Valuable nutrients and functional bioactives in different parts of olive (Olea europaea L.)-a review

Rahele Ghanbari, Farooq Anwar, Khalid M Alkharfy, Anwarul-Hassan Gilani, Nazamid Saari, Rahele Ghanbari, Farooq Anwar, Khalid M Alkharfy, Anwarul-Hassan Gilani, Nazamid Saari

Abstract

The Olive tree (Olea europaea L.), a native of the Mediterranean basin and parts of Asia, is now widely cultivated in many other parts of the world for production of olive oil and table olives. Olive is a rich source of valuable nutrients and bioactives of medicinal and therapeutic interest. Olive fruit contains appreciable concentration, 1-3% of fresh pulp weight, of hydrophilic (phenolic acids, phenolic alchohols, flavonoids and secoiridoids) and lipophilic (cresols) phenolic compounds that are known to possess multiple biological activities such as antioxidant, anticarcinogenic, antiinflammatory, antimicrobial, antihypertensive, antidyslipidemic, cardiotonic, laxative, and antiplatelet. Other important compounds present in olive fruit are pectin, organic acids, and pigments. Virgin olive oil (VOO), extracted mechanically from the fruit, is also very popular for its nutritive and health-promoting potential, especially against cardiovascular disorders due to the presence of high levels of monounsaturates and other valuable minor components such as phenolics, phytosterols, tocopherols, carotenoids, chlorophyll and squalene. The cultivar, area of production, harvest time, and the processing techniques employed are some of the factors shown to influence the composition of olive fruit and olive oil. This review focuses comprehensively on the nutrients and high-value bioactives profile as well as medicinal and functional aspects of different parts of olives and its byproducts. Various factors affecting the composition of this food commodity of medicinal value are also discussed.

Keywords: Mediterranean diet; bioactives; high-value components; medicinal uses; phytochemicals; therapeutic potential; virgin olive oil.

Figures

Figure 1
Figure 1
Chemical structure of important bioactives in olive/olive oil [2,28].
Figure 1
Figure 1
Chemical structure of important bioactives in olive/olive oil [2,28].
Figure 2
Figure 2
Basic structure of a sterol with standard carbon numbering according to the IUPAC [155].
Figure 3
Figure 3
Chemical structural of some important phytosterols in olive oil [18].

References

    1. Boskou D. History and characteristics of the olive tree. In: Boskou D., editor. Olive Oil Chemistry and Technology. Am. Oil Chem. Soc. Press; Champaign, IL, USA: 1996.
    1. Ryan D., Robards K. Phenolic compounds in olives. Analyst. 1998;123:31R–44R.
    1. Gooch E. Ten plus one things you may not know about olive. Epikouria Magazine. Fall-Spring. 2005. [accessed on 5 November 2011]. Available online: .
    1. Soler-Rivas C., Epsin J.C., Wichers H.J. Oleuropein and related compounds. J. Sci. Food Agric. 2000;80:1013–1023.
    1. Ribarova F., Zanev R., Shishkov S., Rizov N. α-Tocopherol, fatty acids and their correlations in Bulgarian foodstuffs. J. Food Compos. Anal. 2003;16:659–667.
    1. Vinha A.F., Ferreres F., Silva B.M., Valentão P., Gonçalves A., Pereira J.A., Oliveira M.B., Seabra R.M., Andrade P.B. Phenolic profiles of Portuguese olive fruits (Olea europaea L.): Influences of cultivar and geographical origin. Food Chem. 2005;89:561–568.
    1. Knoops K.T., de Groot L.C., Kromhout D. Mediteranean diet, lifestyle factors, and 10-year mortality in elderly European men and women. J. Am. Med. Assoc. 2004;292:1433–1439.
    1. Trichopoulou A., Costacou T., Bamia C., Trichopoulos D. Adherence to a mediterranean diet and survival in a Greek population. N. Engl. J. Med. 2003;348:2599–2608.
    1. Covas M.I., Nyyssonen K., Poulsen H.E. The effect of polyphenols in olive oil on heart disease risk factors. Ann. Int. Med. 2006;145:333–431.
    1. Covas M.I. Bioactive effects of olive oil phenolic compounds in humans: Reduction of heart disease factors and oxidative damage. Inflammopharmacology. 2008;16:216–218.
    1. IOOC Home Page (International Olive Oil Council Activities: World Olive Oil Figures: World Olive Oil Consumption) [accessed on 25 November 2011]. Available online: .
    1. Fernández A.G., Díez M.J.F., Adams M.R. Table Olives: Production and Processing. Chapman & Hall; London, UK: 1997. p. 478.
    1. Fernandez Diez M.J. Olives. In: Rehm H.J., Reed J., editors. Biotechnology. Vol. 5. Verlag Chemie; Weinheim, Germany: 1983. pp. 379–397.
    1. FAO Home Page. [accessed on 18 May 2009]. Available online: .
    1. FAOSTAT Crops Processed Data for Olive Oil. FAO; Rome, Italy: 2009. [accessed on 5 October 2011]. Available online: .
    1. Trade Standard Applying to Olive Oils and Olive-Pomace Oils. Internnationa Olive Council; Madrid, Spain: 2011. [accessed on 20 December 2011]. COI/ T.15/NC no. 3/Rev. 6. Available online: .
    1. Luchetti F. Introduction. In: Harwood J.A., Aparicio R., editors. Handbook of Olive Oil: Analysis and Properties. Aspen Publishers, Inc; Gaithersburg, MD, USA: 2000. pp. 1–16.
    1. Boskou D., Blekas G., Tsimidou M. Olive oil composition. In: Boskou D., editor. Olive Oil: Chemistry and Technology. Am. Oil Chem. Soc. Press; Champaign, IL, USA: 2006. pp. 1–33.
    1. Niaounakis M., Halvadakis C.P. Waste Management Series. 2nd ed. Vol. 5. Elsevier; Amsterdam, the Netherlands: 2006. Characterization of Olive Processing Waste; pp. 23–64. Chapter 2.
    1. Cunha S., Ferreira Isabel M.P.L.V.O., Fernandes J.O., Faria M.A., Beatriz M., Oliveira P.P. Determination of lactic, acetic, succinic and citric acids in table olive by HPLC/UV. J. Liq. Chromatogr. Relat. Technol. 2001;24:1029–1038.
    1. Bianchi G. Lipids and phenols in table olives. Eur. J. Lipid Sci. Technol. 2003;105:229–242.
    1. Andreasen M.F., Christensen L.P., Meyer A.S., Hansen Å. Content of phenolic acids and ferulic acid dehydrodimers in 17 rye (Secale cereale L.) varieties. J. Agric. Food Chem. 2000;48:2837–2842.
    1. Prim N., Pastor F.I.J., Diaz P. Biochemical studies on cloned Bacillus sp. BP-7 phenolic acid decarboxylase PadA. Appl. Microbiol. Biotechnol. 2003;63:51–56.
    1. Kountouri A.M., Mylona A., Kaliora A.C., Andrikopoulos N.K. Bioavailability of the phenolic compounds of the fruits (drupes) of Olea europaea (olives): Impact on plasma antioxidant status in humans. Phytomedicine. 2007;14:659–667.
    1. Viola P., Viola M. Virgin olive oil as a fundamental nutritional component and skin protector. Clin. Dermatol. 2009;27:159–165.
    1. Servili M., Baldioli M., Selvaggini R., Macchioni A., Montedor G. Phenolic compounds of olive fruit: One- and two-dimensional nuclear magnetic resonance characterization of nüzhenide and its distribution in the constitutive parts of fruit. J. Agric. Food Chem. 1999;47:12–18.
    1. Andary C., Wylde R., Laffite C., Privat G., Winternitz F. Structure of verbascoside and orobancoside, caffeic acid, suger esters from orobanche rapum-genistae. Phytochemistry. 1982;21:1123–1127.
    1. Obied H.K., Allen M.S., Bedgood D.R., Prenzler P.D., Robards K., Stockmann R. Bioactivity and analysis of biophenols recovered from olive mill waste. J. Agric. Food Chem. 2005;53:823–837.
    1. Romero C., Brenes M., Garcia P., Garrido A. Hydroxytyrosol 4-a-Dglucoside, an important phenolic compound in olive fruits and derived products. J. Agric. Food Chem. 2002;50:3835–3839.
    1. Amiot M.J., Fleuriet A., Macheix J. Importance and evolution of phenolic compounds in olive during growth and maturation. J. Agric. Food Chem. 1986;34:823–826.
    1. Romani A., Mulinacci N., Pinelli P., Vincieri F.F., Cimato A. Polyphenolic content in five tuscany cultivars of Olea europaea L. J. Agric. Food Chem. 1999;47:964–967.
    1. Juan M., Planas J., Ruiz-Gutierrez V., Daniel H., Wenzel U. Antiproliferative and apoptosis-inducing effects of maslinic and oleanolic acids, two pentacyclic triterpenes from olives, on HT-29 colon cancer cells. Br. J. Nutr. 2008;100:36–43.
    1. Fernández-Bolaños J., Rodríguez G., Rodríguez R., Guillén R., Jiménez A. Extraction of interesting organic compounds from olive oil waste. Grasas Aceites. 2006;57:95–106.
    1. Ragazzi E., Veronese G., Guitto A. The demethyloleuropein, a new glucoside extracted from ripe olives. Ann. Chim. 1973;63:13–20.
    1. Kubo I., Matsumoto A. Molluscicides from olives Olea europaea and their efficient isolation by counter current chromatography. J. Agric. Food Chem. 1984;32:687–688.
    1. Vasquez R.A., Costante E.G., Duran R.M. Components fenolicos de la aceituna. Polifenoles de la pulpa. Grasas Aceites. 1974;25:269–279.
    1. Mannino S., Cosio M.S., Bertuccioli M. High performance liquid chromatography of phenolic compounds in virgin olive oil using amperometryc detector. Ital. J. Food Sci. 1993;4:363–370.
    1. Panizzi L., Scarpati M.L., Oriente G. Chemical structure of Oleuropein, bitter glucoside of olive with hypotensive activity. Gazz. Chim. Ital. 1960;90:1449–1458.
    1. Bourquelot E., Vintilesco J.C.R. Sur l oleuropein, nouveau principle de nature glucosidique reter de lolivier (Olea europaea L.) Compt. Rend. Hebd. Acad. Sci. 1908;147:533–535.
    1. Huang C.L., Sumpio B.E. Olive oil, the Mediterranean diet, and cardiovascular health. J. Am. Coll. Surg. 2008;207:407–416.
    1. Juan M.E., Wenzel U., Ruiz-Gutierrez V., Daniel H., Planas J.M. Olive fruit extracts inhibit proliferation and induce apoptosis in HT-29 human colon cancer cells. J. Nutr. 2006;136:2553–2557.
    1. Gilani A.H., Khan A.U., Shah A.J., Connor J., Jabeen Q. Blood pressure lowering effect of olives is mediated through calcium channel blockade. Int. J. Food Sci. Nutr. 2005;56:613–620.
    1. Gilani A.H., Khan A.U., Shah A.J. Calcium antagonist and cholinomimetic activities explain the medicinal uses of olives in gut disorders. Nutr. Res. 2006;26:277–283.
    1. Gilani A.H., Khan A.U. Medicinal value of novel combination of cholinergic and calcium antagonist constituents in olive. In: Preedy V.R., Watson R.R., editors. Olives and Olive Oil in Health and Disease Prevention. Academic Press Elsevier; Amsterdam, the Netherlands: 2009. pp. 835–843.
    1. Gavriilidou V., Boskou D. Chemical interesterification of olive oil-tristearin blends for margarines. Int. J. Food Sci. Technol. 1991;26:451–456.
    1. Aparicio R., Aparicio-Ruíz R. Authentication of vegetable oils by chromatographic techniques. J. Chromatogr. A. 2000;881:93–104.
    1. Artajo L.S., Romero M.P., Morelloa J.R., Motilva M.J. Enrichment of refined olive oil with phenolic compounds; evaluation of their antioxidant activity and their effect on the bitter index. J. Agric. Food Chem. 2006;54:6079–6088.
    1. Tuck K.L., Hayball P.J. Major phenolic compounds in olive oil: Metabolism and health effects. J. Nutr. Biochem. 2002;13:636–644.
    1. Kochhar S.P. The composition of frying oils. In: Rossel J.B., editor. Frying Improving Quality. Woodhead Publishing Ltd; Cambridge, UK: 2001. pp. 87–114.
    1. Health Claim Petition Docket No. 2003Q-0559. FDA; Rome, Italy: 2004. Monounsaturated fatty acids from olive oil and coronary heart disease.
    1. Grundy S.M. Comparison of monounsaturated fatty acids and carbohydrates for lowering plasma cholesterol. N. Engl. J. Med. 1986;314:745–748.
    1. Ranalli A., Angerosa F. Integral centrifuges for olive oil extraction. The qualitative characteristics of products. J. Am. Oil Chem. Soc. 1996;73:417–422.
    1. Covas M.I. Olive oil and the cardiovascular system-Review. Pharm. Res. 2007;55:175–186.
    1. Allalout A., Krichene D., Methenni K., Taamalli A., Oueslati I., Daoud D. Characterization of virgin olive oil from super intensive Spanish and Greek varieties grown in northern Tunisia. Sci. Hort. 2009;120:77–83.
    1. Paz Aguilera M., Beltran G., Ortega D., Fernandez A., Jimenez A., Uceda M. Characterisation of virgin olive oil of Italian olive cultivars: ‘Frantoio’ and ‘Leccino’, grown in Andalusia. Food Chem. 2005;89:387–391.
    1. Skevin D., Rade D., Strucelj D., Mokrovãak Z., Nederal S., Benãiç D. The influence of variety and harvest time on the bitterness and phenolic compounds of olive oil. Eur. J. Lipid Sci. Technol. 2003;105:536–541.
    1. Boskou D. Polar phenolic compounds. In: Boskou D., editor. Olive Oil: Chemistry and Technology. Am. Oil Chem. Soc. Press; Champaign, IL, USA: 2006. pp. 73–92.
    1. Naczk M., Shahidib F. Extraction and analysis of phenolics in food. J. Chromatogr. A. 2004;1054:95–111.
    1. Boskou D., Blekas G., Tsimidou M. Phenolic compounds in olive oil and olives. Curr. Top. Nutraceutical Res. 2005;3:125–136.
    1. Baldioli M., Servili M., Perretti G.G.F. Montedoro antioxidant activity of tocopherols and phenolic compounds of virgin olive oil. J. Am. Oil Chem. Soc. 1996;73:1583–1593.
    1. Bianco A., Coccioli F., Guiso M., Marra C. The occurrence in olive oil of a new class of phenolic compounds: Hydroxy-isochromans. Food Chem. 2001;77:405–411.
    1. Montedoro G.F. Phenolic constituents of virgin olive oils. I. Identification of some phenolic acids and their antioxidant capacity. Sci. Technol. Alimenti. 1972;3:177–186.
    1. Bendini A., Cerretani L., Carrasco-Pancorbo A., Gómez-Caravaca A.M., Segura-Carretero A., Fernández-Gutiérrez A. Phenolic molecules in virgin olive oils: A survey of their sensory properties, health effects, antioxidant activity and analytical methods—An overview of the last decade. Molecules. 2007;12:1679–1719.
    1. Owen R.W., Mier W., Giacosa A., Hull W.E., Spiegelhalder B., Bartsch H. Phenolic compounds and sequalene in olive oils: the concentration and antioxidant potential of total phenols, simple phenols, secoiridoids, lignans and sequalene. Food Chem. Toxicol. 2000;38:647–659.
    1. Rovellini P., Cortesi N. Liquid chromatography-mass spectrometry in the study of oleuropein and ligstroside aglycons in virgin olive oils: Aldehydic, dialdehydic forms and their oxidized products. Riv. Ital. Sostanze Grasse. 2002;79:1–14.
    1. Montedoro G.F., Servili M. Tradizone ed Innovazioni Tecnologiche nell Estrazione degli Olii Extravergini Di Oliva. Proceedings of International Congress “Olive Oil Quality”; Firenze, Italy. 1–3 December, 1992; pp. 97–108.
    1. Brenes M., García A., García P., Garrido A. Acid hydrolysis of secoiridoid aglycons during storage of virgin olive oil. J. Agric. Food Chem. 2001;49:5609–5614.
    1. Rovellini P., Cortesi N., Fedeli E. Analysis of flavonoids from olea europaea by HPLC-UV and HPLC-electrospray-MS. Riv. Ital. Sostanze Grasse. 1997;74:273–279.
    1. Brenes M., García A., Rios J.J., García P., Garrido A. Use of 1-acetoxypinoresinol to authenticate Picual olive oils. Int. J. Food Sci. Technol. 2002;37:615–625.
    1. Bianco A., Buiarelli F., Cartoni G., Coccioli F., Muzzalupo I., Polidori A., Uccella N. Anlaysis by HPLC-MS/MS of biophenolic components in olives and oils. Anal. Lett. 2001;34:1033–1051.
    1. Angerosa F., Alessandro N.D., Corana F., Mellerio G. Characterisation of phenolic and secoiridoid aglycons present in virgin olive oil by gas chromatography-chemical ionization mass spectrometry. J. Agric. Food Chem. 1995;43:1802–1807.
    1. Perri E., Raffaelli A., Sindona G. Quantitation of oleuropein in virgin olive oil by ionspray mass spectrometry-selected reaction monitoring. J. Agric. Food Chem. 1999;47:4156–4160.
    1. Montedoro G., Servili M., Baldioli M., Miniati E. Simple and hydrolyzable phenolic compounds in virgin olive oil. 1. Their extraction, separation, and quantitative and semiquantitative evaluation by HPLC. J. Agric. Food Chem. 1992;40:1571–1576.
    1. Jenner P., Olanow C.W. Oxidative stress and the pathogenesis of Parkinson’s disease. Neurology. 1996;47:161S–170S.
    1. Visioli F., Galli C., Bornet F., Mattei A., Patelli R., Galli G., Caruso D. Olive oil phenolics are dose-dependently absorbed in humans. FEBS Lett. 2000;486:159–160.
    1. Aviram M. Interaction of oxidized low density lipoprotein with macrophages in atherosclerosis, and the antiatherogenicity of antioxidants. Eur. J. Clin. Chem. Clin. Biochem. 1996;34:599–608.
    1. Marrugat J., Covas M.-I., Fitó M., Schröder H., Miró-Casas E., Gimeno E., López-Sabater M., Torre R., Farré M. Effects of differing phenolic content in dietary olive oils on lipids and LDL oxidation.arandomized controlled trial. Eur. J. Nutr. 2004;43:140–147.
    1. Caruso D., Visioli F., Patelli R., Galli C., Galli G. Urinary excretion of olive oil phenols and their metabolites in humans. Metabolism. 2001;50:1426–1428.
    1. Miro-Casas E., Covas M.-I., Farre M., Fito M., Ortuño J., Weinbrenner T., Roset P., Torre R.D.L. Hydroxytyrosol disposition in humans. Clin. Chem. 2003;49:945–952.
    1. Mensink R.P., Janssen M.C., Katan M.B. Effect on blood pressure of two diets differing in total fat but not in saturated and polyunsaturated fatty acids in healthy volunteers. Am. J. Clin. Nutr. 1988;47:976–980.
    1. Rasmussen O., Thomsen C., Hansen K.W., Vesterlund M., Winther E., Hermansen K. Effects on blood pressure, glucose, and lipid levels of a high-monounsaturated fat diet compared with a high-carbohydrate diet in NIDDM subjects. Diabetes Care. 1993;16:1565–1571.
    1. Ruız-Gutierrez V., Muriana F.J., Guerrero A., Cert A.M., Villar J. Plasma lipids, erythrocyte membrane lipids and blood pressure of hypertensive women after ingestion of dietary oleic acid from two different sources. J. Hypertens. 1996;14:1483–1490.
    1. Fitó M., Cladellas M., Torre R.D.L., Martí J., Alcántara M., Pujadas-Bastardes M., Marrugat J., Bruguera J., López-Sabater M.C., Vila J. Antioxidant effect of virgin olive oil in patients with stable coronary heart disease: A randomised, crossover, controlled, clinical trial. Atherosclerosis. 2005;181:149–158.
    1. Martin-Moreno J.M., Willet W.C., Gorgoio L., Banegas J.R., Rodriguez-Artalejo F., Fernandez-Rodriguez J.C., Maisonneuve P., Boyle P. Dietary fat, olive oil intake and breast cancer risk. Int. J. Cancer. 1994;58:774–780.
    1. Trichopoulou A., Katsouyanni K., Stuver S., Tzala L., Gnardellis C., Rimm E., Trichopoulo D. Consumption of olive oil and specific food groups in relation to breast cancer risk in Greece. J. Natl. Cancer Inst. 1995;87:110–116.
    1. Vecchia C.L., Negri E., Franceschi S., Favero A., Nanni O., Filiberti R., Conti E., Montella M., Veronesi A., Ferraroni M. Hormone replacement treatment and breast cancer risk: A cooperative Italian study. Br. J. Cancer. 1995;72:244–248.
    1. Soler M., Chatenaud L., Vecchia C.L., Franceschi S., Negri S. Diet, alcohol, coffee and pancreatic cancer: Final results from an Italian study. Eur. J. Cancer Prev. 1998;7:455–460.
    1. Franceschi S., Favero A., Conti E., Salamini R., Volpe R., Negri E., Barman L., Vecchia C.L. Food groups, oils and butter, and cancer of the oral cavity and pharynx. Br. J. Cancer. 1999;80:614–620.
    1. Bosetti C., Trichopoulou A., Franceschi S., Negri E., Vecchia C.L. Influence of the Mediterranean diet on the risk of cancers of the upper aerodigestive. Tract. Cancer Epidemiol. Biomarkers Prev. 2003;12:1091–1094.
    1. Stoneham M., Goldacre M., Seagroatt V., Gill L., Epidemiol J. Olive oil, diet and colorectal cancer: An ecological study and a hypothesis. J. Epidemiol. Community Health. 2000;54:756–760.
    1. Hodge E., English D.R., McCredie M.R.E., Severi G., Boyle P., Hopper J.L., Giles G.G. Foods, nutrients and prostate cancer. Cancer Causes Control. 2004;15:11–20.
    1. Fortes C., Forestiere F., Farchi S., Mallone S., Trequattrini T., Anatra F., Schmid G., Peducci C.A. the protective effect of the mediterranean diet on lung cancer. Nutr. Cancer. 2003;46:30–37.
    1. Ichihashi M., Ueda M., Budiyanto A., Bito T., Oka M., Fukunaga M., Tsuru K., Horikawa T. UV-Induced skin Damage. Toxicology. 2003;189:21–39.
    1. Kohyama N., Nagata T., Fujimoto S. Inhibition of arachidonate lipoxygenase activities by 2-(3,4-dihydroxyphenyl) ethanol, a phenolic compound from olives. Biosci. Biotechnol. Biochem. 1997;61:347–350.
    1. Petroni A., Blasevich M., Salami M., Papini N., Montedoro G.F., Galli C. Inhibition of platelet aggregation and eicosanoid production by phenolic components of olive oil. Thromb. Res. 1995;78:151–160.
    1. Puerta R.D.L, Gutierrez V.R., Hoult J.R. Inhibition of leukocyte 5-lipoxygenase by phenolics from virgin olive oil. Biochem. Pharmacol. 1999;57:445–449.
    1. Turner R., Etienne N., Alonso M.G. Antioxidant and anti-atherogenic activities of olive oil phenolics. Int. J. Vitam. Nutr. Res. 2005;75:61–70.
    1. Estruch R., Martinez-Gonzalez M.A., Corella D., Salas-Salvado J., Ruiz-Gutierrez V., Covas M.I. Effects of a Mediterranean- style diet on cardiovascular risk factors: A randomized trial. Ann. Intern. Med. 2006;145:1–11.
    1. Visioli F., Bellomo G., Montedoro G.F., Galli C. Low density lipoprotein oxidation is inhibited in vitro by olive oil constituents. Atherosclerosis. 1995;117:25.
    1. Ruano J., Lopez-Miranda J., Fuentes F., Moreno J.A., Bellido C., Perez-Martinez P., Lozano A., Gómez P., Jiménez Y., Jiménez F.P. Phenolic content of virgin olive oil improves ischemic reactive hyperemia in hypercholesterolemic patients. J. Am. Coll. Cardiol. 2005;46:1864–1868.
    1. Carluccio M.A., Siculella L., Ancora M.A. Olive oil and red wine antioxidant polyphenols inhibit endothelial activation: Antiatherogenic properties of Mediterranean diet phytochemicals. Arterioscler. Thromb. Vasc. Biol. 2003;23:622–629.
    1. Dejana M., Trauma O.I., Bianchi M.P., Spencer J.P.E., Harparkash K., Halliwell B., Haeschbach R., Banni S., Dessi M.A., Corongiu F. Inhibition of peroxynitrite dependent DNA base modification and tyrosine nitration by the extra virgin olive oil-derived antioxidant hydroxytyrosol. Free Radic. Biol. Med. 1999;26:762–769.
    1. Machowetz A., Poulsen H.E., Gruendel S., Weimann A., Fitó M., Marrugat J., Torre R.D.L., Salonen J.T., Nyyssönen K., Mursu J., et al. Effect of olive oils on biomarkers of oxidative DNA stress in Northern and Southern Europeans. FASEB J. 2007;21:45–52.
    1. Perona J.S., Cabello-Moruno R., Ruiz-Gutierrez V. The role of virgin olive oil components in the modulation of endothelial function. J. Nutr. Biochem. 2006;17:429–445.
    1. Martinez-Dominguez E., de la Puerta R., Ruiz-Gutierrez V. Protective effects upon experimental inflammation models of a polyphenol-supplemented virgin olive oil diet. Inflamm. Res. 2001;50:102–106.
    1. Aziz N.H., Farag S.E., Mousa L.A.A., Abo-Zaid M.A. Comparative antibacterial and antifungal effects of some phenolic compounds. Microbios. 1998;93:43–54.
    1. Gourama H., Bullerman L.B. Effects of oleuropein on growth and aflatoxin production by Aspergillus parasiticus. Lebensm. Wiss. Technol. 1987;20:226–228.
    1. Deiana M., Rosa A., Cao C.F., Pirisi F.M., Bandino G., Dessi A. Novel approach to study oxidative stability of extra virgin olive oils: Importance of α-tocopherol concentration. J. Agric. Food Chem. 2002;50:4342–4346.
    1. Lavelli V. Comparison of the antioxidant activities of extra virgin olive oils. J. Agric. Food Chem. 2002;50:7704–7708.
    1. Leenen R., Roodenburg A.J., Vissers M.N. Supplementation of plasma with olive oil phenols and extracts: Influence on LDL oxidation. J. Agric. Food Chem. 2002;50:1290–1297.
    1. Carluccio M.A., Siculella L., Ancora M.A. Olive oil and red wine antioxidant polyphenols inhibit endothelial activation: Antiatherogenic properties of mediterranean diet phytochemicals. Arterioscler. Thromb. Vasc. Biol. 2003;23:622–629.
    1. Servili M., Esposto S., Fabiani R., Urbani S., Taticchi A., Mariucci F., Selvaggini R., Montedoro G.F. Phenolic compounds in olive oil: Antioxidant, health and sensory activities according to their chemical structure. Inflammopharmacology. 2009;17:76–84.
    1. Visioli F., Galli C. Olive oil phenols and their potential effects on human health. J. Agric. Food Chem. 1998;46:4292–4296.
    1. Fitó M., Covas M.I., Lamuela-Raventós R.M., Vila J., Torrents J., Torre C.D.L., Marrugat J. Protective effect of olive oil and its phenolic compounds against low density lipoprotein oxidation. Lipids. 2000;35:633–638.
    1. Pellegrini N., Visioli F., Buratti S., Brighenti F. Direct analysis of total antioxidant activity of olive oil and studies on the influence of heating. J. Agric. Food Chem. 2001;49:2532–2538.
    1. Manna C., D’Angelo S., Migliardi V., Loffredi E., Mazzoni O., Morrica P., Galletti P., Zappia V. Protective effect of the phenolic fraction from virgin olive oils against oxidative stress in human cells. J. Agric. Food Chem. 2002;50:6521–6526.
    1. Stupans I., Kirlich A., Tuck K.L., Hayball P.J. Comparison of radical scavenging effect, inhibition of microsomal oxygen free radical generation, and serum lipoprotein oxidation of several natural antioxidants. J. Agric. Food Chem. 2002;50:2464–2469.
    1. Gorinstein S., Martin-Belloso O., Katrich E., Lojek A., Èíž M., Gligelmo-Miguel N., Haruenkit R., Park Y.-S., Jung S.-T., Trakhtenberg S. Comparison of the contents of the main biochemical compounds and the antioxidant activity of some Spanish olive oils as determined by four different radical scavenging tests. J. Nutr. Biochem. 2003;14:154–159.
    1. Somova L.I., Shode F.O., Ramnanan P., Nadar A. Antihypertensive, antiatherosclerotic and antioxidant activity of triterpenoids isolated from Olea europaea, subspecies africana leaves. J. Ethnopharmacol. 2003;84:299–305.
    1. Masella R., Varì R., D’Archivio M., Benedetto R.D., Matarrese P., Malorni W., Scazzocchio B., Giovannini C. Extra virgin olive oil biophenols inhibit cell-mediated oxidation of LDL by increasing the mRNA transcription of glutathione-related enzymes. J. Nutr. 2004;134:785–791.
    1. Bouaziz M., Grayer R.J., Simmonds M.S.J., Damak M., Sayadi S. Identification and antioxidant potential of flavonoids and low molecular weight phenols in olive cultivar chemlali growing in Tunisia. J. Agric. Food Chem. 2005;53:236–241.
    1. Škergeta M., Kotnika P., Hadolinb M., Hrašb A.R., Simonièa M., Kneza Ž. Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities. Food Chem. 2005;89:191–198.
    1. Dabbou S., Issaoui M., Servili M., Taticchi A., Sifi S., Montedoro G.F., Hammami M. Characterisation of virgin olive oils from European olive cultivars introduced in Tunisia. Eur. J. Lipid Sci. Technol. 2009;111:392–401.
    1. Lee O., Lee B. Antioxidant and antimicrobial activities of individual and combined phenolics in Olea europaea leaf extract. Bioresour. Technol. 2010;101:3751–3754.
    1. Hashimoto T., Ibi M., Matsuno K., Nakashima S., Tanigawa T., Yoshikawa T., Yabe-Nishimura C. An endogenous metabolite of dopamine, 3,4-dihydroxyphenylethanol, acts as a unique cytoprotective agent against oxidative stress-induced injury. Free Radic. Biol. Med. 2004;36:555–564.
    1. Trichopoulou A., Lagiou P. Healthy traditional Mediterranean diet: An expression of culture, history and lifestyle. Nutr. Rev. 1997;55:383–389.
    1. Tapiero H., Ba G.N., Couvreur P., Tew K.D. Polyunsaturated fatty acids (PUFA) and eicosanoids in human health and pathologies. Biomed. Pharmacother. 2002;56:215–222.
    1. Tassou C.C., Nychas G.J. Inhibition of Staphylococous aureus by olive phenolics in broth and in a model food system. J. Food Protect. 1994;57:120–124.
    1. Bisignano G., Tomaino A., Lo Cascio R.C.G., Uccella N., Saija A. On the in-vitro antimicrobial activity of oleuropein and hydroxytyrosol. J. Pharm. Pharmacol. 1999;51:971–974.
    1. Tranter H.S., Tassou S.C., Nychas G.J. The effect of the olive phenolic compound, oleuropein, on growth and enterotoxin B production by staphylococcus aureus. J. Appl. Bacteriol. 1993;74:253–259.
    1. Sudjana A.N., Orazio C.D., Ryan V., Rasool N., Ng J., Islam N., Rileyae T.V., Hammer K.A. Antimicrobial activity of commercial Olea europaea (olive) leaf extract. Int. J. Antimicrob. Agents. 2009;33:461–463.
    1. Gerber M. Olive oil and cancer. In: Hill M.J., Giacosa A., Caygill C.P.G., editors. Epidemiology of Diet and Cancer. Ellis Horwood; Chichester, UK: 1994. pp. 263–275.
    1. Simopoulos A.P. The Mediterranean diets: What is so special about the diet of Greece? J. Nutr. 2001;131:3065S–3073S.
    1. Giovannini C., Scazzocchio B., Mattarrese P., Vari R., Archivio M.D., Benedetto R.D., Casciani S., Dessic M.R., Struface E., Malorni W., et al. Apoptosis induced by oxidized lipids is associated with upregulation of p66Shc in intestinal Caco-2 cells: Protective effects of phenolic compounds. J. Nutr. Biochem. 2008;19:118–128.
    1. García-Villalba R., Carrasco-Pancorbo A., Oliveras-Ferraros C., Vázquez-Martín A., Menéndez J.A., Segura-Carretero A., Fernández-Gutiérre A. Characterization and quantification of phenolic compounds of extra-virgin olive oils with anticancer properties by a rapid and resolutive LC-ESI-TOF MS method. J. Pharmaceut. Biomed. Anal. 2010;51:416–429.
    1. Andrikopoulos N.K., Antonopoulou S., Kaliora A.C. Oleuropein inhibits LDL oxidation induced by cooking oil frying by-products and platelet aggregation induced by platelet-activating factor. LWT-Food Sci. Technol. 2002;35:479–484.
    1. Driss F., Duranthon V., Viard V. Biological activity of olive tree polyphenolic compounds. OCL-Ol. Corps Gras Lipides. 1996;3:448–451.
    1. Khayyal M.T., El-Ghazaly M.A., Abdallah D.M., Nassar N.N., Okpanyi S.N., Kreuter M.H. Blood pressure lowering effect of an olive leaf extract (Olea europaea) in L-NAME induced hypertension in rats. Arzneimittelforschung. 2002;52:797–802.
    1. Binukumar B., Mathew A. Dietary fat and risk of breast cancer. World J. Surg. Oncol. 2005;3:45. doi: 10.1186/1477-7819-3-45.
    1. Angerosa F. Influence of volatile compounds on virgin olive oil quality evaluated by analytical approaches and sensor panels. Eur. J. Lipid Sci.Technol. 2002;104:639–660.
    1. Lorenzo I.M., Pavon J.L.P., Laespada M.E.F., Pinto C.G., Cordero B.M. Detection of adulterants in olive oil by headspace-mass spectrometry. J. Chromatogr. A. 2002;945:221–230.
    1. Morales M.T., Rios J.J., Aparicio R. Changes in the volatile composition of virgin olive oil during oxidation: Flavors and off-flavors. J. Agric. Food Chem. 1997;45:2666–2673.
    1. Baccouri O., Bendini A., Cerretani L., Guerfel M., Baccouri B., Lercker G., Zarrouk M., Miled D.D.B. Comparative study on volatile compounds from Tunisian and Sicilian monovarietal virgin olive oils. Food Chem. 2008;111:322–328.
    1. Kiritsakis A.K., Nanos G.D., Polymenoupoulos Z., Thomai T., Sfakiotakis E.Y. Effect of fruit storage conditions on olive oil quality. J. Am. Oil Chem. Soc. 1998;75:721–724.
    1. Kalua C.M., Allen M.S., Bedgood D.R., Bishop A.G., Prenzler P.D., Robards K. Olive oil volatile compounds, flavour development and quality: A critical review. Food Chem. 2007;100:273–286.
    1. Vichi S., Castellote A.I., Pizzale L., Conte L.S., Buxaderas S., Lopez-Tamames E. Solid-phase microextraction in the analysis of virgin olive oil volatile fraction: Characterization of virgin olive oils from two distinct geographical areas of northern Italy. J. Agric. Food Chem. 2003;51:6572–6577.
    1. Angerosa F., Basti C. Olive oil volatile compounds from the lipoxygenase pathway in relation to fruit ripeness. Ital. J. Food Sci. 2001;13:421–428.
    1. Morales M.T., Alonso M.V., Rios J.J., Aparicio R. Virgin olive oil aroma: Relationship between volatile compounds and sensory attributes by chemometrics. J. Agric. Food Chem. 1995;43:2925–2931.
    1. Morales M.T., Luna G., Aparicio R. Comparative study of virgin olive oil sensory defects. Food Chem. 2005;91:293–301.
    1. Goodwin T.W. Biosynthesis of sterols. In: Stumpf P.K., Conn E.E., editors. The Biochemistry of Plants. Lipids: Structure and Function. 4th ed. Academic Press; London, UK: 1980. pp. 485–507.
    1. Benitez-Sánchez P.L., Camacho L.M., Aparicio R. A comprehensive study of hazelnut oil composition with comparisons to other vegetable oils, particularly olive oil. Eur. Food Res. Technol. 2003;218:13–19.
    1. Morchio G., De Anreis R., Fedeli E. Investigations of total sterols content in the olive oil and their variation during refining process. Riv. Ital. Sostanze Grasse. 1987;64:185–192.
    1. Sivakumar G., Bati C.B., Perri E., Uccella N.U. Gas chromatography screening of bioactive phytosterols from mono-cultivar olive oils. Food Chem. 2006;95:525–528.
    1. Canabate-Díaz B., Carretero A.S., Fernández-Gutiérrez A., Belmonte Vega A., Garrido Frenich A., Martínez Vidal J.L., Duran Martos J. Separation and determination of sterols in olive oil by HPLC-MS. Food Chem. 2007;102:593–598.
    1. Moss G.P. The nomenclature of steroids: Recommendations by the IUPAC-IUB joint commission on biochemical nomenclature. Eur. J. Biochem. 1989;186:429–458.
    1. Akihisa T., Kokke W., Tamura T. Naturally occurring sterols and related compounds from plants. In: Patterson G.W., Nes W.D., editors. Physiology and Biochemistry of Sterols. American Oil Chemists’ Society; Champaign, IL, USA: 1991. pp. 172–228.
    1. Moreau R.A., Whitakerb B.D., Hicksa K.B. Phytosterols, phytostanols, and their conjugates in foods: Structural diversity, quantitative analysis, and health-promoting uses. Prog. Lipid Res. 2002;41:457–500.
    1. Heupel R.C. Isolation and primary characterization of sterols. In: Nes D.W., Parish E.J., editors. Analysis of Sterols and Other Biologically Significant Steroids. Academic Press Inc.; San Diego, CA, USA: 1989. pp. 1–32.
    1. Hartmann M.A. Plant sterols and the membrane environment. Trends Plant Sci. 1998;3:170–175.
    1. Quillez J., Garcila-Lorda P., Salas-Salvadol J. Potential uses and benefits of phytosterols in diet: Present situation and future directions. Clin. Nutr. 2003;22:343–351.
    1. Awad A.B., Fink C.S. Phytosterols as anticancer dietary components: Evidence and mechanism of action. J. Nutr. 2000;130:2127–2130.
    1. Wilt T.J., Mac Donald R., Ishani A. Beta-sitosterol for the treatment of benign prostatic hyperplasia: A systematic review. Br. J. Urol. Int. 1999;83:976–983.
    1. Wolfreys A.M., Hepburn P.A. Safety evaluation of phytosterol esters. Part 7. Assessment of mutagenic activity of phytosterols, phytosterol esters and the cholesterol derivative, 4-cholesten-3-one. Food Chem. Toxicol. 2002;40:461–470.
    1. Hepburn P.A., Horner S.A., Smith M. Safety evaluation of phytosterol esters. Part 2. Subchronic 90-day oral toxicity study on phytosterol esters a novel functional food. Food Chem. Toxicol. 1999;37:521–532.
    1. Ranalli A., Pollastri L., Contento S., di Loreto G., Iannucci E., Lucera L., Russi F. Sterol and alcohol components of seed, pulp and whole olive fruit oils. Their use to characterise olive fruit variety by multivariates. J. Sci. Food Agric. 2002;82:854–859.
    1. Esterbauer H., Dieber-Rotheneder M., Striegl G., Waeg G. Role of vitamin E in preventing the oxidation of low-density lipoprotein. Am. J. Clin. Nutr. 1991;53:314S–321S.
    1. Blekas G., Psomiadou E., Tsimidou M. On the importance of total polar phenols to monitor the stability of Greek virgin olive oil. Eur. J. Lipid Sci. Technol. 2002;104:340–346.
    1. Dionisi F., Prodolliet J., Tagliaferri E. Assessment of olive oil adulteration by reversed-phase high-performance liquid chromatography/amperometric detection of tocopherols and tocoterienols. J. Am. Oil Chem. Soc. 1995;72:1505–1511.
    1. Cunha S.C., Amaral J.S., Fernandes J.O., Oliveira M.B.P.P. Quantification of tocopherols and tocotrienols in Portuguese olive oils using HPLC with three different detection systems. J. Agric. Food Chem. 2006;54:3351–3356.
    1. Kamal-Eldin A., Appelqvist L.A. The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids. 1996;31:671–701.
    1. Yamauchi R., Matsushita S. Quenching effect of tocopherols on methyl linoleate photoxidation and their oxidation products. Agric. Biol. Chem. 1977;41:1425–1430.
    1. Cheeseeman K.H., Slater T.F. An introduction to free radical biochemistry. Br. Med. Bull. 1993;49:481–493.
    1. Kamal-Eldin A., Andersson R.A. Multivariate study of the correlation between tocopherol content and fatty acid composition in vegetable oils. J. Am. Oil Chem. Soc. 1997;74:375–380.
    1. Doelman C.J. Antioxidant Therapy and Preventive Medicine. Vol. 9 Plenum Press; New York NY, USA: 1989.
    1. Armstrong N., Paganga G., Brunev E., Miller N., Nanchahal K. Reference values for α-tocopherol and β-carotene in the Whitehall II study. Free Radic. Res. 1997;27:207–219.
    1. Caruso D., Berra B., Giovanini F., Cortesi N., Fedeli E., Galli G. Effect of virgin olive oil phenolic compounds on in vitro oxidation of human low density lipoproteins. Nutr. Metab. Cardiovasc. Dis. 1997;99:102–107.
    1. Nicolaiew N., Lemort N., Adorni L., Berra B., Montorfano G., Rapelli S. Comparison between extra virgin olive oil and oleic acid rich sunflower oil: Effects on postprandial lipemia and LDL susceptibility to oxidation. Ann. Nutr. Metab. 1998;42:251–260.
    1. Hudson B., Lewis J. Polyhydroxy flavonoid antioxidants for edible oils. Structural criteria for activity. Food Chem. 1983;10:47–55.
    1. Psomiadou P., Tsimidou M. Simultaneous HPLC determination of tocopherols, carotenoids, and chlorophylls for monitoring their effect on virgin olive oil oxidation. J. Agric. Food Chem. 1998;46:5132–5138.
    1. Lanzón A., Albi T., Cert A. The hydrocarbon fraction of virgin olive oil and changes resulting from refining. J. Am. Oil Chem. Soc. 1994;3:285–291.
    1. Gandul-Rojas B., Minguez-Mosquera M.I. Chlorophyll and carotenoid composition in virgin olive oils from various Spanish olive varieties. J. Sci. Food Agric. 1996;72:31–39.
    1. Kupper H., Dedic R., Svoboda A., Hala J., Kroneck P.M. Kinetics and efficency of excitation energy transfer from chlorophylls, their heavy metal-substituted derivatives, and pheophytins to singlet oxygen. Biochim. Biophys. Acta. 2002;1572:107–113.
    1. Foote C.S., Denny R.W. Chemistry of singlet oxygen VII. quenching by β-carotene. J. Am. Chem. Soc. 1968;90:6233–6234.
    1. Hansen E., Skibsted L.H. Light-induced oxidative changes in a model dairy spread. Wavelength dependence of quantum yields. J. Agric. Food Chem. 2000;48:3090–3094.
    1. Burton G., Ingold K. β-Carotene: An unusual type of lipid antioxidant. J. Sci. Food Agric. 1984;224:569–573.
    1. Yanishlieva N.V., Aitzetmüller K., Raneva V. β-Carotene and lipid oxidation. Lipid/Fett. 1998;100:444–462.
    1. Matyas G.R., Wassef N.M., Rao M., Alving C.R. Induction and detection of antibodies to squalene. J. Immunol. Methods. 2000;245:1–14.
    1. Newmark H.L. Squalene, olive oil, and cancer risk: A review and hypothesis, Cancer Epidemiol. Biomark. Prev. 1997;6:1101–1103.
    1. Owen R.W., Haubner R., Würtele G.W., Hull W.E., Spiegelhalder B., Bartsch H. Olives and olive oil in cancer prevention. Eur. J. Cancer Prev. 2004;13:319–326.
    1. Koivisto P.V.I. Miettinen, Increased amount of cholesterol precursors in lipoproteins after ileal exclusion. Lipids. 1988;23:993–996.
    1. Stewart M.E. Sebaceous gland lipids. Semin. Dermatol. 1992;11:100–105.
    1. Newmark H.L. Squalene, olive oil, and cancer risk: Review and hypothesis. Ann. N. Y. Acad. J. Sci. Food Agric. 1999;889:193–203.
    1. Dennis K., Shimamoto T. Production of malonyldialdehyde from squalene, a major skin surface lipid, during UV irradiation. Photochem. Photobiol. 1989;49:711–719.
    1. Reddy L.H., Couvreur P. Squalene: A natural triterpene for use in disease management and therapy. Adv. Drug Deliv. Rev. 2009;61:1412–1426.
    1. Kelly G. Squalene and its potential clinical uses. Altern. Med. Rev. 1999;4:29–36.
    1. Kalogeropoulos N., Chiou A., Gavala E., Christea M., Andrikopoulos K.N. Nutritional evaluation and bioactive microconstituents (carotenoids, tocopherols, sterols and squalene) of raw and roasted chicken fed on DHA-rich microalgae. Food Res. Int. 2010;43:2006–2013.
    1. Whittenton J., Harendra S., Pitchumani R., Mohanty K., Vipulanandan C., Thevananther S. Evaluation of asymmetric liposomal nanoparticles for encapsulation of polynucleotides. Langmuir. 2008;24:8533–8540.
    1. Fox C.B., Anderson R.C., Dutill T.S., Goto Y., Reed S.G., Vedvick T.S. Monitoring the effects of component structure and source on formulation stability and adjuvant activity of oil-in-water emulsions. Colloids Surf. B. 2008;65:98–105.
    1. Kamimara H., Koga N., Oguri K., Yoshimura H. Enhanced elimination of theophylline, phenobarbital and strychnine from the bodies of rats and mice by squalene treatment. J. Pharmacobiodyn. 1992;15:215–221.
    1. Kiritsakis Markakis. Advances in Food Research. Vol. 31. Elsevier Inc; New York, NY, USA: 1988. Olive oil: A review; pp. 453–482.
    1. Aparicio R., Luna G. Characterisation of monovarietal virgin olive oil. Eur. J. Lipid Sci. Technol. 2002;104:614–627.
    1. Grob K., Lanfranchi M., Mariani C. Evaluation of olive oils through the fatty alcohols, the sterols and their esters by coupled LC-GC. J. Am. Oil Chem. Soc. 1990;67:626–634.
    1. Gucci R., Lombardini L., Tattini M. Analysis of leaf water relations in leaves of two olive (Olea europaea) cultivars differing in tolerance to salinity. Tree Physiol. 1997;17:13–21.
    1. Fernandez-Escobar R., Moreno R., Garcia-Creus M. Seasonal changes of mineral nutrients in olive leaves during the alternate-bearing cycle. Sci. Hort. -Amsterdam. 1999;82:25–45.
    1. Ciafardini G., Zullo B.A. Microbiological activity in stored olive oil. Int. J. Food Microbiol. 2002;75:111–118.
    1. karakaya S.E.S. Studies of olive tree leaf extract indicate seveal potential health benefits. Nutr. Rev. 2009;67:632–639.
    1. Zarzuelo A. Vasodilator effect of olive leaf. Planta Med. 1991;57:417–419.
    1. Samuelsson G. The blood pressure lowering factor in leaves of Olea europaea. Farmacevtisk Revy. 1951;15:229–239.
    1. Pereira A.P., Ferreira I.C.F.R., Marcelino F., Valentão P., Andrade B.P., Seabra R., Estevinho L., Bento A., Pereira J.A. Phenolic compounds and antimicrobial activity of olive (Olea europaea L. Cv. Cobrançosa) leaves. Molecules. 2007;12:1153–1162.
    1. Benavente-Garcia O., Castillo J., Lorente J., Ortuno A., Del Rio J.A. Antioxidant activity of phenolics extracted from Olea europaea L. leaves. Food Chem. 2000;68:457–462.
    1. Furneri P.M., Marino A., Saija A., Uccella N., Bisignano G. In vitro antimycoplasmal activity of oleuropein. Int. J. Antimicrob. Agents. 2002;20:293–296.
    1. Briante R., Febbraio F., Nucci R. Antioxidant properties of low molecular weight phenols present in the Mediterranean diet. J. Agric. Food Chem. 2003;51:6975–6981.
    1. Skerget M., Kotnik P., Hadolin M., Hradolin A.R., Simoni M., Knez Z. Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities. Food Chem. 2005;89:191–198.
    1. Ryan D., Prenzler P.D., Lavee S., Antolovich M., Robards K. Quantitative changes in phenolic content during physiological development of the olive (Olea europaea) cultivar Hardy’s Mammoth. J. Agric. Food Chem. 2003;51:2532–2538.
    1. Bianco A., Uccella N. Biophenolic components of olives. Food Res. Int. 2000;33:475–485.
    1. Tasioula-Margari M., Ologeri O. Isolation and characterization of virgin olive oil phenolic compounds by HPLC/UV and GC/MS. J. Food Sci. 2001;66:530–534.
    1. Delgado-Pertinez M., Gomez-Cabrera A., Garrido A. Predicting the nutritive value of the olive leaf (Olea europaea): Digestibility and chemistry composition and in vitro studies. Anim. Feed Sci. Technol. 2000;87:187–201.
    1. Lesage-Meessen L., Navarro D., Maunier S., Sigoillot J.C., Lorquin J., Delattre M. Simple phenolic content in olive oil residues as a function of extraction systems. Food Chem. 2001;75:501–507.
    1. Sabbah I., Marsook T., Basheer S. The effect of pretreatment on anaerobic activity of olive mill wastewater using batch and continuous systems. Process Biochem. 2004;39:1947–1951.
    1. Manios T. The composting potential of different organic solid wastes, experience from the island of Crete. Environ. Int. 2004;29:1079–1089.
    1. Ranalli A., Lucera L., Contento S. Antioxidizing potency of phenol compounds in olive oil mill wastewater. J. Agric. Food Chem. 2003;51:7636–7641.
    1. Shahidi F., Naczk M. Phenolic in Food and Nutraceutical. CRC Press; Boca Raton, FL USA: 2004.
    1. Amro B., Aburjai T., Al-Khalil S. Antioxidative and radical scavenging effects of olive cake extract. Fitoterapia. 2002;73:456–461.
    1. Fernandez-Bolanos J., Rodriguez G., Rodriguez R., Heredia A., Guillen R., Jimenez A. Production in large quantities of highly purified hydroxytyrosol from liquid-solid waste of two phase olive oil processing or”Alperujo”. J. Agric. Food Chem. 2002;50:6804–6811.
    1. Mulinacci N., Romani A., Galardi C., Pinelli P., Giaccherini C., Vincieri F.F. Polyphenolic content in olive oil wastewaters and related olive samples. J. Agric. Food Chem. 2001;49:3509–3514.
    1. Allouche N., Fki I., Sayadi S. Toward a high yield recovery of antioxidants and purified hydroxytyrosol from olive mill wastewaters. J. Agric. Food Chem. 2004;52:267–273.
    1. Bianco A., Buiarelli F., Cartoni G., Coccioli F., Jasionowska R., Margherita P. Analysis by liquid chromatography-tandem mass spectrometry of biophenolic compounds in olives and vegetation waters, Part I. J. Sep. Sci. 2003;26:409–416.
    1. Fiorentino A., Gentili A., Isidori M., Monaco P., Nardelli A., Parrella A.E., et al. Environmental effects caused by olive mill wastewaters: Toxicity comparison of low-molecular weight phenol components. J. Agric. Food Chem. 2003;51:1005–1009.
    1. Rodis P.S., Karathanos V.T., Mantzavinou A. Partitioning of olive oil antioxidants between oil and water phases. J. Agric. Food Chem. 2002;50:596–601.
    1. Aludatt M.H., Alli I., Ereifej K., Alhamad M., Al-Tawaha A.R., Rababah T. Optimisation, characterisation and quantification of phenolic compounds in olive cake. Food Chem. 2010;123:117–122.
    1. Parades C., Cegarra J., Roig A., Sanchez-Monedero M.A., Bernal M.P., Brenes M. Characterization of olive mill wastewater (alpechin) audits sludge for agricultural purposes. Bioresour. Technol. 1999;67:111–115.
    1. Rice-Evans C., Miller N.J., Paganga G. Antioxidant properties of phenolic compounds. Trends Plant Sci. 1997;2:152–159.
    1. Khoufi S., Aloui F., Sayadi S. Extraction of antioxidants from olive mill wastewater and electro-coagulation of exhausted fraction to reduce its toxicity on anaerobic digestion. J. Hazard. Mater. 2008;151:531–539.
    1. Manna C., Galletti P., Cucciolla V., Moltedo O., Leone A., Zappia V. The protective effect of the olive oil polyphenols (3,4-dyhydroxyphenyl)-ethanol counteracts reactive oxygen metabolite induced cytoxicity in caco-2-cells. J. Nutr. 1997;127:286–292.
    1. Kubo I., Hanke F.J. Chemically Mediated Interaction Between Plants and Other Organisims. Plenum; New York, NY, USA: 1985. Chemistry based resistence in plants.
    1. Legar C.L., Kadiri-Hassani N., Descomps B. Decreased superoxide anion production in cultured human promonocyte cells (THP-l) due to polyphenol mixtures from olive oil processing wastewaters. J.Agric. Food Chem. 2000;48:5061–5067.
    1. González M.D., Moreno E., Quevedo-Sarmiento J., Ramos-Cormenzana A. Studies on antibacterial activity of wastewaters from olive oil mills (alpechin): Inhibitory activity of phenolic and fatty acids. Chemosphere. 1990;20:423–432.
    1. Moreno R., Benitez E., Melgar R., Polo A., Gomez M., Nogales R. Vermicomposting as an alternative for reusing by-products from the olive oil industry. Fresen. Environ. Bull. 2000;9:1–8.
    1. Perez J., Delarubia T., Moreno J., Martinez J. phenolic content and antibacterial activity of olive oil wastewaters. Environ. Toxicol. Chem. 1992;11:489–495.
    1. Capasso R., Evidente A, Schivo L., Orru G., Marcialis M.A., Cristinizo G. Antibacterial polyphenols from olive oil mill wastewaters. J. Appl. Bacteriol. 1995;79:393–398.
    1. Fki I., Allouche N., Sayadi S. The use of polyphenolic extract, purified hydroxytyrosol and 3,4-dihydroxyphenyl acetic acid from olive mill wastewater for the stabilization of refined oils: A potential alternative to synthetic antioxidants. Food Chem. 2005;93:197–204.
    1. Heredia A., Guillén R., Fernández-Bolaños J., Rivas M. Olives stone as a source of fermentable sugars. Biomass. 1987;14:143–148.
    1. Najar-Souissi S., Ouedereni A., Ratel A. Adsorption of dyes onto activated carbon prepared from olive stones. J. Environ. Sci. China. 2005;17:998–1003.
    1. Budinova T., Petrov N., Razvigorova M., Parra J., Galiatsatou P. Removal of arsenic(III) from aqueous solution by activated carbons prepared from solvent extracted olive pulp and olive stones. Ind. Eng. Chem. Res. 2006;45:1896–1901.
    1. Ghazy S.E., Samra S.E., May A.E.M., El-Morsy S.M. Removal of aluminium from some water samples by sorptive-flotation using powdered modified activated carbon as a sorbent and oleic acid as a surfactant. Anal. Sci. 2006;22:377–382.
    1. Montane D., Salvado J., Torras C., Farriol X. High-temperature dilute acid hydrolysis of olive stone for furfural production. Biomass Bioenerg. 2001;22:295–304.
    1. Siracusa G., La Rosa A.D., Siracusa V., Trovato M. Eco Compatible use of olive huso as filler in thermoplastic composites. J. Polym. Environ. 2001;9:157–161.
    1. Rodríguez G., Lama A., Rodríguez R., Jiménez A., Guillén R., Pages J.F.B. Olive stone an attractive source of bioactive and valuable compounds. Bioresour. Technol. 2008;99:5261–5269.
    1. Carraro L., Trocino A., Xiccato G. Dietary supplementation with olive stone meal in growing rabbits. Ital. J. Anim. Sci. 2005;4:88–90.
    1. Tejeda-Ricardez J., Vaca-Garcia C., Borredon M.E. Design of a batch solvolytic liquefaction reactor for the vaporization of residues from the agricultural foodstuff. Chem. Eng. Res. 2003;81:1066–1070.
    1. Pérez-Bonilla M., Salido S., van Beek T.A., Linares-Palomino P.J., Altarejos J., Nogueras M. Isolation and identification of radical scavengers in olive tree (Olea europaea) wood. J. Chromatogr. A. 2006;111:311–318.
    1. Zbidi H., Salido S., Altarejos J., Pérez-Bonilla M., Bartegi A., Rosado J.A. Olive tree wood phenolic compounds with human platelet antiaggregant properties. Blood Cell Mol. Dis. 2009;42:279–285.
    1. Pérez-Bonilla M., Salido S., Teris A.V.B., Waard P.D., Linares-Palomino P.J., Sánchez A., Altarejos J. Isolation of antioxidative secoiridoids from olive wood (Olea europaea L.) guided by on-line HPLC-DAD-radical scavenging detection. Food Chem. 2011;124:36–41.
    1. Patumi M., D’andria R., Marsilio V., Fontanazza G., Morelli G., Lanza B. Olive and olive oil quality after intensive monocone olive growing (Olea europaea L., cv. Kalmata) in different irrigation regimes. Food Chem. 2002;77:27–34.
    1. Tovar M.J., Romero M.P., Alegre S., Girona J., Motilva M.J. Composition and organoleptic characteristics of oil from Arbequina olive (Olea europaea L.) trees under deficit irrigation. J. Sci. Food Agric. 2002;82:1755–1763.
    1. Morelló J.R., Vuorela S., Romero M.P., Motilva M.J., Heinonen M. Antioxidant activity of olive pulp and olive oil phenolic compounds of the Arbequina cultivar. J. Agric. Food Chem. 2005;53:2002–2008.
    1. Kevin D., Rade D., Trucelj D., Mokrovãak Î., Nederal S., Benãiç D. The influence of variety and harvest time on the bitterness and phenolic compounds of olive oil. Eur. J. Lipid Sci. Technol. 2003;105:536–541.
    1. Garcia A., Brenes M., Garcia P., Romero C., Garrido A. Phenolic content of commercial olive oils. Eur. Food Res. Technol. 2003;216:520–525.
    1. Gómez-Rico A., Fregapane G., Salvador M.D. Effect of cultivar and ripening on minor components in Spanish olive fruits and their corresponding virgin olive oils. Food Res. Int. 2008;41:433–440.
    1. Esti M., Cinquanta L., La Notte E. Phenolic compounds in different olive varieties. J. Agric. Food Chem. 1998;46:32–35.
    1. Gutiérrez F., Jímenez B., Ruíz A., Albi M.A. Effect of olive ripeness on the oxidative stability of virgin olive oil extracted from the varieties Picual and Hojiblanca and on the different components involved. J. Agric. Food Chem. 1999;47:121–127.
    1. Ryan D., Robards K., Lavee S. Changes in phenolic content of olive during maturation. J. Food Sci. Technol. 1999;34:265–274.
    1. Cimato A., Mattei A., Osti M. Variation of polyphenol composition with harvesting period. Acta Hortic. 1990;286:453–456.
    1. Mraicha F., Ksantini M., Zouch O., Ayadi M., Sayadi S., Bouaziz M. Effect of olive fruit fly infestation on the quality of olive oil from Chemlali 3 cultivar during ripening. Food Res. Int. 2008;41:433–440.
    1. Amiot M.J., Fleuriet A., Macheix J.J. Accumulation of oleuropein derivatives during olive maturation. Phytochemistry. 1989;28:67–69.
    1. Beltrán G., Sanchez S., Martinez L. Influence of fruit ripening process on the natural antioxidant content of Hojiblanca virgin olive oils. Food Chem. 2005;89:207–215.
    1. Bouaziz M., Chamkha M., Sayadi S. Comparative study on phenolic content and antioxidant activity during maturation of the olive cultivar chemlali from Tunisia. J. Agric. Food Chem. 2004;52:5476–5481.
    1. Garcia A., Brenes M., Romero C., Garcia P., Garrido A. Study of phenolic compounds in virgin olive oils of the Picual variety. Eur. Food Res. Technol. 2002;5:407–412.
    1. Kotsifaki A.K.F., Stefanoudaki E. Effect of extraction system, stage of ripeness and kneading temperature on the sterol composition of virgin olive oil. J. Am. Oil Chem. Soc. 1999;76:1477–1481.
    1. Morelloa J.R., Romero M.P., Motilva M.J. Effect of the maturation process of the olive fruit on the phenolic fraction of drupes and oils from arbequina, farga, and morrut cultivars. J. Agric. Food Chem. 2004;52:6002–6009.
    1. Rotondi A., Bendni A., Cerretani L., Mari M., Lercker G., Toschi T.G. Effect of olive ripening degree on the oxidative stability and organoleptic properties of Cv. Nostrana di Brisighella extra virgin olive oil. Agric. Food Chem. 2004;52:3649–3654.
    1. Rovellini P., Cortesi N. Determination of phenolic compounds in different cultivars during olive drupe ripening by liquid chromatography-mass spectrometry. Olive. 2003;95:32–38.
    1. Salvador M., Aranda F., Fregapane G. Influence of fruit ripening on “Cornicabra” virgin olive oil quality. A study of four successive crop seasons. Food Chem. 2001;73:45–53.
    1. Yousfi K., Cert R.M., Garcıa J.M. Changes in quality and phenolic compounds of virgin olive oils during objectively described fruit maturation. Eur. Food Res. Technol. 2006;223:117–124.
    1. Moriana A., Orgaz F., Fereres E, Pastor M. Yield responses of a mature olive orchard to water deficits. J. Am. Soc. Hortic. Sci. 2003;128:425–431.
    1. Gomez-Rico A., Desamparados Salvador M., Moriana A., Perez D., Olmedilla N., Ribas F., Fregapane G. Influence of different irrigation strategies in a traditional Cornicabra cv. olive orchard on virgin olive oil composition and quality. Food Chem. 2007;100:568–578.
    1. Gómez-Rico A., Salvador M.D., La Greca M., Fregapane G. Phenolic and volatile compounds of extra virgin olive oil (Olea europaea L. Cv. Cornicabra) with regard to fruit ripening and irrigation management. J. Agric. Food Chem. 2006;54:7130–7136.
    1. Artajo L.S., Romero M.P., Tovar M.J., Motilva M.J. Effect of irrigation applied to olive trees (Olea europaea L.) on phenolic compound transfer during olive oil extraction. Eur. J. Lipid Sci. Technol. 2006;108:19–27.
    1. Berenguer M.J., Vossen P.M., Grattan R.S., Connell J.H., Polito V.S. Tree irrigation levels for optimum chemical and sensory properties of olive oil. HortScience. 2006;41:427–432.
    1. Wiesman Z., Itzhak D., Dom N.B. Optimization of saline water level for sustainable Barnea olive and oil production in desert conditions. Sci. Hort. 2004;100:257–266.
    1. Gharsallaoui M., Ben Amar F., Khabou W., Ayadi M. Valorisation des ressources en eau non conventionnelles au Sud Tunisien par la culture de l’olivier (Olea europaea L.). Meeting International: Gestion des Ressources et Application Biotechnologiques en Aridoculture et Culture Sahariennes: Perspectives pour la valorisation des potentialités du Sahara; Djerba, Tunisia. 25–28 December 2006; Djerba, Tunisia: Institue des Régions Arides; 2006.
    1. Palese A.M., Celano G., Masi S., Xiloyannis C. Olivebioteq. Mazara del Vallo; Marsala, Italy: 2006. Treated wastewater for irrigation of olive trees: Effects on yield and oil quality; pp. 123–129.
    1. European Community. Council Regulation (EC) No. 1513/2001 of 23 July 2001 Amending Regulations No. 136/66/EEC and (EC) No 1638/98 as regards the extension of the period of validity of the aid scheme and the quality strategy for olive oil. Off. J. Eur. Commun. 2001;L201:4–7.
    1. Capella P., Fedeli E., Bonaga G., Lerker G. Manuale degli Oli e dei Grassi. Tecniche Nuove; Milano, Italy: 1997.
    1. Servili M., Baldioli M., Montedoro G.F. Phenolic composition of virgin olive oil in relationship to some chemical and physical aspects of malaxation. Acta Hortic. 1994;356:331–336.
    1. Veillet S., Tomao V., Bornard I., Ruiz K., Chemat F. Chemical changes in virgin olive oils as a function of crushing systems: Stone mill and hammer crusher. C.R. Chim. 2009;12:895–904.
    1. Caponio F., Gomes T. Influence of olive crushing temperature on phenols in olive oils. Eur. Food Res. Technol. 2001;212:156–159.
    1. Campeol E., Flamini G., Chericoni S., Catalano S., Cremonini R. Volatile compounds from three cultivars of Olea europaea from Italy. J. Agric. Food Chem. 2001;49:5409–5411.
    1. Servili M., Selvaggini R., Taticchi A., Esposto S., Montedoro G.F. Volatile compounds and phenolic composition of virgin olive oil: Optimization of temperature and time of exposure of olive paste to air contact during the mechanical extraction process. J. Agric. Food Chem. 2003;51:7980–7988.
    1. Kachouri F., Hamdi M. Use of Lactobacillus plantarum in olive oil process and improvement of phenolic compounds content. J. Food Eng. 2006;77:746–752.
    1. Vierhuis E., Servili M., Baldioli M., Schols H.A., Voragen A.G.J., Montedoro G. Effect of enzyme treatment during mechanical extraction of olive oil on phenolic compounds and polysaccharides. J. Agric. Food Chem. 2001;49:1218–1223.
    1. Faveri D.D., Aliakbariana B., Avogadroa M., Peregoa P., Converti A. Improvement of olive oil phenolics content by means of enzyme formulations: Effect of different enzyme activities and levels. Chem. Eng. J. 2008;41:149–156.
    1. Aliakbarian B., Faveri D.D., Converti A., Perego P. Optimisation of olive oil extraction by means of enzyme processing aids using response surface methodology. Chem. Eng. J. 2008;42:34–40.
    1. Morello J.R., Motilva M.J., Tovar M.J., Romero M.P. Changes in commercial virgin olive oil (cv. Arbequina) during storage, with special emphasis on the phenolic fraction. Food Chem. 2004;85:357–364.
    1. Stefanoudaki E., Koutsaftakis A., Kotsifaki F., Angerosa F., DiGirolamo M. Quality characteristics of olive oils of dual- and three-phase decanters and laboratory mill. Acta Hortic. 1999;474:705–708.
    1. Giovacchino L.D., Solinas M., Miccoli M. Effect of extraction systems on the quality of virgin olive oil. J. Am. Oil Chem. Soc. 1994;71:1189–1194.
    1. Cert A., Alba J., León-Camacho M., Moreda W., Pérez-Camino M.C. Effects of talc addition and operating mode on the quality and oxidative stability of virgin olive oils obtained by centrifugation. J. Agric. Food Chem. 1996;44:3930–3934.
    1. Galli C., Visioli F. Antioxidant and other properties of phenolics in olives/olive oil, typical compounds of the mediterranean diet. Lipids. 1999;34:S23–S26.
    1. Manna C., Galletti P., Cucciolla V., Montedoro G., Zappia V. Olive oil hydroxytyrosol protects human erythrocytes against oxidative damages. J. Nutr. Biochem. 1999;10:159–165.
    1. Lozano-Sánchez J., Segura-Carretero A., Fernández-Gutiérrez A. Characterisation of the phenolic compounds retained in different organic and inorganic filter aids used for filtration of extra virgin olive oil. Food Chem. 2011;124:1146–1150.
    1. Fregapane G., Lavelli V., León S., Kapuralin J., Salvador M.D. Effect of filtration on virgin olive oil stability during storage. Eur. J. Lipid Sci. Technol. 2006;108:134–142.
    1. Agalias A., Magiatis P., Skaltsounis A., Mikros E., Tsarbopoulos A., Gikas E. A new process for the management of olive oil mill waste water and recovery of natural antioxidants. J. Agirc. Food Chem. 2007;55:2671–2676.
    1. Gortzi O., Lalas S., Chatzilazarou A., Katsoyannos E., Papaconstandinou S., Dourtoglou E. Recovery of natural antioxidants from olive mill wastewater using Genapol-X080. J. Am. Oil Chem. Soc. 2008;85:133–140.
    1. Paraskeva C.A., Papadakis V.G., Kanellopoulou D.G., Koutsoukos P.G., Angelopoulos K.C. Membrane filtration of olive mill wastewater and exploitation of its fractions. Water Environ. Res. 2007;79:421–429.
    1. Roig A., Cayuela M.L., Sanchez-Monedero M.A. An overview on olive mill wastes and their valorisation methods. Waste Manag. 2006;26:960–969.
    1. Arsuaga J.M., López-Muñoz M.J., Sotto A. Correlation between retention and adsorption of phenolic compounds in nanofiltration membranes. Desalination. 2010;250:829–832.
    1. Lafka T.-I., Lazou A.E., Sinanoglou V.J., Lazos E.S. Phenolic and antioxidant potential of olive oil mill wastes. Food Chem. 2011;125:92–98.
    1. Schieber A., Stintzing F.C., Carle R. By-products of plant food processing as a source of functional compounds—Recent developments. Trends Food Sci. Technol. 2001;12:401–413.

Source: PubMed

3
Abonnieren