Phenotypic flexibility as key factor in the human nutrition and health relationship

Ben van Ommen, Jan van der Greef, Jose Maria Ordovas, Hannelore Daniel, Ben van Ommen, Jan van der Greef, Jose Maria Ordovas, Hannelore Daniel

Abstract

Metabolic adaptation to a disturbance of homeostasis is determined by a series of interconnected physiological processes and molecular mechanisms that can be followed in space (i.e., different organs or organelles) and in time. The amplitudes of these responses of this "systems flexibility network" determine to what extent the individual can adequately react to external challenges of varying nature and thus determine the individual's health status and disease predisposition. Connected pathways and regulatory networks act as "adaptive response systems" with metabolic and inflammatory processes as a core-but embedded into psycho-neuro-endocrine control mechanisms that in their totality define the phenotypic flexibility in an individual. Optimal metabolic health is thus the orchestration of all mechanisms and processes that maintain this flexibility in an organism as a phenotype. Consequently, onset of many chronic metabolic diseases results from impairment or even loss of flexibility in parts of the system. This also means that metabolic diseases need to be diagnosed and treated from a systems perspective referring to a "systems medicine" approach. This requires a far better understanding of the mechanisms involved in maintaining, optimizing and restoring phenotypic flexibility. Although a loss of flexibility in a specific part of the network may promote pathologies, this not necessarily takes place in the same part because the system compensates. Diagnosis at systems level therefore needs the quantification of the response reactions of all relevant parts of the phenotypic flexibility system. This can be achieved by disturbing the homeostatic system by any challenge from extended fasting, to intensive exercise or a caloric overload.

Figures

Fig. 1
Fig. 1
Main processes and events involved in (decrease of) phenotypic flexibility and the resulting (patho-)physiological consequences (adapted from Lusis et al. 2008). Multiple organs and processes are involved in maintaining homeostasis in aspects of metabolism, all of them are interacting with each other and most of them are reversible
Fig. 2
Fig. 2
Whole-body metabolic condition and control circuits characterizing a catabolic (fasting) as compared to anabolic/postprandial state with major changes in hormone and metabolite levels which define the etches of a metabolic space and in their time-dependence also serve as a measure of phenotypic flexibility

References

    1. Beaudoin MS, Robinson LE, Graham TE. An oral lipid challenge and acute intake of caffeinated coffee additively decrease glucose tolerance in healthy men. J Nutr. 2011;141(4):574–581. doi: 10.3945/jn.110.132761.
    1. Blaak EE, Hul G, Verdich C, Stich V, Martinez A, Petersen M, Feskens EFM, et al. Fat oxidation before and after a high fat load in the obese insulin-resistant state. J Clin Endocrinol Metab. 2006;91(4):1462–1469. doi: 10.1210/jc.2005-1598.
    1. Blaak EE, Antoine J-M, Benton D, Björck I, Bozzetto L, Brouns F, Diamant M, et al. Impact of postprandial glycaemia on health and prevention of disease. Obes Rev. 2012;13(10):923–984. doi: 10.1111/j.1467-789X.2012.01011.x.
    1. Bondia-Pons I, Maukonen J, Mattila I, Rissanen A, Saarela M, Kaprio J, Hakkarainen A et al (2014) Metabolome and fecal microbiota in monozygotic twin pairs discordant for weight: a big mac challenge. FASEB J, 1–11. doi:10.1096/fj.14-250167
    1. Bosch JP, Lauer A, Glabman S. Short-term protein loading in assessment of patients with renal disease. Am J Med. 1984;77(5):873–879. doi: 10.1016/0002-9343(84)90529-1.
    1. Chan DC, Pang J, Romic G, Watts GF. Postprandial hypertriglyceridemia and cardiovascular disease: current and future therapies. Curr Atheroscler Rep. 2013;15(3):309. doi: 10.1007/s11883-013-0309-9.
    1. Dallmann R, Viola AU, Tarokh L, Cajochen C, Brown SA. The human circadian metabolome. Proc Natl Acad Sci USA. 2012;109(7):2625–2629. doi: 10.1073/pnas.1114410109.
    1. De Wit NJW, Afman LA, Mensink M, Müller M (2012) Phenotyping the effect of diet on non-alcoholic fatty liver disease. J Hepatol xxx (6). European Association for the Study of the Liver: 1370–73. doi:10.1016/j.jhep.2012.07.003
    1. Derosa G, Ferrari I, D’Angelo A, Salvadeo SAT, Fogari E, Gravina A, Mereu R, et al. Oral fat load effects on inflammation and endothelial stress markers in healthy subjects. Heart Vess. 2009;24(3):204–210. doi: 10.1007/s00380-008-1109-y.
    1. Derosa G, D’Angelo A, Salvadeo SAT, Ferrari I, Fogari E, Gravina A, Mereu R, et al. Oral glucose tolerance test effects on endothelial inflammation markers in healthy subjects and diabetic patients. Horm Metab Res. 2010;42(1):8–13. doi: 10.1055/s-0029-1237728.
    1. Eckel-Mahan KL, Patel VR, Mohney RP, Vignola KS, Baldi P, Sassone-Corsi P (2012) Coordination of the transcriptome and metabolome by the circadian clock. Proc Natl Acad Sci USA. doi:10.1073/pnas.1118726109
    1. Felig P, Marliss E, Cahill GF. Plasma amino acid levels and insulin secretion in obesity. N Eng J Med. 1969;281(15):811–816. doi: 10.1056/NEJM196910092811503.
    1. Fernandes J, van de Kamer JH. Hexose and protein tolerance tests in children with liver glycogenosis caused by a deficiency of the debranching enzyme system. Pediatrics. 1968;41(5):935–944.
    1. Fielding B. Tracing the fate of dietary fatty acids: metabolic studies of postprandial lipaemia in human subjects. Proc Nutr Soc. 2011;70(3):342–350. doi: 10.1017/S002966511100084X.
    1. Fischer LM, da Costa KA, Galanko J, Sha W, Stephenson B, Vick J, Zeisel SH. Choline intake and genetic polymorphisms influence choline metabolite concentrations in human breast milk and plasma. Am J Clin Nutr. 2010;92(2):336–346. doi: 10.3945/ajcn.2010.29459.
    1. Fujioka Y, Ishikawa Y. Remnant lipoproteins as strong key particles to atherogenesis. J Atheroscler Thromb. 2009;16(3):145–154. doi: 10.5551/jat.E598.
    1. Geneontology.
    1. Ho JE, Larson MG, Vasan RS, Ghorbani A, Cheng S, Rhee EP, Florez JC, Clish CB, Gerszten RE, Wang TJ. Metabolite profiles during oral glucose challenge. Diabetes. 2013;62(8):2689–2698. doi: 10.2337/db12-0754.
    1. Hoang HH, Padgham SV, Meininger CJ. l-Arginine, tetrahydrobiopterin, nitric oxide and diabetes. Curr Opin Clin Nutr Metab Care. 2013;16(1):76–82. doi: 10.1097/MCO.0b013e32835ad1ef.
    1. Jones A, McMillan MR, Jones RW, Kowalik GT, Steeden JA, Deanfield JE, Pruessner JC, Taylor AM, Muthurangu V. Adiposity is associated with blunted cardiovascular, neuroendocrine and cognitive responses to acute mental stress. PloS One. 2012;7(6):e39143. doi: 10.1371/journal.pone.0039143.
    1. Kaore SN, Amane HS, Kaore NM. Citrulline: pharmacological perspectives and its role as an emerging biomarker in future. Fundam Clin Pharmacol. 2013;27(1):35–50. doi: 10.1111/j.1472-8206.2012.01059.x.
    1. Krug S, Kastenmüller G, Stückler F, Rist MJ, Skurk T, Sailer M, Raffler J, et al (2012) The dynamic range of the human metabolome revealed by challenges. FASEB J. doi:10.1096/fj.11-198093
    1. Laus MF, Duarte Manhas Ferreira Vales L, Braga Costa TM, Sousa Almeida S (2011) Early postnatal protein-calorie malnutrition and cognition: a review of human and animal studies. Int J Environ Res Public Health 8(2):590–612. doi:10.3390/ijerph8020590
    1. Lawton KA, Berger A, Mitchell M, Milgram KE, Evans AM, Guo L, Hanson RW, Kalhan SC, Ryals JA, Milburn MV (2008) Analysis of the adult human plasma metabolome. Pharmacogenomics 9 (1744-8042 (Electronic) LA–eng PT–Comparative Study PT–Journal Article SB–IM). Metabolon, Inc, 800 Capitola Dr. Suite 1, Durham, NC 27713, USA: 383–97. PM:18384253
    1. Liang W, Lindeman JH, Menke AL, Koonen DP, Morrison M, Havekes LM, van den Hoek AM, Kleemann R (2014) Metabolically induced liver inflammation leads to NASH and differs from LPS- or IL-1β-induced chronic inflammation. Lab Invest 94(5). Nature Publishing Group: 491–502. doi:10.1038/labinvest.2014.11
    1. Lichtenstein L, Mattijssen F, de Wit NJ, Georgiadi A, Hooiveld GJ, van der Meer R, He Y, et al. Angptl4 protects against severe proinflammatory effects of saturated fat by inhibiting fatty acid uptake into mesenteric lymph node macrophages. Cell Metab. 2010;12(6):580–592. doi: 10.1016/j.cmet.2010.11.002.
    1. Lusis AJ, Attie AD, Reue K. Metabolic syndrome: from epidemiology to systems biology. Nat Rev Genet. 2008;9(11):819–830. doi: 10.1038/nrg2468.
    1. Malaguarnera M, Gargante MP, Russo C, Antic T, Vacante M, Malaguarnera M, Avitabile T, Volti GL, Galvano F. L-Carnitine supplementation to diet: a new tool in treatment of nonalcoholic steatohepatitis: a randomized and controlled clinical trial. Am J Gastroenterol. 2010;105(6):1338–1345. doi: 10.1038/ajg.2009.719.
    1. McCormack SE, McCarthy MA, Harrington SG, Farilla L, Hrovat MI, Systrom DM, Thomas BJ, et al. Effects of exercise and lifestyle modification on fitness, insulin resistance, skeletal muscle oxidative phosphorylation and intramyocellular lipid content in obese children and adolescents. Pediatr Obes. 2013
    1. Medina-Gomez G, Gray SL, Yetukuri L, Shimomura K, Virtue S, Campbell M, Curtis RK, et al (2007) PPAR gamma 2 prevents lipotoxicity by controlling adipose tissue expandability and peripheral lipid metabolism. PLoS.Genet 3(1553–7404 (Electronic) LA–eng PT–Comparative Study PT–Journal Article PT–Research Support, Non-U.S. Gov’t RN–0 (Lipids) RN–0 (PPAR gamma) RN–11061-68-0 (Insulin) SB–IM). Department of Clinical Biochemistry, Histopathology, University of Cambridge/Addenbrooke’s Hospital, Cambridge, United Kingdom: e64. PM:17465682
    1. Menni C, Fauman E, Erte I, Perry JRB, Kastenmüller G, Shin S-Y, Petersen A-K, et al. Biomarkers for type 2 diabetes and impaired fasting glucose using a nontargeted metabolomics approach. Diabetes. 2013;62(12):4270–4276. doi: 10.2337/db13-0570.
    1. Mihas C, Kolovou GD, Mikhailidis DP, Kovar J, Lairon D, Nordestgaard BG, Chye Ooi T, et al. Diagnostic value of postprandial triglyceride testing in healthy subjects: a meta-analysis. Curr Vasc Pharmacol. 2011;9(3):271–280. doi: 10.2174/157016111795495530.
    1. Musso G, Gambino R, Pacini G, De Michieli F, Cassader M. Prolonged saturated fat-induced, glucose-dependent insulinotropic polypeptide elevation is associated with adipokine imbalance and liver injury in nonalcoholic steatohepatitis: dysregulated enteroadipocyte axis as a novel feature of fatty liver. Am J Clin Nutr. 2009;89(2):558–567. doi: 10.3945/ajcn.2008.26720.
    1. Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, Haqq AM, et al (2009) A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab 9(4). Elsevier Ltd: 311–326. doi:10.1016/j.cmet.2009.02.002
    1. Noland RC, Koves TR, Seiler SE, Lum H, Lust RM, Ilkayeva O, Stevens RD, Hegardt FG, Muoio DM. Carnitine insufficiency caused by aging and overnutrition compromises mitochondrial performance and metabolic control. J Biol Chem. 2009;284(34):22840–22852. doi: 10.1074/jbc.M109.032888.
    1. Osborn O, Olefsky JM (2012) The cellular and signaling networks linking the immune system and metabolism in disease. Nat Med 18(3). Nature Publishing Group: 363–374. doi:10.1038/nm.2627
    1. Pellis L, Erk MJ, Ommen B, Bakker GCM, Hendriks HFJ, Cnubben NHP, Kleemann R et al (2011) Plasma metabolomics and proteomics profiling after a postprandial challenge reveal subtle diet effects on human metabolic status. Metabolomics. doi:10.1007/s11306-011-0320-5
    1. Phillips CM, Goumidi L, Bertrais S, Ferguson JF, Field MR, Kelly ED, Mehegan J, et al. Additive effect of polymorphisms in the IL-6, LTA, and TNF-alpha genes and plasma fatty acid level modulate risk for the metabolic syndrome and its components. J Clin Endocrinol Metab. 2010;95(3):1386–1394. doi: 10.1210/jc.2009-1081.
    1. Rutlegde AC, Adeli K. Fructose and the metabolic syndrome: pathophysiology and molecular mechanisms. Nutr Rev. 2007;65(6):13–23. doi: 10.1301/nr.2007.jun.S13-S23.
    1. Shaham O, Wei R, Wang TJ, Ricciardi C, Lewis GD, Vasan RS, Carr SA, Thadhani R, Gerszten RE, Mootha VK (2008) Metabolic profiling of the human response to a glucose challenge reveals distinct axes of insulin sensitivity. Mol Syst Biol 4(214). EMBO and Nature Publishing Group: 214. doi:10.1038/msb.2008.50
    1. Spégel P, Danielsson APH, Bacos K, Nagorny CLF, Moritz T, Mulder H, Filipsson K. Metabolomic analysis of a human oral glucose tolerance test reveals fatty acids as reliable indicators of regulated metabolism. Metabolomics. 2009;6(1):56–66. doi: 10.1007/s11306-009-0177-z.
    1. Steptoe A, Dockray S, Wardle J. Positive affect and psychobiological processes relevant to health. J Pers. 2009;77(6):1747–1776. doi: 10.1111/j.1467-6494.2009.00599.x.
    1. Van Dijk SJ, Mensink M, Esser D, Feskens EJM, Müller M, Afman LA. Responses to high-fat challenges varying in fat type in subjects with different metabolic risk phenotypes: a randomized trial. PloS One. 2012;7(7):e41388. doi: 10.1371/journal.pone.0041388.
    1. Van Ommen B, Keijer J, Kleemann R, Elliott R, Drevon CA, McArdle H, Gibney M, Müller M. The challenges for molecular nutrition research 2: quantification of the nutritional phenotype. Genes Nutr. 2008;3(2):51–59. doi: 10.1007/s12263-008-0084-3.
    1. Van Ommen B, Keijer J, Heil SG, Kaput J (2009) Challenging homeostasis to define biomarkers for nutrition related health. Mol Nutr Food Res 53(July). RIKILT-Institute of Food Safety, Wageningen University and Research Centre, Wageningen, The Netherlands. ben.vanommen@tno.nl: 795–804. PM:19517455
    1. Vance DE (2013) Phospholipid methylation in mammals: from biochemistry to physiological function. Biochim Biophys Acta. doi:10.1016/j.bbamem.2013.10.018
    1. Virtue S, Vidal-Puig A (2010) Adipose tissue expandability, lipotoxicity and the metabolic syndrome–an allostatic perspective. Biochim Biophys Acta 1801(3). Elsevier B.V. 338–49. doi:10.1016/j.bbalip.2009.12.006
    1. Vis DJ, Westerhuis JA, Jacobs DM, van Duynhoven JPM, Wopereis S, van Ommen B, Hendriks MMWB, Smilde AK (2014) Analyzing metabolomics-based challenge tests. Metabolomics. doi:10.1007/s11306-014-0673-7
    1. Wopereis S, Rubingh CM, van Erk MJ, Verheij ER, van Vliet T, Cnubben NHP, Smilde AK, van der Greef J, van Ommen B, Hendriks HFJ (2009) Metabolic profiling of the response to an oral glucose tolerance test detects subtle metabolic changes. PLoS ONE 4(2). Public Library of Science: e4525. doi:10.1371/journal.pone.0004525
    1. Wopereis S, Wolvers D, van Erk M, Gribnau M, Kremer B, van Dorsten FA, Boelsma E, et al. Assessment of inflammatory resilience in healthy subjects using dietary lipid and glucose challenges. BMC Med Genom. 2013;6(1):44. doi: 10.1186/1755-8794-6-44.
    1. Zhao X, Peter A, Fritsche J, Elcnerova M, Fritsche A, Häring H-U, Schleicher ED, Xu G, Lehmann R. Changes of the plasma metabolome during an oral glucose tolerance test: is there more than glucose to look at? Am J Physiol Endocrinol Metab. 2009;296(2):E384–E393. doi: 10.1152/ajpendo.90748.2008.

Source: PubMed

3
Abonnieren