Percutaneous Injection of Strontium Containing Hydroxyapatite versus Polymethacrylate Plus Short-Segment Pedicle Screw Fixation for Traumatic A2- and A3/AO-Type Fractures in Adults

Panagiotis Korovessis, Eva Mpountogianni, Vasileios Syrimpeis, Andreas Baikousis, Vasileios Tsekouras, Panagiotis Korovessis, Eva Mpountogianni, Vasileios Syrimpeis, Andreas Baikousis, Vasileios Tsekouras

Abstract

Introduction: Polymethacrylate (PMMA) is commonly used in vertebroplasty and balloon kyphoplasty, but its use has been associated with complications. This study tests three hypotheses: (1) whether strontium hydroxyapatite (Sr-HA) is equivalent to PMMA for restoring thoracolumbar vertebral body fractures, (2) whether the incidence of PMMA leakage is similar to that of Sr-HA leakage, and (3) whether Sr-HAis is resorbed and substituted by new vertebral bone.

Materials and methods: Two age- and sex-matched groups received short percutaneous pedicle screw fixation plus PEEK implant (Kiva, VCF Treatment System, Benvenue Medical, Santa Clara, CA, USA) filled with either Sr-HA (Group A) or PMMA (Group B) after A2- and A3/AO-type thoracolumbar vertebral body fractures. The Visual Analog Scale (VAS) score and imaging parameters, which included segmental kyphosis angle (SKA), vertebral body height ratios (VBHr), spinal canal encroachment (SCE), bone cement leakage, and Sr-HA resorption, were compared between the two groups.

Results: The average follow-up was 28 months. No differences in VAS scores between Groups A and B were observed at baseline. Baseline back pain in both groups improved significantly three months postoperatively. Anterior, middle, and posterior VBHr did not differ between the two groups at any time point. SKA was improved insignificantly in both groups. SCE decreased insignificantly in both groups on 12-month follow-up using computed tomography (CT). PMMA leakage was observed in one patient, while no Sr-HA paste leakages occurred. Sr-HA resorption and replacement with vertebral bone were observed, and no new fractures were observed.

Conclusions: As all hypotheses were confirmed, the authors recommend the use of Sr-HA instead of PMMA in traumatic spine fractures, although more patients and longer follow-up will be needed to strengthen these results. This trial is registered with NCT03431519.

Figures

Figure 1
Figure 1
Figure 2
Figure 2

References

    1. Eck J. C., Nachtigall D., Humphreys S. C., Hodges S. D. Comparison of vertebroplasty and balloon kyphoplasty for treatment of vertebral compression fractures: a meta-analysis of the literature. The Spine Journal. 2008;8(3):488–497. doi: 10.1016/j.spinee.2007.04.004.
    1. Korovessis P., Hadjipavlou A., Repantis T. Minimal invasive short posterior instrumentation plus balloon kyphoplasty with calcium phosphate for burst and severe compression lumbar fractures. The Spine Journal. 2008;33(6):658–667. doi: 10.1097/BRS.0b013e318166e0bb.
    1. Mousa W. F., Kobayashi M., Shinzato S., et al. Biological and mechanical properties of PMMA-based bioactive bone cements. Biomaterials. 2000;21(21):2137–2146. doi: 10.1016/S0142-9612(00)00097-1.
    1. Lewis G. Injectable bone cements for use in vertebroplasty and kyphoplasty: state-of-the-art review. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2006;76(2):456–468. doi: 10.1002/jbm.b.30398.
    1. Cheung K. M. C., Lu W. W., Luk K. D. K., et al. Vertebroplasty by use of a strontium-containing bioactive bone cement. The Spine Journal. 2005;30(17):S84–S91. doi: 10.1097/01.brs.0000175183.57733.e5.
    1. Lu W. W., C. Cheung K. M., Li Y. W., et al. Bioactive bone cement as a principal fixture for spinal burst fracture: An in vitro biomechanical and morphologic study. The Spine Journal. 2001;26(24):2684–2690. doi: 10.1097/00007632-200112150-00010.
    1. Li Y. W., Leong J. C. Y., Lu W. W., et al. A novel injectable bioactive bone cement for spinal surgery: A developmental and preclinical study. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2000;52(1):164–170. doi: 10.1002/1097-4636(200010)52:1<164::AID-JBM21>;2-R.
    1. Bonnelye E., Chabadel A., Saltel F., Jurdic P. Dual effect of strontium ranelate: Stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro. Bone. 2008;42(1):129–138. doi: 10.1016/j.bone.2007.08.043.
    1. Dahl S. G., Allain P., Marie P. J., et al. Incorporation and distribution of strontium in bone. Bone. 2001;28(4):446–453. doi: 10.1016/S8756-3282(01)00419-7.
    1. Marie P. J., Ammann P., Boivin G., Rey C. Mechanisms of action and therapeutic potential of strontium in bone. Calcified Tissue International. 2001;69(3):121–129. doi: 10.1007/s002230010055.
    1. Trouvin A. P., Goeb V. Receptor activator of nuclear factor-kappaB ligand and osteoprotegerin: maintaining the balance to prevent bone loss. Clinical Interventions in Aging. 2010;5:345–354.
    1. Kühn K. Determination of The Setting Temperature/Time According to ISO 5833: Bone Cements. Berlin, Germany: Springer; 2000.
    1. Korovessis P., Vardakastanis K., Repantis T., Vitsas V. Transpedicular vertebral body augmentation reinforced with pedicle screw fixation in fresh traumatic A2 and A3 lumbar fractures: comparison between two devices and two bone cements. European Journal of Orthopaedic Surgery and Traumatology. 2014;24(supplement 1):183–191. doi: 10.1007/s00590-013-1296-9.
    1. Panjabi M. M., White A. A. Biomechanics in The Musculoskeletal System. Philadelphia, Penn, USA: Churchill Livingstone; 2001.
    1. Wong C. T., Lu W. W., Chan W. K., et al. In vivo cancellous bone remodeling on a strontium-containing hydroxyapatite (sr-HA) bioactive cement. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2004;68A(3):513–521. doi: 10.1002/jbm.a.20089.
    1. Korovessis P., Repantis T., Miller L. E., Block J. E. Initial clinical experience with a novel vertebral augmentation system for treatment of symptomatic vertebral compression fractures: A case series of 26 consecutive patients. BMC Musculoskeletal Disorders. 2011;12, article 206 doi: 10.1186/1471-2474-12-206.
    1. McLain R. F., Sparling E., Benson D. R. Early failure of short-segment pedicle instrumentation for thoracolumbar fractures. A preliminary report. Journal of Bone and Joint Surgery - Series A. 1993;75(2):162–167. doi: 10.2106/00004623-199302000-00002.
    1. McCormack T., Karaikovic E., Gaines R. W. The load sharing classification of spine fractures. The Spine Journal. 1994;19(15):1741–1744. doi: 10.1097/00007632-199408000-00014.
    1. Vasconcelos I. F., Pimenta M. A., Sombra A. S. B. Optical properties of Bi12SiO20 (BSO) and Bi12TiO20 (BTO) obtained by mechanical alloying. Journal of Materials Science. 2001;36(3):587–592. doi: 10.1023/A:1004804000723.
    1. Adebanjo O. A., Anandatheerthavarada H. K., Koval A. P., et al. A new function for CD38/ADP-ribosyl cyclase in nuclear Ca2+ homeostasis. Nature Cell Biology. 1999;1(7):409–414. doi: 10.1038/15640.
    1. Romieu G., Garric X., Munier S., Vert M., Boudeville P. Calcium-strontium mixed phosphate as novel injectable and radio-opaque hydraulic cement. Acta Biomaterialia. 2010;6(8):3208–3215. doi: 10.1016/j.actbio.2010.02.008.
    1. Gentleman E., Fredholm Y. C., Jell G., et al. The effects of strontium-substituted bioactive glasses on osteoblasts and osteoclasts in vitro. Biomaterials. 2010;31(14):3949–3956. doi: 10.1016/j.biomaterials.2010.01.121.
    1. Okada Y., Kawanabe K., Fujita H., Nishio K., Nakamura T. Repair of segmental bone defects using bioactive bone cement: Comparison with PMMA bone cement. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 1999;47(3):353–359. doi: 10.1002/(SICI)1097-4636(19991205)47:3<353::AID-JBM9>;2-G.
    1. Senaha Y., Nakamura T., Tamura J., Kawanabe K., Iida H., Yamamuro T. Intercalary replacement of canine femora using a new bioactive bone cement. The Journal of Bone & Joint Surgery. 1996;78(1):26–31.
    1. Chen Q. Z., Wong C. T., Lu W. W., Cheung K. M. C., Leong J. C. Y., Luk K. D. K. Strengthening mechanisms of bone bonding to crystalline hydroxyapatite in vivo. Biomaterials. 2004;25(18):4243–4254. doi: 10.1016/j.biomaterials.2003.11.017.
    1. Evis Z., Webster T. J. Nanosize hydroxyapatite: Doping with various ions. Advances in Applied Ceramics. 2011;110(5):311–320. doi: 10.1179/1743676110Y.0000000005.
    1. Terra J., Dourado E. R., Eon J., Ellis D. E., Gonzalez G., Rossi A. M. The structure of strontium-doped hydroxyapatite: an experimental and theoretical study. Physical Chemistry Chemical Physics. 2009;11(3):568–577. doi: 10.1039/B802841A.
    1. Zhang W., Shen Y., Pan H., et al. Effects of strontium in modified biomaterials. Acta Biomaterialia. 2011;7(2):800–808. doi: 10.1016/j.actbio.2010.08.031.
    1. Canalis E., Hott M., Deloffre P., Tsouderos Y., Marie P. J. The divalent strontium salt S12911 enhances bone cell replication and bone formation in vitro. Bone. 1996;18(6):517–523. doi: 10.1016/8756-3282(96)00080-4.
    1. Buehler J., Chappuis P., Saffar J. L., Tsouderos Y., Vignery A. Strontium ranelate inhibits bone resorption while maintaining bone formation in alveolar bone in monkeys (Macaca fascicularis) Bone. 2001;29(2):176–179. doi: 10.1016/S8756-3282(01)00484-7.
    1. Pors Nielsen S. The biological role of strontium. Bone. 2004;35(3):583–588. doi: 10.1016/j.bone.2004.04.026.
    1. Grynpas M. D., Hamilton E., Cheung R., et al. Strontium increases vertebral bone volume in rats at a low dose that does not induce detectable mineralization defect. Bone. 1996;18(3):253–259. doi: 10.1016/8756-3282(95)00484-X.
    1. Cianferotti L., D'Asta F., Brandi M. L. A review on strontium ranelate long-term antifracture efficacy in the treatment of postmenopausal osteoporosis. Therapeutic Advances in Musculoskeletal Disease. 2013;5(3):127–139. doi: 10.1177/1759720X13483187.
    1. Pernicova I., Middleton E. T., Aye M. Rash, strontium ranelate and DRESS syndrome put into perspective. European Medicine Agency on the alert. Osteoporosis International. 2008;19(12):1811–1812. doi: 10.1007/s00198-008-0734-8.
    1. Landi E., Tampieri A., Celotti G., Sprio S., Sandri M., Logroscino G. Sr-substituted hydroxyapatites for osteoporotic bone replacement. Acta Biomaterialia. 2007;3(6):961–969. doi: 10.1016/j.actbio.2007.05.006.
    1. Li Y., Luo E., Zhu S., Li J., Zhang L., Hu J. Cancellous bone response to strontium-doped hydroxyapatite in osteoporotic rats. Journal of Applied Biomaterials & Functional Materials. 2015;13(1):28–34. doi: 10.5301/jabfm.5000168.
    1. Thormann U., Ray S., Sommer U., et al. Bone formation induced by strontium modified calcium phosphate cement in critical-size metaphyseal fracture defects in ovariectomized rats. Biomaterials. 2013;34(34):8589–8598. doi: 10.1016/j.biomaterials.2013.07.036.
    1. Chandran S., Suresh Babu S., Hari Krishnan V. S., Varma H. K., John A. Osteogenic efficacy of strontium hydroxyapatite micro-granules in osteoporotic rat model. Journal of Biomaterials Applications. 2016;31(4):499–509. doi: 10.1177/0885328216647197.
    1. Elgali I., Turri A., Xia W., et al. Guided bone regeneration using resorbable membrane and different bone substitutes: Early histological and molecular events. Acta Biomaterialia. 2016;29:409–423. doi: 10.1016/j.actbio.2015.10.005.
    1. Lin K., Xia L., Li H., et al. Enhanced osteoporotic bone regeneration by strontium-substituted calcium silicate bioactive ceramics. Biomaterials. 2013;34(38):10028–10042. doi: 10.1016/j.biomaterials.2013.09.056.
    1. Cui X., Huang C., Zhang M., et al. Enhanced osteointegration of poly(methylmethacrylate) bone cements by incorporating strontium-containing borate bioactive glass. Journal of the Royal Society Interface. 2017;14(131) doi: 10.1098/rsif.2016.1057.20161057
    1. Korovessis P., Mpoutogianni E., Syrimpeis V., Baikousis A., Tsekouras V. P355 - percutaneous injection of strontium containing hydroxyapatite (Sr-HA) versus polymethacrylate (PMMA) plus short segment pedicle screw fixation for traumatic A2 and A3 AO-type fractures in adults: a preliminary prospective case control study. Global Spine Journal. 2017;7(2S):190S–373S. doi: 10.1177/2192568217708189.

Source: PubMed

3
Abonnieren