Adipose-Derived Stromal Cells for Treatment of Patients with Chronic Ischemic Heart Disease (MyStromalCell Trial): A Randomized Placebo-Controlled Study

Abbas Ali Qayyum, Anders Bruun Mathiasen, Naja Dam Mygind, Jørgen Tobias Kühl, Erik Jørgensen, Steffen Helqvist, Jens Jørgen Elberg, Klaus Fuglsang Kofoed, Niels Groove Vejlstrup, Anne Fischer-Nielsen, Mandana Haack-Sørensen, Annette Ekblond, Jens Kastrup, Abbas Ali Qayyum, Anders Bruun Mathiasen, Naja Dam Mygind, Jørgen Tobias Kühl, Erik Jørgensen, Steffen Helqvist, Jens Jørgen Elberg, Klaus Fuglsang Kofoed, Niels Groove Vejlstrup, Anne Fischer-Nielsen, Mandana Haack-Sørensen, Annette Ekblond, Jens Kastrup

Abstract

We aimed to evaluate the effect of intramyocardial injections of autologous VEGF-A165-stimulated adipose-derived stromal cells (ASCs) in patients with refractory angina. MyStromalCell trial is a randomized double-blind placebo-controlled study including sixty patients with CCS/NYHA class II-III, left ventricular ejection fraction > 40%, and at least one significant coronary artery stenosis. Patients were treated with ASC or placebo in a 2 : 1 ratio. ASCs from the abdomen were culture expanded and stimulated with VEGF-A165. At 6 months follow-up, bicycle exercise tolerance increased significantly in time duration 22 s (95%CI -164 to 208 s) (P = 0.034), in watt 4 (95%CI -33 to 41, 0.048), and in METs 0.2 (95%CI -1.4 to 1.8) (P = 0.048) in the ASC group while there was a nonsignificant increase in the placebo group in time duration 9 s (95%CI -203 to 221 s) (P = 0.053), in watt 7 (95%CI -40 to 54) (P = 0.41), and in METs 0.1 (95%CI -1.7 to 1.9) (P = 0.757). The difference between the groups was not significant (P = 0.680, P = 0.608, and P = 0.720 for time duration, watt, and METs, resp.). Intramyocardial delivered VEGF-A165-stimulated ASC treatment was safe but did not improve exercise capacity compared to placebo. However, exercise capacity increased in the ASC but not in the placebo group. This trial is registered with ClinicalTrials.gov NCT01449032.

Figures

Figure 1
Figure 1
Study design. Eligibility, randomization into adipose-derived stromal cell (ASC) or placebo group, and follow-up.
Figure 2
Figure 2
Bicycle exercise test. Between-group comparison of primary endpoint (a) time duration, (b) watt, and (c) metabolic equivalents (METs) of changes from baseline to 6 months follow-up (values are mean ± 95% confidence interval).
Figure 3
Figure 3
Bicycle exercise test. Primary endpoint (a) time duration, (b) watt, and (c) metabolic equivalents (METs) at baseline, 3, and 6 months follow-up for placebo group and patients treated with adipose-derived stromal cells (ASCs) (values are mean ± 95% confidence interval).
Figure 4
Figure 4
Symptoms measured as functional classes. (a) Canadian Cardiovascular Society (CCS) and (b) New York Heart Association (NYHA) (values are mean ± 95% confidence interval).

References

    1. Finegold J. A., Asaria P., Francis D. P. Mortality from ischaemic heart disease by country, region, and age: statistics from World Health Organisation and United Nations. International Journal of Cardiology. 2013;168(2):934–945. doi: 10.1016/j.ijcard.2012.10.046.
    1. Moran A. E., Forouzanfar M. H., Roth G. A., et al. The global burden of ischemic heart disease in 1990 and 2010: the global burden of disease 2010 study. Circulation. 2014;129(14):1493–1501. doi: 10.1161/CIRCULATIONAHA.113.004046.
    1. Strem B. M., Hicok K. C., Zhu M., et al. Multipotential differentiation of adipose tissue-derived stem cells. The Keio Journal of Medicine. 2005;54(3):132–141. doi: 10.2302/kjm.54.132.
    1. Bochev I., Elmadjian G., Kyurkchiev D., et al. Mesenchymal stem cells from human bone marrow or adipose tissue differently modulate mitogen-stimulated B-cell immunoglobulin production in vitro. Cell Biology International. 2008;32(4):384–393. doi: 10.1016/j.cellbi.2007.12.007.
    1. Fraser J. K., Schreiber R., Strem B., et al. Plasticity of human adipose stem cells toward endothelial cells and cardiomyocytes. Nature Clinical Practice Cardiovascular Medicine. 2006;3:S33–S37. doi: 10.1038/ncpcardio0444.
    1. Heydarkhan-Hagvall S., Schenke-Layland K., Yang J. Q., et al. Human adipose stem cells: a potential cell source for cardiovascular tissue engineering. Cells, Tissues, Organs. 2008;187(4):263–274. doi: 10.1159/000113407.
    1. Helder M. N., Knippenberg M., Klein-Nulend J., Wuisman P. I. J. M. Stem cells from adipose tissue allow challenging new concepts for regenerative medicine. Tissue Engineering. 2007;13(8):1799–1808. doi: 10.1089/ten.2006.0165.
    1. Henry T. D., Pepine C. J., Lambert C. R., et al. The Athena trials: autologous adipose-derived regenerative cells for refractory chronic myocardial ischemia with left ventricular dysfunction. Catheterization and Cardiovascular Interventions. 2017;89(2):169–177. doi: 10.1002/ccd.26601.
    1. Perin E. C., Sanz-Ruiz R., Sanchez P. L., et al. Adipose-derived regenerative cells in patients with ischemic cardiomyopathy: the PRECISE trial. American Heart Journal. 2014;168(1):88–95.e2. doi: 10.1016/j.ahj.2014.03.022.
    1. Friis T., Haack-Sorensen M., Mathiasen A. B., et al. Mesenchymal stromal cell derived endothelial progenitor treatment in patients with refractory angina. Scandinavian Cardiovascular Journal. 2011;45(3):161–168. doi: 10.3109/14017431.2011.569571.
    1. Hare J. M., Fishman J. E., Gerstenblith G., et al. Comparison of allogeneic vs autologous bone marrow-derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial. JAMA. 2012;308(22):2369–2379. doi: 10.1001/jama.2012.25321.
    1. Mathiasen A. B., Haack-Sorensen M., Jorgensen E., Kastrup J. Autotransplantation of mesenchymal stromal cells from bone-marrow to heart in patients with severe stable coronary artery disease and refractory angina - final 3-year follow-up. International Journal of Cardiology. 2013;170(2):246–251. doi: 10.1016/j.ijcard.2013.10.079.
    1. Mathiasen A. B., Qayyum A. A., Jorgensen E., et al. Bone marrow-derived mesenchymal stromal cell treatment in patients with severe ischaemic heart failure: a randomized placebo-controlled trial (MSC-HF trial) European Heart Journal. 2015;36(27):1744–1753. doi: 10.1093/eurheartj/ehv136.
    1. Kim Y., Kim H., Cho H., Bae Y., Suh K., Jung J. Direct comparison of human mesenchymal stem cells derived from adipose tissues and bone marrow in mediating neovascularization in response to vascular ischemia. Cellular Physiology and Biochemistry. 2007;20(6):867–876. doi: 10.1159/000110447.
    1. Poncelet A. J., Hiel A. L., Vercruysse J., Hermans D., Zech F., Gianello P. Intracardiac allogeneic mesenchymal stem cell transplantation elicits neo-angiogenesis in a fully immunocompetent ischaemic swine model. European Journal of Cardio-Thoracic Surgery. 2010;38(6):781–787. doi: 10.1016/j.ejcts.2010.03.035.
    1. Str ioga M., Viswanathan S., Darinskas A., Slaby O., Michalek J. Same or not the same? Comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells. Stem Cells and Development. 2012;21(14):2724–2752. doi: 10.1089/scd.2011.0722.
    1. Oswald J., Boxberger S., Jorgensen B., et al. Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells. 2004;22(3):377–384. doi: 10.1634/stemcells.22-3-377.
    1. Follin B., Tratwal J., Haack-Sorensen M., Elberg J. J., Kastrup J., Ekblond A. Identical effects of VEGF and serum-deprivation on phenotype and function of adipose-derived stromal cells from healthy donors and patients with ischemic heart disease. Journal of Translational Medicine. 2013;11(1):p. 219. doi: 10.1186/1479-5876-11-219.
    1. Houtgraaf J. H., den Dekker W. K., van Dalen B. M., et al. First experience in humans using adipose tissue-derived regenerative cells in the treatment of patients with ST-segment elevation myocardial infarction. Journal of the American College of Cardiology. 2012;59(5):539–540. doi: 10.1016/j.jacc.2011.09.065.
    1. Qayyum A. A., Haack-Sorensen M., Mathiasen A. B., Jørgensen E., Ekblond A., Kastrup J. Adipose-derived mesenchymal stromal cells for chronic myocardial ischemia (MyStromalCell Trial): study design. Regenerative Medicine. 2012;7(3):421–428. doi: 10.2217/rme.12.17.
    1. Qayyum A. A., Kuhl J. T., Kjaer A., Hasbak P., Kofoed K. F., Kastrup J. Semi-quantitative myocardial perfusion measured by computed tomography in patients with refractory angina: a head-to-head comparison with quantitative rubidium-82 positron emission tomography as reference. Clinical Physiology and Functional Imaging. 2015;37(5):481–488. doi: 10.1111/cpf.12322.
    1. Qayyum A. A., Kuhl J. T., Mathiasen A. B., et al. Value of cardiac 320-multidetector computed tomography and cardiac magnetic resonance imaging for assessment of myocardial perfusion defects in patients with known chronic ischemic heart disease. The International Journal of Cardiovascular Imaging. 2013;29(7):1585–1593. doi: 10.1007/s10554-013-0234-6.
    1. Briones E., Lacalle J. R., Marin-Leon I., Rueda J. R. Transmyocardial laser revascularization versus medical therapy for refractory angina. Cochrane Database of Systematic Reviews. 2015;(2, article CD003712)
    1. Losordo D. W., Schatz R. A., White C. J., et al. Intramyocardial transplantation of autologous CD34+ stem cells for intractable angina: a phase I/IIa double-blind, randomized controlled trial. Circulation. 2007;115(25):3165–3172. doi: 10.1161/CIRCULATIONAHA.106.687376.
    1. Povsic T. J., Henry T. D., Traverse J. H., et al. The RENEW trial: efficacy and safety of intramyocardial autologous CD34+ cell administration in patients with refractory angina. JACC: Cardiovascular Interventions. 2016;9(15):1576–1585. doi: 10.1016/j.jcin.2016.05.003.
    1. Losordo D. W., Henry T. D., Davidson C., et al. Intramyocardial, autologous CD34+ cell therapy for refractory angina. Circulation Research. 2011;109(4):428–436. doi: 10.1161/CIRCRESAHA.111.245993.
    1. Mazo M., Planat-Benard V., Abizanda G., et al. Transplantation of adipose derived stromal cells is associated with functional improvement in a rat model of chronic myocardial infarction. European Journal of Heart Failure. 2008;10(5):454–462. doi: 10.1016/j.ejheart.2008.03.017.
    1. Wang L., Deng J., Tian W., et al. Adipose-derived stem cells are an effective cell candidate for treatment of heart failure: an MR imaging study of rat hearts. American Journal of Physiology Heart and Circulatory Physiology. 2009;297(3):H1020–H1031. doi: 10.1152/ajpheart.01082.2008.
    1. Bai X., Alt E. Myocardial regeneration potential of adipose tissue-derived stem cells. Biochemical and Biophysical Research Communications. 2010;401(3):321–326. doi: 10.1016/j.bbrc.2010.09.012.
    1. March 2016, .
    1. van R. J., Bax J. J., Beeres S. L., et al. Intramyocardial bone marrow cell injection for chronic myocardial ischemia: a randomized controlled trial. JAMA. 2009;301(19):1997–2004. doi: 10.1001/jama.2009.685.
    1. Diderholm E., Andrén B., Frostfeldt G., et al. Effects of an early invasive strategy on ischemia and exercise tolerance among patients with unstable coronary artery disease. The American Journal of Medicine. 2003;115(8):606–612. doi: 10.1016/j.amjmed.2003.06.003.
    1. Haack-Sorensen M., Follin B., Juhl M., et al. Culture expansion of adipose derived stromal cells. A closed automated quantum cell expansion system compared with manual flask-based culture. Journal of Translational Medicine. 2016;14(1):p. 319. doi: 10.1186/s12967-016-1080-9.
    1. Tongers J., Losordo D. W., Landmesser U. Stem and progenitor cell-based therapy in ischaemic heart disease: promise, uncertainties, and challenges. European Heart Journal. 2011;32(10):1197–1206. doi: 10.1093/eurheartj/ehr018.
    1. Povsic T. J., Junge C., Nada A., et al. A phase 3, randomized, double-blinded, active-controlled, unblinded standard of care study assessing the efficacy and safety of intramyocardial autologous CD34+ cell administration in patients with refractory angina: design of the RENEW study. American Heart Journal. 2013;165(6):854–861.e2. doi: 10.1016/j.ahj.2013.03.003.

Source: PubMed

3
Abonnieren