled trial. Crit Care. (2019) 23:108. 10.1186/s13054-019-2399-4
    1. Supady A, Weber E, Rieder M, Lother A, Niklaus T, Zahn T, et al. . Cytokine adsorption in patients with severe COVID-19 pneumonia requiring extracorporeal membrane oxygenation (CYCOV): a single centre, open-label, randomised, controlled trial. Lancet Respirat Med. (2021) 9:755–62. 10.1016/S2213-2600(21)00177-6
    1. Turani F, Barchetta R, Falco M, Busatti S, Weltert L. Continuous renal replacement therapy with the adsorbing filter oxiris in septic patients: a case series. Blood Purif. (2019) 47(Suppl. 3):1–5. 10.1159/000499589
    1. Zhang H, Zhu G, Yan L, Lu Y, Fang Q, Shao F. The absorbing filter Oxiris in severe coronavirus disease 2019 patients: a case series. Artif Organs. (2020) 44:1296–302. 10.1111/aor.13786
    1. Samman KN, Baalbaki H, Bouchard J, Albert M. Continuous renal replacement therapy with oXiris® membrane in severe ebstein-barr virus-mediated hemophagocytic lymphohistiocytosis: a case report. Blood Purif. (2020) 50:578–81. 10.1159/000511724
    1. Zhai Y, Pan J, Zhang C. The application value of oXiris-endotoxin adsorption in sepsis. Am J Transl Res. (2021) 13:3839–44.
    1. de Tymowski C, Desmard M, Lortat-Jacob B, Pellenc Q, Alkhoder S, Alouache A, et al. . Impact of connecting continuous renal replacement therapy to the extracorporeal membrane oxygenation circuit. Anaesthesia Crit Care Pain Med. (2018) 37:557–64. 10.1016/j.accpm.2018.02.024

Source: PubMed

3
Abonnieren