Comparable Cerebral Oxygenation Patterns in Younger and Older Adults during Dual-Task Walking with Increasing Load

Sarah A Fraser, Olivier Dupuy, Philippe Pouliot, Frédéric Lesage, Louis Bherer, Sarah A Fraser, Olivier Dupuy, Philippe Pouliot, Frédéric Lesage, Louis Bherer

Abstract

The neuroimaging literature on dual-task gait clearly demonstrates increased prefrontal cortex (PFC) involvement when performing a cognitive task while walking. However, findings from direct comparisons of the cerebral oxygenation patterns of younger (YA) and older (OA) adults during dual-task walking are mixed and it is unclear how YA and OA respond to increasing cognitive load (difficulty) while walking. This functional near infra-red (fNIRS) study examined cerebral oxygenation of YA and OA during self-paced dual-task treadmill walking at two different levels of cognitive load (auditory n-back). Changes in accuracy (%) as well as oxygenated (HbO) and deoxygenated (HbR) hemoglobin were examined. For the HbO and HbR measures, eight regions of interest (ROIs) were assessed: the anterior and posterior dorsolateral and ventrolateral PFC (aDLPFC, pDLPFC, aVLPFC, pVLPFC) in each hemisphere. Nineteen YA (M = 21.83 years) and 14 OA (M = 66.85 years) walked at a self-selected pace while performing auditory 1-back and 2-back tasks. Walking alone (single motor: SM) and performing the cognitive tasks alone (single cognitive: SC) were compared to dual-task walking (DT = SM + SC). In the behavioural data, participants were more accurate in the lowest level of load (1-back) compared to the highest (2-back; p < 0.001). YA were more accurate than OA overall (p = 0.009), and particularly in the 2-back task (p = 0.048). In the fNIRS data, both younger and older adults had task effects (SM < DT) in specific ROIs for ΔHbO (three YA, one OA) and ΔHbR (seven YA, eight OA). After controlling for walk speed differences, direct comparisons between YA and OA did not reveal significant age differences, but did reveal a difficulty effect in HbO in the left aDLPFC (p = 0.028) and significant task effects (SM < DT) in HbR for six of the eight ROIs. Findings suggest that YA and OA respond similarly to manipulations of cognitive load when walking on a treadmill at a self-selected pace.

Keywords: cognitive aging; cognitive load; dual-task walk; fNIRS.

References

    1. Arenth P. M., Ricker J. H., Schultheis M. T. (2007). Applications of functional near-infrared spectroscopy (fNIRS) to neurorehabilitation of cognitive disabilities. Clin. Neuropsychol. 21 38–57. 10.1080/13854040600878785
    1. Bakker M., De Lange F. P., Helmich R. C., Scheeringa R., Bloem B. R., Toni I. (2008). Cerebral correlates of motor imagery of normal and precision gait. Neuroimage 41 998–1010. 10.1016/j.neuroimage.2008.03.020
    1. Beurskens R., Bock O. (2012). Age-related deficits in dual-task walking: a review. Neural Plast. 2012:131608 10.1155/2012/131608
    1. Ble A., Volpato S., Zuliani G., Guralnik J. M., Bandinelli S., Lauretani F., et al. (2005). Executive function correlates with walking speed in older persons: the InCHIANTI study. J. Am. Geriatr. Soc. 53 410–415. 10.1111/j.1532-5415.2005.53157.x
    1. Cope M., Delpy D. T., Reynolds E. O. R., Wray S., Wyatt J., Van der Zee P. (1988). Methods of quantitating cerebral near infrared spectroscopy data. Adv. Exp. Med. Biol. 222 183–189. 10.1007/978-1-4615-9510-6_21
    1. Davis J. C., Robertson M. C., Ashe M. C., Liu-Ambrose T., Kahn K. M., Marra C. A. (2010). International comparison of cost of falls in older adults living in the community: a systematic review. Osteoporos. Int. 21 1295–1306. 10.1007/s00198-009-1162-0
    1. De Sanctis P., Butler J. S., Malcolm B. R., Foxe J. J. (2014). Recalibration of inhibitory control systems during walking-related dual-task interference: a mobile brain-body imaging (MOBI) study. Neuroimage 94 55–64. 10.1016/j.neuroimage.2014.03.016
    1. Doi T., Makizako H., Shimada H., Park H., Tsutsumimoto K., Uemura K., et al. (2013). Brain activation during dual-task walking and executive function among older adults with mild cognitive impairment: a fNIRS study. Aging Clin. Exp. Res. 25 539–544.
    1. Doumas M., Rapp M. A., Krampe R. T. (2009). Working memory and postural control: adult age differences in potential for improvement, task priority, and dual tasking. J. Gerontol. B Psychol. Sci. Soc. Sci. 64 193–201. 10.1093/geronb/gbp009
    1. Dupuy O., Gauthier C. J., Fraser S. A., Desjardins-Crépeau L., Desjardins M., Mekary S., et al. (2015). Higher levels of cardiovascular fitness are associated with better executive function and prefrontal oxygenation in younger and older women. Front. Hum. Neurosci. 9:66 10.3389/fnhum.2015.00066
    1. Ekkekakis P. (2009). Illuminating the black box: investigating prefrontal cortical hemodynamics during exercise with near infra-red spectroscopy. J. Sport Exer. Psychol. 31 505–553. 10.1123/jsep.31.4.505
    1. Fabiani M., Gordon B. A., Maclin E. L., Pearson M. A., Brumback-Peltz C. R., Low K. A., et al. (2014). Neurovascular coupling in normal aging: a combined optical, ERP and fMRI study. Neuroimage 85 592–607. 10.1016/j.neuroimage.2013.04.113
    1. Folstein M. F., Folstein S. E., McHugh P. R. (1975). “Mini mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12 189–198.
    1. Fraser S. A., Bherer L. (2013). “Age-related decline in divided attention: from theoretical lab research to practical real life situations,” in An Advanced Review of Divided Attention to be Included in Wiley Interdisciplinary Reviews: Cognitive Science, ed.Nadel L. (Hoboken, NJ: John Wiley & Sons; ).
    1. Fraser S. A., Elliot V., Bherer L., Dumoulin C., de Bruin E. D. (2014). The effects of combined pelvic floor muscle training and virtual-reality dance rehabilitation on dual-task gait and cognition in women with mixed urinary incontinence. Games Health J. 3 172–178. 10.1089/g4h.2013.0095
    1. Fraser S. A., Li K. Z. H., Penhune V. B., DeMont R. G. (2007). The effects of balance status and age on muscle activation during walking under divided attention. J. Gerontol. Psychol. Sci. 62B, 171–178. 10.1093/geronb/62.3.P171
    1. Harada T., Miyai I., Suzuki M., Kubota K. (2009). Gait capacity affects cortical activation patterns related to speed control in the elderly. Exp. Brain Res. 193 445–454. 10.1007/s00221-008-1643-y
    1. Hausdorff J. M., Schweiger A., Herman T., Yogev-Seligmann G., Giladi N. (2008). Dual-task decrements in gait: contributing factors among healthy older adults. J. Gerontol. Med. Sci. 63A, 1335–1343. 10.1093/gerona/63.12.1335
    1. Heinrich S., Rapp K., Rissmann U., Becker C., König H.-H. (2010). Cost of falls in old age: a systematic review. Osteoporos. Int. 21 891–902. 10.1007/s00198-009-1100-1
    1. Herff C., Heger D., Fortmann O., Hennrich J., Putze F., Schultz T. (2013). Mental workload during n-back task—quantified in the prefrontal cortex using fNIRS. Front. Hum. Neurosci. 7:935 10.3389/fnhum.2013.00935
    1. Heuninckx S., Wenderoth N., Swinnen S. P. (2008). Systems neuroplasticity in the aging brain: recruiting additional neural resources for successful motor performance in elderly persons. J. Neurosci. 28 91–99. 10.1523/JNEUROSCI.3300-07.2008
    1. Holtzer R., Epstein N., Mahoney J. R., Izzetoglu M., Blumen H. M. (2014a). Neuroimaging of mobility in aging: a targeted review. J. Gerontol. Med. Sci. 69 1375–1388. 10.1093/gerona/glu052
    1. Holtzer R., Mahoney J. R., Izzetoglu M., Izzetoglu K., Onaral B., Verghese J. (2011). fNIRS study of walking and walking while talking in young and old individuals. J. Gerontol. A Biol. Sci. Med. Sci. 66A, 879–887. 10.1093/Gerona/glr068
    1. Holtzer R., Mahoney J. R., Izzetoglu M., Wang C., England S., Verghese J. (2015). Online fronto-cortical control of simple and attention-demanding locomotion in humans. Neuroimage 112 152–159. 10.1016/j.neuroimage.2015.03.002
    1. Holtzer R., Mahoney J. R., Verghese J. (2014b). Intraindividual variability in executive functions but not speed of processing or conflict resolution predicts performance differences in gait speed in older adults. J. Gerontol. Med. Sci. 69 980–986. 10.1093/gerona/glt180
    1. Jaeggi S. M., Buschkuehl M., Etienne A., Ozdoba C., Perrig W. J., Nirkko A. C. (2007). On how high performers keep cool brains in situations of cognitive overload. Cogn. Affect. Behav. Neurosci. 7 75–89. 10.3758/CABN.7.2.75
    1. Jaeggi S. M., Seewer R., Nirkko A. C., Eckstein D., Schroth G., Groner R., et al. (2003). Does excessive memory load attenuate activation in the prefrontal cortex? Load-dependent processing in single and dual tasks: functional magnetic resonance imaging study. Neuroimage 19 210–225. 10.1016/S1053-8119(03)00098-3
    1. Laguë-Beauvais M., Brunet J., Gagnon L., Lesage F., Bherer L. (2013). A fNIRS investigation of switching and inhibition during the modified Stroop task in younger and older adults. Neuroimage 64 485–495. 10.1016/j.neuroimage.2012.09.042
    1. Laguë-Beauvais M., Fraser S. A., Desjardins-Crépeau L., Castonguay N., Desjardins M., Lesage F., et al. (2015). Shedding light on the effect of priority instructions during dual-task performance in younger and older adults: a fNIRS study. Brain Cogn. 98 1–14. 10.1016/j.bandc.2015.05.001
    1. Leff D. R., Orihuela-Espina F., Elwell C. E., Athanasiou T., Delpy D. T., Darzi A. W., et al. (2011). Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fNIRS) studies. Neuroimage 54 2922–2936. 10.1016/j.neuroimage.2010.10.058
    1. León-Carrion J., Damas-López J., Martín-Rodríguez J. F., Domínguez-Roldán J. M., Murillo-Cabezas F., Barroso Y., et al. (2008). The hemodynamics of cognitive control: the level of concentration of oxygenated hemoglobin in the superior prefrontal cortex varies as a function of performance in a modified Stroop task. Behav. Brain Res. 193 248–256. 10.1016/j.bbr.2008.06.013
    1. Li K. Z. H., Abbud G. A., Fraser S. A., DeMont R. G. (2012). Successful adaptation of gait in healthy older adults during dual-task treadmill walking. Aging Neuropsychol. Cogn. 19 150–167. 10.1080/13825585.2011.628375
    1. Lövdén M., Schäefer S., Pohlmeyer A. E., Lindenberger U. (2008). Walking variability and working memory load in aging: a dual process account relating cognitive control to motor performance. J. Gerontol. Psychol. Sci. 63B, 121–128.
    1. Lundin-Olsson L., Nyberg L., Gustafson Y. (1997). Stops walking when talking” as a predictor of falls in elderly people. Lancet 349:617 10.1016/S0140-6736(97)24009-2
    1. Masud T., Morris R. O. (2001). Epidemiology of falls. Age Ageing 30(S. 4), 3–7. 10.1093/ageing/30.suppl_4.3
    1. Mekari S., Fraser S., Bosquet L., Bonnéry C., Labelle V., Pouliot P., et al. (2015). The relationship between exercise intensity, cerebral oxygenation and cognitive performance in young adults. Eur. J. Appl. Physiol. 115 2189–2197. 10.1007/s00421-015-3199-4
    1. Menz H. B., Lord S. R., Fitzpatrick R. C. (2003). Age-related differences in walking stability. Age Ageing 32 137–142. 10.1093/ageing/32.2.137
    1. Mirelman A., Maidan I., Bernad-Elazari H., Nieuwhof F., Giladi N., Hausdorff J. M. (2014). Increased frontal brain activation during walking while dual-tasking: an fNIRS study in healthy young adults. J. Neuroeng. Rehabil. 11:85 10.1186/1743-0003-11-85
    1. Miyai I., Tanabe C. H., Sase I., Eda H., Oda I., Konishi I., et al. (2001). Cortical mapping of gait in human: a near-infrared spectroscopic topography study. Neuroimage 14 1186–1192. 10.1006/nimg.2001.0905
    1. Montero-Odasso M., Hachinski V. (2014). Preludes to brain failure: executive dysfunction and gait disturbances. Neurol. Sci. 35 601–604. 10.1007/s10072-013-1613-4
    1. Nascimbeni A., Minchillo M., Salatino A., Morabito U., Ricci R. (2015). Gait attentional load at different walking speeds. Gait Posture 41 304–306. 10.1016/j.gaitpost.2014.09.008
    1. Ohsugi H., Ohgi S., Shigemori K., Schneider E. B. (2013). Differences in dual-task performance and prefrontal cortex activation between younger and older adults. BMC Neurosci. 14:10 10.1186/1471-2202-14-10
    1. Okamoto M., Dan H., Sakamoto K., Takeo K., Shimizu K., Kohno S., et al. (2004). Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10–20 system oriented for transcranial functional brain mapping. Neuroimage 21 99–111. 10.1016/j.neuroimage.2003.08.026
    1. Patel P., Lamar M., Bhatt B. (2014). Effect of type of cognitive task and walking speed on cognitive-motor interference during dual-task walking. Neuroscience 260 140–148.
    1. Perrey S. (2008). Non-invasive NIR spectroscopy of human brain function during exercise. Methods 45 289–299. 10.1016/j.ymeth.2008.04.005
    1. Reuter-Lorenz P. A., Lustig C. (2005). Brain aging: reorganizing discoveries about the aging mind. Curr. Opin. Neurobiol. 15 245–251. 10.1016/j.conb.2005.03.016
    1. Rooks C. R., Thom N. J., McCully K. K., Dishman R. K. (2010). Effects of incremental exercise on cerebral oxygenation measured by near-infrared spectroscopy: a systematic review. Prog. Neurobiol. 92 134–150. 10.1016/j.pneurobio.2010.06.002
    1. Salthouse T. A. (1992). What do adult age differences in the digit symbol substitution test reflect? J. Gerontol. Psychol. Sci. 47 121–128. 10.1093/geronj/47.3.P121
    1. Smith E. E., Jonides J. (1999). Storage and executive processes in the frontal lobes. Sci. Compass Rev. Neurosci. 283 1657–1661.
    1. Strangman G., Boas D. A., Sutton J. P. (2002). Non-invasive neuroimaging using near-infrared light. Biol. Psychiatry 52 679–693. 10.1016/S0006-3223(02)01550-0
    1. Strauss E., Sherman E. M., Spreen O. (2006). A Compendium of Neuropsychological Tests: Administration, Norms, and Commentary. New York, NY: Oxford University Press.
    1. Suzuki M., Miyai I., Ono T., Oda I., Konishi I., Kochiyama T., et al. (2004). Prefrontal and premotor cortices are involved in adapting walking and running speed on the treadmill: an optical imaging study. Neuroimage 23 1020–1026. 10.1016/j.neuroimage.2004.07.002
    1. Tanaka H., Katura T., Sato H. (2014). Task-related oxygenation and cerebral blood volume changes estimated from NIRS signals in motor and cognitive tasks. Neuroimage 94 107–119. 10.1016/j.neuroimage.2014.02.036
    1. Tempest G. D., Eston R. G., Parfitt G. (2014). Prefrontal cortex Haemodynamics and affective responses during exercise: a multichannel near infra-red spectroscopy study. PLoS ONE 9:e95924 10.1371/journal.pone.0095924
    1. Villringer A., Chance B. (1997). Non-invasive optical spectroscopy and imaging of human brain function. Trends Neurosci. 20 435–442. 10.1016/S0166-2236(97)01132-6
    1. Wechsler D. (2008). Wechsler Adult Intelligence Scale–Fourth Edition. San Antonio, TX: Pearson.
    1. Woollacott M., Shumway-Cook A. (2002). Attention and the control of posture and gait: a review of an emerging area of research. Gait Posture 16 1–14. 10.1016/S0966-6362(01)00156-4
    1. Yesavage J. A., Brink T. L., Rose T. L., Lum O., Huang V., Adey M., et al. (1983). Development and validation of a geriatric depression screening scale: a preliminary report. J. Psychiatr. Res. 17 37–49. 10.1016/0022-3956(82)90033-4
    1. Yogev-Seligmann G., Hausdorff J. M., Giladi N. (2008). The role of executive function and attention in gait. Mov. Disord. 23 329–342. 10.1002/mds.21720
    1. Yogev-Seligmann G., Rotem-Galili Y., Mirelman A., Dickstein R., Giladi N., Hausdorff J. (2010). How does explicit prioritization alter walking during dual-task performance? Effects of age and sex on gait speed and variability. Phys. Ther. 90 177–186. 10.2522/ptj.20090043

Source: PubMed

3
Abonnieren