Macular thickness analysis for glaucoma diagnosis and management

Divakar Gupta, Sanjay Asrani, Divakar Gupta, Sanjay Asrani

Abstract

There is increasing literature regarding the role of macular imaging by optical coherence tomography (OCT) in glaucoma care. Spectral domain OCT (SD-OCT) has allowed for high resolution imaging of the total macula and macular segments. With the use of asymmetry analysis, macular thickness is a measurement that can be used for the detection and progression of glaucoma. Some artifacts seen on retinal nerve fiber layer (rNFL) scans may be overcome by macular SD-OCT imaging. Also, nonglaucomatous optic neuropathies may be more easily identified on macular thickness plots than rNFL scans. Special populations, such as children or myopes, may also have improved glaucoma surveillance using macular SD-OCT. In this review we explore the advantages and pitfalls of macular OCT in glaucoma care and offer an approach on how to use macular thickness scans in clinical practice.

Keywords: glaucoma; macular thickness; optical coherence tomography; retinal nerve fiber layer.

Conflict of interest statement

Conflicts of interest: Dr. Gupta has no relevant financial interests, activities, relationships, or affiliations to disclose. Dr. Asrani receives lecture honoraria from Heidelberg Engineering, Inc.

Figures

Figure 1
Figure 1
Glaucomatous progression on macular SD–OCT scans. A macular thickness map of the right eye (top) with arcuate thickness loss (inferior) is shown followed by macular thickness maps and superior–inferior hemifield asymmetry plots at two separate visits (middle). The bottom figure is a macula progression (change) map highlighting arcuate retinal thickness losses (red) in the inferior macula between the two patient visits.
Figure 2
Figure 2
Nonglaucomatous macular thickness loss from nonarteritic ischemic optic neuropathy. Macular thickness plots of the right and left eye are shown. In the middle row right–left (OD-OS and OS-OD) asymmetry plots are shown and in the bottom row superior–inferior hemifield asymmetry plots are shown. These represent both intereye and intraeye differences. Note the losses (seen in black) in the superior macula of the left eye and the relative preservation of macular thickness in the inferior left eye and superior/inferior macula of the right eye. These losses represent altitudinal loss from nonarteritic ischemic optic neuropathy.
Figure 3
Figure 3
Retrograde loss of macular thickness in a patient with a cerebrovascular accident. A left homonymous hemianopia is shown by visual field testing. Loss of nasal left eye macular thickness and temporal right eye macular thickness is seen below on the macular thickness plots (black arrows). Note these losses respect the vertical (and not horizontal) axis of the fovea. Also the temporal left eye macula and nasal right eye macula are still preserved (seen as yellow on the macular thickness plots).

References

    1. Kerrigan-Baumrind LA, Quigley HA, Pease ME, Kerrigan DF, Mitchell RS. Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Invest Ophthalmol Vis Sci. 2000;41:741–748.
    1. Curcio CA, Allen KA. Topography of ganglion cells in human retina. J Comp Neurol. 1990;300:5–25.
    1. Asrani S, Zeimer R, Goldberg MF, Zou S. Application of rapid scanning retinal thickness analysis in retinal diseases. Ophthalmology. 1997;104:1145–1151.
    1. Zeimer R, Asrani S, Zou S, Quigley H, Jampel H. Quantitative detection of glaucomatous damage at the posterior pole by retinal thickness mapping. A pilot study. Ophthalmology. 1998;105:224–231.
    1. Zeimer R, Shahidi M, Mori M, Zou S, Asrani S. A new method for rapid mapping of the retinal thickness at the posterior pole. Invest Ophthalmol Vis Sci. 1996;37:1994–2001.
    1. Guedes V, Schuman JS, Hertzmark E, Wollstein G, Correnti A, Mancini R, et al. Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes. Ophthalmology. 2003;110:177–189.
    1. Ghasia FF, El-Dairi M, Freedman SF, Rajani A, Asrani S. Reproducibility of spectral-domain optical coherence tomography measurements in adult and pediatric glaucoma. J Glaucoma. 2015;24:55–63.
    1. Kim KE, Yoo BW, Jeoung JW, Park KH. Long-term reproducibility of macular ganglion cell analysis in clinically stable glaucoma patients. Invest Ophthalmol Vis Sci. 2015
    1. Ng DS, Gupta P, Tham YC, Peck CF, Wong TY, Ikram MK, et al. Repeatability of perimacular ganglion cell complex analysis with spectral-domain optical coherence tomography. J Ophthalmol 2015. 2015 605940.
    1. Asrani S, Challa P, Herndon L, Lee P, Stinnett S, Allingham RR. Correlation among retinal thickness, optic disc, and visual field in glaucoma patients and suspects: a pilot study. J Glaucoma. 2003;12:119–128.
    1. Oli A, Joshi D. Can ganglion cell complex assessment on cirrus HD OCT aid in detection of early glaucoma. Saudi J Ophthalmol? 2015;29:201–204.
    1. Mathers K, Rosdahl JA, Asrani S. Correlation of macular thickness with visual fields in glaucoma patients and suspects. J Glaucoma. 2014;23:e98–e104.
    1. Zhang C, Tatham AJ, Weinreb RN, Zangwill LM, Yang Z, Zhang JZ, et al. Relationship between ganglion cell layer thickness and estimated retinal ganglion cell counts in the glaucomatous macula. Ophthalmology. 2014;121:2371–2379.
    1. Araie M, Saito H, Tomidokoro A, Murata H, Iwase A. Relationship between macular inner retinal layer thickness and corresponding retinal sensitivity in normal eyes. Invest Ophthalmol Vis Sci. 2014;55:7199–7205.
    1. Hood DC, Raza AS. Method for comparing visual field defects to local RNFL and RGC damage seen on frequency domain OCT in patients with glaucoma. Biomed Opt Express. 2011;2:1097–1105.
    1. Garway-Heath DF, Caprioli J, Fitzke FW, Hitchings RA. Scaling the hill of vision: the physiological relationship between light sensitivity and ganglion cell numbers. Invest Ophthalmol Vis Sci. 2000;41:1774–1782.
    1. Wang DL, Raza AS, de Moraes CG, Chen M, Alhadeff P, Jarukatsetphorn R, et al. Central glaucomatous damage of the macula can be overlooked by conventional OCT retinal nerve fiber layer thickness analyses. Transl Vis Sci Technol. 2015;4:4.
    1. Asrani SG, Singh IP. Three-dimensional nature of retinal nerve fiber layer defects. J Glaucoma. 2010;19:592–597.
    1. Poinoosawmy D, Fontana L, Wu JX, Bunce CV, Hitchings RA. Frequency of asymmetric visual field defects in normal-tension and high-tension glaucoma. Ophthalmology. 1998;105:988–991.
    1. Asrani S, Rosdahl JA, Allingham RR. Novel software strategy for glaucoma diagnosis: asymmetry analysis of retinal thickness. Arch Ophthalmol. 2011;129:1205–1211.
    1. Um TW, Sung KR, Wollstein G, Yun SC, Na JH, Schuman JS. Asymmetry in hemifield macular thickness as an early indicator of glaucomatous change. Invest Ophthalmol Vis Sci. 2012;53:1139–1144.
    1. Mwanza JC, Durbin MK, Budenz DL, Sayyad FE, Chang RT, Neelakantan A, et al. Glaucoma diagnostic accuracy of ganglion cell-inner plexiform layer thickness: comparison with nerve fiber layer and optic nerve head. Ophthalmology. 2012;119:1151–1158.
    1. Hwang YH, Ahn SI, Ko SJ. Diagnostic ability of macular ganglion cell asymmetry for glaucoma. Clin Experiment Ophthalmol. 2015;43:720–726.
    1. Jeong JS, Kang MG, Kim CY, Kim NR. Pattern of macular ganglion cell-inne plexiform layer defect generated by spectral-domain OCT in glaucoma pa tients and normal subjects. J Glaucoma. 2015;24:583–590.
    1. Kim YK, Yoo BW, Kim HC, Park KH. Automated detection of hemifield differ ence across horizontal raphe on ganglion cell-inner plexiform layer thicknes map. Ophthalmology. 2015;122:2252–2260.
    1. Kim KE, Park KH, Jeoung JW, Kim SH, Kim DM. Severity-dependent association between ganglion cell inner plexiform layer thickness and macular mean sensitivity in open-angle glaucoma. Acta Ophthalmol. 2014;92:e650–e656.
    1. Morooka S, Hangai M, Nukada M, Nakano N, Takayama K, Kimura Y, et al. Wid three-dimensional macular ganglion cell complex imaging with spectral domain optical coherence tomography in glaucoma. Invest Ophthalmol Vis Sci. 2012;53:4805–4812.
    1. Kita Y, Kita R, Takeyama A, Takagi S, Nishimura C, Tomita G. Ability o optical coherence tomography-determined ganglion cell complex thicknes to total retinal thickness ratio to diagnose glaucoma. J Glaucoma. 2013;22:757–762.
    1. Asrani S, Essaid L, Alder BD, Santiago-Turla C. Artifacts in spectral-domain optical coherence tomography measurements in glaucoma. JAMA Ophthalmol. 2014;132:396–402.
    1. Wen JC, Freedman SF, El-Dairi MA, Asrani S. Microcystic macular changes in primary open-angle glaucoma. J Glaucoma. 2014
    1. Moore DB, Jaffe GJ, Asrani S. Retinal nerve fiber layer thickness measurements: uveitis, a major confounding factor. Ophthalmology. 2015;122:511–517.
    1. Rosdahl JA, Asrani S. Glaucoma masqueraders: diagnosis by spectral domain optical coherence tomography. Saudi J Ophthalmol. 2012;26:433–440.
    1. Hess DB, Asrani SG, Bhide MG, Enyedi LB, Stinnett SS, Freedman SF. Macular and retinal nerve fiber layer analysis of normal and glaucomatous eyes in children using optical coherence tomography. Am J Ophthalmol. 2005;139:509–517.
    1. Doshi A, Kreidl KO, Lombardi L, Sakamoto DK, Singh K. Nonprogressive glaucomatous cupping and visual field abnormalities in young Chinese males. Ophthalmology. 2007;114:472–479.
    1. Nakanishi H, Akagi T, Hangai M, Kimura Y, Suda K, Kumagai KK, et al. Sensitivity and specificity for detecting early glaucoma in eyes with high myopia from normative database of macular ganglion cell complex thickness obtained from normal nonmyopic or highly myopic Asian eyes. Graefes Arch Clin Exp Ophthalmol. 2015;253:1143–1152.
    1. Szigeti A, Tátrai E, Varga BE, Szamosi A, DeBuc DC, Nagy ZZ, et al. The effect of axial length on the thickness of intraretinal layers of the macula. PLoS ONE. 2015;10:e0142383.

Source: PubMed

3
Abonnieren