Brain refractive index measured in vivo with high-NA defocus-corrected full-field OCT and consequences for two-photon microscopy

Jonas Binding, Juliette Ben Arous, Jean-François Léger, Sylvain Gigan, Claude Boccara, Laurent Bourdieu, Jonas Binding, Juliette Ben Arous, Jean-François Léger, Sylvain Gigan, Claude Boccara, Laurent Bourdieu

Abstract

Two-photon laser scanning microscopy (2PLSM) is an important tool for in vivo tissue imaging with sub-cellular resolution, but the penetration depth of current systems is potentially limited by sample-induced optical aberrations. To quantify these, we measured the refractive index n' in the somatosensory cortex of 7 rats in vivo using defocus optimization in full-field optical coherence tomography (ff-OCT). We found n' to be independent of imaging depth or rat age. From these measurements, we calculated that two-photon imaging beyond 200 µm into the cortex is limited by spherical aberration, indicating that adaptive optics will improve imaging depth.

Source: PubMed

3
Abonnieren