Prevalence and Outcomes of Acute Hypoxaemic Respiratory Failure in Wales: The PANDORA-WALES Study

Maja Kopczynska, Ben Sharif, Richard Pugh, Igor Otahal, Peter Havalda, Wojciech Groblewski, Ceri Lynch, David George, Jayne Sutherland, Manish Pandey, Phillippa Jones, Maxene Murdoch, Adam Hatalyak, Rhidian Jones, Robert M Kacmarek, Jesús Villar, Tamas Szakmany, On Behalf Of The Pandora-Wales Investigators, Maja Kopczynska, Ben Sharif, Richard Pugh, Igor Otahal, Peter Havalda, Wojciech Groblewski, Ceri Lynch, David George, Jayne Sutherland, Manish Pandey, Phillippa Jones, Maxene Murdoch, Adam Hatalyak, Rhidian Jones, Robert M Kacmarek, Jesús Villar, Tamas Szakmany, On Behalf Of The Pandora-Wales Investigators

Abstract

Background: We aimed to identify the prevalence of acute hypoxaemic respiratory failure (AHRF) in the intensive care unit (ICU) and its associated mortality. The secondary aim was to describe ventilatory management as well as the use of rescue therapies.

Methods: Multi-centre prospective study in nine hospitals in Wales, UK, over 2-month periods. All patients admitted to an ICU were screened for AHRF and followed-up until discharge from the ICU. Data were collected from patient charts on patient demographics, clinical characteristics, management and outcomes.

Results: Out of 2215 critical care admissions, 886 patients received mechanical ventilation. A total of 197 patients met inclusion criteria and were recruited. Seventy (35.5%) were non-survivors. Non-survivors were significantly older, had higher SOFA scores and received more vasopressor support than survivors. Twenty-five (12.7%) patients who fulfilled the Berlin definition of acute respiratory distress syndrome (ARDS) during the ICU stay without impact on overall survival. Rescue therapies were rarely used. Analysis of ventilation showed that median Vt was 7.1 mL/kg PBW (IQR 5.9-9.1) and 21.3% of patients had optimal ventilation during their ICU stay.

Conclusions: One in four mechanically ventilated patients have AHRF. Despite advances of care and better, but not optimal, utilisation of low tidal volume ventilation, mortality remains high.

Keywords: rescue therapies; respiratory failure; survival; ventilation.

Conflict of interest statement

R.M.K. serves as a consultant for Medtronic and Orange Med Inc., and received research grants from Medtronic and Orange Med Inc and provided a web seminar on High Flow Nasal Cannulas and Ventilator Management of the Obese Patient for Nihon Kohden. J.V. received a research grant from Maquet.

Figures

Figure 1
Figure 1
Prevalence and Outcome of Acute Hypoxemic Respiratory Failure in Wales (PANDORA-WALES) recruitment flow chart and eventual study sample. Mechanically ventilated patients who fulfilled study criteria of PaO2/FiO2 ≤ 300 mmHg on invasive mechanical ventilation with a Positive End-Expiratory Pressure (PEEP) of 5 cm H2O or more, and with a FiO2 of 0.3 or more were included in the study. All other patients were ineligible.
Figure 2
Figure 2
(A) VT measurements during the whole ICU stay. (B) PEEP measurements during the whole ICU stay. Absolute numbers are shown above the bars.

References

    1. Villar J., Blanco J., Añón J.M., Santos-Bouza A., Blanch L., Ambrós A., Gandía F., Carriedo D., Mosteiro F., Basaldúa S., et al. The ALIEN study: Incidence and outcome of acute respiratory distress syndrome in the era of lung protective ventilation. Intensive Care Med. 2011;37:1932–1941. doi: 10.1007/s00134-011-2380-4.
    1. Luhr O.R., Antonsen K., Karlsson M., Aardal S., Thorsteinsson A., Frostell C., Bonde J., the ARF Study Group Incidence and Mortality after Acute Respiratory Failure and Acute Respiratory Distress Syndrome in Sweden, Denmark, and Iceland. Am. J. Respir. Crit. Care Med. 1999;159:1849–1861. doi: 10.1164/ajrccm.159.6.9808136.
    1. The ARDS Definition Task Force Acute Respiratory Distress Syndrome: The Berlin Definition of ARDS. JAMA. 2012;307:2526–2533. doi: 10.1001/jama2012.5669.
    1. Villar J., Epidemiology S.S.I.F., Pérez-Méndez L., Blanco J., Anon J.M., Blanch L., Belda J., Santos-Bouza A., Fernández R.L., Kacmarek R.M. A universal definition of ARDS: The PaO2/FiO2 ratio under a standard ventilatory setting—A prospective, multicenter validation study. Intensive Care Med. 2013;39:583–592. doi: 10.1007/s00134-012-2803-x.
    1. Papazian L., Forel J.-M., Gacouin A., Penot-Ragon C., Perrin G., Loundou A., Jaber S., Arnal J.-M., Perez D., Seghboyan J.-M., et al. Neuromuscular Blockers in Early Acute Respiratory Distress Syndrome. N. Engl. J. Med. 2010;363:1107–1116. doi: 10.1056/NEJMoa1005372.
    1. Valta P., Uusaro A., Nunes S., Ruokonen E., Takala J. Acute respiratory distress syndrome: Frequency, clinical course, and costs of care. Crit. Care Med. 1999;27:2367–2374. doi: 10.1097/00003246-199911000-00008.
    1. Azevedo L.C.P., Park M., Salluh J.I.F., Rea-Neto A., Souza-Dantas V.C., Varaschin P., Oliveira M.C., Tierno P.F., Dal-Pizzol F., Silva U.V.A., et al. Clinical outcomes of patients requiring ventilatory support in Brazilian intensive care units: A multicenter, prospective, cohort study. Crit. Care. 2013;17:R63. doi: 10.1186/cc12594.
    1. Sharif B., Lundin R.M., Morgan P., Hall J., Dhadda A., Mann C., Donoghue D., Brownlow E., Hill F., Carr G., et al. Developing a digital data collection platform to measure the prevalence of sepsis in Wales. J. Am. Med. Inform. Assoc. 2016;23:1185–1189. doi: 10.1093/jamia/ocv208.
    1. Bertolini G., Lewandowski K., Bion J., Romand J.-A., Villar J.S., Thorsteinsson A., Damas P., Armaganidis A., Lemaire F., Brun-Buisson C., et al. Epidemiology and outcome of acute lung injury in European intensive care units. Intensive Care Med. 2004;30:51–61. doi: 10.1007/s00134-003-2022-6.
    1. Grimaldi D., Hraiech S., Boutin E., Lacherade J.C., Boissier F., Pham T., Richard J.C., Thille A.W., Ehrmann S., Lascarrou J.B., et al. Hypoxemia in the ICU: Prevalence, treatment, and outcome. Ann. Intensive Care. 2018;8:82. doi: 10.1186/s13613-018-0424-4.
    1. Linko R., Okkonen M., Pettilä V., Perttilä J., Parviainen I., Ruokonen E., Tenhunen J., Ala-Kokko T., Varpula T., The FINNALI-study group Acute respiratory failure in intensive care units. FINNALI: A prospective cohort study. Intensive Care Med. 2009;35:1352–1361. doi: 10.1007/s00134-009-1519-z.
    1. Neto A.S., Barbas C.S.V., Simonis F.D., Artigas-Raventos A., Canet J., Determann R.M., Anstey J., Hedenstierna G., Hemmes S.N.T., Hermans G., et al. Epidemiological characteristics, practice of ventilation, and clinical outcome in patients at risk of acute respiratory distress syndrome in intensive care units from 16 countries (PRoVENT): An international, multicentre, prospective study. Lancet Respir. Med. 2016;4:882–893. doi: 10.1016/S2213-2600(16)30305-8.
    1. Bellani G., Laffey J.G., Pham T., Fan E., Brochard L., Esteban A., Gattinoni L., Van Haren F., Larsson A., McAuley D.F., et al. Epidemiology, Patterns of Care, and Mortality for Patients With Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries. JAMA. 2016;315:788–800. doi: 10.1001/jama.2016.0291.
    1. Laffey J.G., Madotto F., Pham T., Bajwa E.K., Lorente J.A., Jiménez J.I.S., McAuley D.F., Slutsky A.S., Laffey J.G., Bellani G., et al. Geo-economic variations in epidemiology, patterns of care, and outcomes in patients with acute respiratory distress syndrome: Insights from the LUNG SAFE prospective cohort study. Lancet Respir. Med. 2017;5:627–638. doi: 10.1016/S2213-2600(17)30213-8.
    1. Villar J., Pérez-Méndez L., Kacmarek R.M. The Berlin definition met our needs: No. Intensive Care Med. 2016;42:648–650. doi: 10.1007/s00134-016-4242-6.
    1. Pham T., Neto A.S., Pelosi P., Laffey J.G., De Haro C., Lorente M.D.C., Bellani G., Fan E., Brochard L.J., Pesenti A., et al. Outcomes of Patients Presenting with Mild Acute Respiratory Distress Syndrome. Anesthesiology. 2019;130:263–283. doi: 10.1097/ALN.0000000000002508.
    1. Hsu C.-H., Hung Y., Chu K.-A., Chen C.-F., Yin C.-H., Lee C.-C. Prognostic nomogram for elderly patients with acute respiratory failure receiving invasive mechanical ventilation: A nationwide population-based cohort study in Taiwan. Sci. Rep. 2020;10:1–10. doi: 10.1038/s41598-020-70130-x.
    1. Schmidt M.F.S., Amaral A.C.K.B., Fan E., Rubenfeld G. Driving Pressure and Hospital Mortality in Patients without ARDS: A Cohort Study. Chest. 2017;153:46–54. doi: 10.1016/j.chest.2017.10.004.
    1. Urner M., Jüni P., Hansen B., Wettstein M.S., Ferguson N.D., Fan E. Time-varying intensity of mechanical ventilation and mortality in patients with acute respiratory failure: A registry-based, prospective cohort study. Lancet Respir. Med. 2020;8:905–913. doi: 10.1016/S2213-2600(20)30325-8.
    1. Rezoagli E., Gatti S., Villa S., Villa G., Muttini S., Rossi F., Faraldi L., Fumagalli R., Grasselli G., Foti G., et al. ABO blood types and major outcomes in patients with acute hypoxaemic respiratory failure: A multicenter retrospective cohort study. PLoS ONE. 2018;13:e0206403. doi: 10.1371/journal.pone.0206403.
    1. Szakmany T., Walters A.M., Pugh R., Battle C., Berridge D.M., Lyons R.A. Risk Factors for 1-Year Mortality and Hospital Utilization Patterns in Critical Care Survivors. Crit. Care Med. 2019;47:15–22. doi: 10.1097/CCM.0000000000003424.
    1. Sakr Y., Moreira C.L., Rhodes A., Ferguson N.D., Kleinpell R., Pickkers P., Kuiper M.A., Lipman J., Vincent J.-L. The Impact of Hospital and ICU Organizational Factors on Outcome in Critically Ill Patients. Crit. Care Med. 2015;43:519–526. doi: 10.1097/CCM.0000000000000754.
    1. Capuzzo M., Volta C.A., Tassinati T., Moreno R.P., Valentin A., Guidet B., Iapichino G., Martin C., Perneger T., Combescure C., et al. Hospital mortality of adults admitted to Intensive Care Units in hospitals with and without Intermediate Care Units: A multicentre European cohort study. Crit. Care. 2014;18:1–15. doi: 10.1186/s13054-014-0551-8.
    1. McNicholas B.A., Madotto F., Pham T., Rezoagli E., Masterson C.H., Horie S., Bellani G., Brochard L., Laffey J.G. Demographics, management and outcome of women and men with Acute Respiratory Distress Syndrome in the LUNG SAFE prospective cohort study. Eur. Respir. J. 2019;54:1900609. doi: 10.1183/13993003.00609-2019.
    1. Acute Respiratory Distress Syndrome Network. Brower R.G., Matthay M.A., Morris A., Schoenfeld D., Thompson B.T., Wheeler A. Ventilation with Lower Tidal Volumes as Compared with Traditional Tidal Volumes for Acute Lung Injury and the Acute Respiratory Distress Syndrome. N. Engl. J. Med. 2000;342:1301–1308. doi: 10.1056/NEJM200005043421801.
    1. Tenney S.M., Remmers J.E. Comparative Quantitative Morphology of the Mammalian Lung: Diffusing Area. Nat. Cell Biol. 1963;197:54–56. doi: 10.1038/197054a0.
    1. Calfee C.S., Delucchi K.L., Sinha P., Matthay M.A., Hackett J., Shankar-Hari M., McDowell C., Laffey J.G., O’Kane C.M., McAuley D.F., et al. Acute respiratory distress syndrome subphenotypes and differential response to simvastatin: Secondary analysis of a randomised controlled trial. Lancet Respir. Med. 2018;6:691–698. doi: 10.1016/S2213-2600(18)30177-2.
    1. Davies J.D., Senussi M.H., Mireles-Cabodevila E. Should a Tidal Volume of 6 mL/kg Be Used in All Patients? Respir. Care. 2016;61:774–790. doi: 10.4187/respcare.04651.
    1. Lanspa M.J., Peltan I.D., Jacobs J., Sorensen J.S., Carpenter L., Ferraro J.P., Brown S.M., Berry J.G., Srivastava R., Grissom C.K. Driving pressure is not associated with mortality in mechanically ventilated patients without ARDS. Crit. Care. 2019;23:424–428. doi: 10.1186/s13054-019-2698-9.
    1. Simonis F.D., Serpa Neto A., Binnekade J.M., Braber A., Bruin K.C.M., Determann R.M., Goekoop G.-J., Heidt J., Horn J., Innemee G., et al. Effect of a Low vs Intermediate Tidal Volume Strategy on Ventilator-Free Days in Intensive Care Unit Patients Without ARDS A Randomized Clinical Trial. JAMA. 2018;320:1872–1880. doi: 10.1001/jama.2018.14280.
    1. Guérin C., Reignier J., Richard J.-C., Beuret P., Gacouin A., Boulain T., Mercier E., Badet M., Mercat A., Baudin O., et al. Prone Positioning in Severe Acute Respiratory Distress Syndrome. N. Engl. J. Med. 2013;368:2159–2168. doi: 10.1056/NEJMoa1214103.
    1. Hodgson C.L., Goligher E.C., Young M.E., Keating J.L., Holland A.E., Romero L., Bradley S.J., Tuxen D. Recruitment manoeuvres for adults with acute respiratory distress syndrome receiving mechanical ventilation. Cochrane Database Syst. Rev. 2016;11:CD006667. doi: 10.1002/14651858.cd006667.pub3.
    1. Constantin J.-M., Jabaudon M., Lefrant J.-Y., Jaber S., Quenot J.-P., Langeron O., Ferrandière M., Grelon F., Seguin P., Ichai C., et al. Personalised mechanical ventilation tailored to lung morphology versus low positive end-expiratory pressure for patients with acute respiratory distress syndrome in France (the LIVE study): A multicentre, single-blind, randomised controlled trial. Lancet Respir. Med. 2019;7:870–880. doi: 10.1016/S2213-2600(19)30138-9.
    1. Cavalcanti A.B., Suzumura É.A., Laranjeira L.N., Paisani D.D.M., Damiani L.P., Guimarães H.P., Romano E.R., Regenga M.D.M., Taniguchi L.N.T., de Oliveira R.P., et al. Effect of Lung Recruitment and Titrated Positive End-Expiratory Pressure (PEEP) vs Low PEEP on Mortality in Patients with Acute Respiratory Distress Syndrome. JAMA. 2017;318:1335–1345. doi: 10.1001/jama.2017.14171.
    1. National Heart, Lung, and Blood Institute PETAL Clinical Trials Network. Moss M., Huang D.T., Brower R.G., Ferguson N.D., Ginde A.A., Gong M.N., Grissom C.K., Gundel S., Hayden D., et al. Early Neuromuscular Blockade in the Acute Respiratory Distress Syndrome. N. Engl. J. Med. 2019;380:1997–2008. doi: 10.1056/NEJMoa1901686.
    1. Szakmany T., Pugh R., Kopczynska M., Lundin R.M., Sharif B., Morgan P., Ellis G., Abreu J., Kulikouskaya S., Bashir K., et al. Defining sepsis on the wards: Results of a multi-centre point-prevalence study comparing two sepsis definitions. Anaesthesia. 2017;73:195–204. doi: 10.1111/anae.14062.
    1. Kopczynska M., Sharif B., Unwin H., Lynch J., Forrester A., Zeicu C., Cleaver S., Kulikouskaya S., Chandy T., Ang E., et al. Real World Patterns of Antimicrobial Use and Microbiology Investigations in Patients with Sepsis outside the Critical Care Unit: Secondary Analysis of Three Nation-Wide Point Prevalence Studies. J. Clin. Med. 2019;8:1337. doi: 10.3390/jcm8091337.
    1. Sinha P., Calfee C.S., Cherian S., Brealey D., Cutler S., King C., Killick C., Richards O., Cheema Y., Bailey C., et al. Prevalence of phenotypes of acute respiratory distress syndrome in critically ill patients with COVID-19: A prospective observational study. Lancet Respir. Med. 2020 doi: 10.1016/S2213-2600(20)30366-0.
    1. Bos L.D.J., Paulus F., Vlaar A.P.J., Beenen L.F.M., Schultz M.J. Subphenotyping Acute Respiratory Distress Syndrome in Patients with COVID-19: Consequences for Ventilator Management. Ann. Am. Thorac. Soc. 2020;17:1161–1163. doi: 10.1513/AnnalsATS.202004-376RL.

Source: PubMed

3
Abonnieren