Controlled underdilation using novel VIATORR® controlled expansion stents improves survival after transjugular intrahepatic portosystemic shunt implantation

Michael Praktiknjo, Jasmin Abu-Omar, Johannes Chang, Daniel Thomas, Christian Jansen, Patrick Kupczyk, Filippo Schepis, Juan Carlos Garcia-Pagan, Manuela Merli, Carsten Meyer, Christian P Strassburg, Claus C Pieper, Jonel Trebicka, Michael Praktiknjo, Jasmin Abu-Omar, Johannes Chang, Daniel Thomas, Christian Jansen, Patrick Kupczyk, Filippo Schepis, Juan Carlos Garcia-Pagan, Manuela Merli, Carsten Meyer, Christian P Strassburg, Claus C Pieper, Jonel Trebicka

Abstract

Background & aims: Smaller 8-mm diameter transjugular intrahepatic portosystemic shunts (TIPS) appear to be more beneficial than larger 10-mm TIPS stent-grafts, but lack the ability for secondary dilation in cases of clinical ineffectiveness. Underdilated VIATORR® TIPS stent grafts (VTS) expand passively, whereas novel VIATORR Controlled Expansion (VCX) stent grafts do not. This study evaluated the impact on survival of underdilated VCX compared with VTS in patients with decompensated cirrhosis.

Methods: This was a prospective case-control study including patients with cirrhosis receiving TIPS using 10-mm VCX underdilated to 8 mm. Patients with cirrhosis receiving 10-mm VTS underdilated to 8 mm were matched for age, sex, indication for TIPS, and liver function.

Results: A total of 114 patients (47 VCX, 47 VTS, and 20 fully dilated VCX/VTS) were included. After TIPS implantation, underdilated VCX diameter was 8.0 (7.8-9.2) mm at a median time of 359 (87-450) days, compared with VTS at 9.9 (9.7-10.0) mm (p <0.001). The portosystemic pressure gradient immediately after TIPS procedure and after 7 days did not change significantly in VCX [mean 9.4 (± 0.8) vs. 10.4 (± 0.7) mmHg, p = 0.115). Hospital readmission rates for hepatic encephalopathy were 23% (n = 11) vs 51% (n = 24) for VCX and VTS (p <0.001), respectively. Patients with VCX had significantly lower rates of large-volume paracentesis (n = 5 [11%] vs. n = 10 [21%], p = 0.017) and heart failure (n = 1 [2%] vs. n = 7 [15%], p = 0.015). One-year mortality for underdilated VCX and VTS was 15% (n = 7) and 30% (n = 14) and, for fully dilated VCX/VTS, was 45% (n = 9) (log-rank p = 0.008), respectively.

Conclusions: This study demonstrated that VCX stent grafts underdilated to 8 mm do not passively expand to nominal diameter and suggests reduced hospital readmissions because of hepatic encephalopathy, uncontrolled ascites, and heart failure, and improved 1-year survival compared with underdilated VTS.

Lay summary: Transjugular intrahepatic portosystemic shunt (TIPS) improves survival in selected patients with liver cirrhosis and acute variceal bleeding or refractory ascites. Smaller 8-mm diameter TIPS stent grafts appear to improve patient outcome compared with larger 10-mm diameter stent grafts. Novel VIATORR® Controlled Expansion (VCX) stent grafts facilitate safe and stable underdilation to 8 mm of large 10-mm diameter stent grafts with improved patient outcome (survival, hepatic encephalopathy, ascites and heart failure) compared with legacy VIATORR TIPS stent graft (VTS). Thus, the use of underdilated VCX could preserve heart function.

Clinical trials registration: The study is registered at Clinicaltrials.govNCT03628807.

Keywords: Acute decompensation; Ascites; CT, computed tomography; Cirrhosis; HE, hepatic encephalopathy; HF, heart failure; Hepatic encephalopathy; LV, left ventricular; LV-GLS, LV global longitudinal strain; LVP, large-volume paracentesis; Liver; MELD, model of end-stage liver disease; NEPTUN, Non-invasive Evaluation Program for TIPS and follow Up Network; PSPG, portosystemic pressure gradient; PTFE, polytetrafluorethylene; RA, recurrent/refractory ascites; RAAS, renin-angiotensin-aldosterone system; SPSS, spontaneous portosystemic shunt; TIPS; TIPS, transjugular intrahepatic portosystemic shunt; TTE, transthoracic echocardiography; Transjugular intrahepatic portosystemic shunt; VB, variceal bleeding; VCX, VIATORR controlled expansion; VTS, VIATORR TIPS stent.

Conflict of interest statement

M.P. received funding from the 10.13039/501100008436Ernst und Berta Grimmke Foundation (Germany) (Lfd.Nr.5/19), BONFOR research program of the University of Bonn, Germany (2020-2A-07). J.T. received funding from the 10.13039/100010661European Union’s Horizon 2020 research and innovation program’s GALAXY study (No. 668031), LIVERHOPE (No. 731875), MICROB-PREDICT (No. 825694), the 10.13039/100008050Cellex Foundation, and W.L. Gore & Associates Medical. Please refer to the accompanying ICMJE disclosure forms for further details.

© 2021 The Author(s).

Figures

Graphical abstract
Graphical abstract
Fig. 1
Fig. 1
Flow chart of patient cohorts included in the study. VCX, VIATORR controlled expansion; VTS, first generation VIATORR stent-graft.
Fig. 2
Fig. 2
One-year survival analysis. (A) Kaplan-Meier survival curve for 1-year survival stratified by stent type. VCX underdilated to 8 mm (green), VTS underdilated to 8 mm (yellow), VCX and VTS stent grafts fully dilated to 10 mm (red). p by log-rank. Crosses are censor events. X-axis shows time between TIPS and death in months. Y-axis shows 1-cumulative incidence. (B) Univariate Cox regression analysis for 1-year survival. Plot shows HR and 95% CI. (C) Multivariate Cox regression analysis for 1-year survival. Plot shows HR and 95% CI. HR, hazard ratio; MELD, model of end-stage liver disease; VCX, VIATORR controlled expansion, underdilated 8 mm; VTS, first-generation VIATORR stent-graft, underdilated 8 mm; WBC, white blood cell count.
Fig. 3
Fig. 3
Evolution of median stent diameter measured by computed tomography reconstruction at last follow-up. X-axes show time of measurement. (A) VCX (n = 47). Y-axis shows diameter in mm. (B) VTS (n = 30). Y-axis shows diameter in mm. (C) Evolution of PSPG of patients with a VCX immediately after TIPS implantation and 7 days post implantation (n = 21). Y-axis shows PSPG in mmHg. PSPG, portosystemic pressure gradient; VCX, VIATORR controlled expansion; VTS, first-generation VIATORR stent graft.
Fig. 4
Fig. 4
Time-to-event analysis for hospitalisation for (A) hepatic encephalopathy, (B) large-volume paracentesis and (C) heart failure. X-axes show time between TIPS and hospitalisation in months. Y-axes show cumulative incidence. p by log-rank. Blue indicates patients with a VCX implanted; red indicates patients with a VTS implanted. TIPS, transjugular intrahepatic portosystemic shunt; VCX, VIATORR controlled expansion; VTS, first-generation VIATORR stent graft.
Fig. 5
Fig. 5
Evolution of cardiac function. (A) Fraction of patients with normal LV-GLS by speckle-tracking echocardiography before and after TIPS. Blue indicates patients with a VCX implanted; red indicates patients with a VTS implanted. Y-axis shows the fraction of patients. p by paired non-parametric testing. Evolution of LV-GLS before and 6 weeks after TIPS implantation in patients receiving (B) VCX or (C) VTS. Y-axes show LV-GLS in percent. LV-GLS, left ventricular global longitudinal strain; TIPS, transjugular intrahepatic portosystemic shunt; VCX, VIATORR controlled expansion; VTS, first-generation VIATORR stent graft.

References

    1. Angeli P., Bernardi M., Villanueva C., Francoz C., Mookerjee R.P., Trebicka J. EASL Clinical Practice Guidelines for the management of patients with decompensated cirrhosis. J Hepatol. 2018;69:406–460.
    1. de Franchis R., Faculty Baveno V.I. Expanding consensus in portal hypertension: report of the Baveno VI Consensus Workshop: stratifying risk and individualizing care for portal hypertension. J Hepatol. 2015;63:743–752.
    1. American Association for the Study of Liver Diseases European association for the study of the liver. Hepatic encephalopathy in chronic liver disease: 2014 practice guideline by the European association for the study of the liver and the American association for the study of liver diseases. J Hepatol. 2014;61:642–659.
    1. Gustot T., Fernandez J., Garcia E., Morando F., Caraceni P., Alessandria C. Clinical course of acute-on-chronic liver failure syndrome and effects on prognosis. Hepatology. 2015;62:243–252.
    1. Jalan R., Pavesi M., Saliba F., Amorós A., Fernandez J., Holland-Fischer P. The CLIF Consortium Acute Decompensation score (CLIF-C ADs) for prognosis of hospitalised cirrhotic patients without acute-on-chronic liver failure. J Hepatol. 2015;62:831–840.
    1. Ripoll C., Groszmann R., Garcia-Tsao G., Grace N., Burroughs A., Planas R. Hepatic venous pressure gradient predicts clinical decompensation in patients with compensated cirrhosis. Gastroenterology. 2007;133:481–488.
    1. Trebicka J. Emergency TIPS in a Child-Pugh B patient: when does the window of opportunity open and close? J Hepatol. 2017;66:442–450.
    1. Trebicka J. Does transjugular intrahepatic portosystemic shunt stent differentially improve survival in a subset of cirrhotic patients? Semin Liver Dis. 2018;38:87–96.
    1. Bureau C., Thabut D., Oberti F., Dharancy S., Carbonell N., Bouvier A. Transjugular intrahepatic portosystemic shunts with covered stents increase transplant-free survival of patients with cirrhosis and recurrent ascites. Gastroenterology. 2017;152:157–163.
    1. García-Pagán J.C., Caca K., Bureau C., Laleman W., Appenrodt B., Luca A. Early use of TIPS in patients with cirrhosis and variceal bleeding. N Engl J Med. 2010;362:2370–2379.
    1. Rössle M. TIPS: 25 years later. J Hepatol. 2013;59:1081–1093.
    1. Salerno F., Cammà C., Enea M., Rössle M., Wong F. Transjugular intrahepatic portosystemic shunt for refractory ascites: a meta-analysis of individual patient data. Gastroenterology. 2007;133:825–834.
    1. Lv Y., Yang Z., Liu L., Li K., He C., Wang Z. Early TIPS with covered stents versus standard treatment for acute variceal bleeding in patients with advanced cirrhosis: a randomised controlled trial. Lancet Gastroenterol Hepatol. 2019;4:587–598.
    1. Hernández-Gea V., Procopet B., Giráldez Á., Amitrano L., Villanueva C., Thabut D. Preemptive-TIPS improves outcome in high-risk variceal bleeding: an observational study. Hepatology. 2019;69:282–293.
    1. Bureau C., Pagan J.C.G., Layrargues G.P., Metivier S., Bellot P., Perreault P. Patency of stents covered with polytetrafluoroethylene in patients treated by transjugular intrahepatic portosystemic shunts: long-term results of a randomized multicentre study. Liver Int. 2007;27:742–747.
    1. Eesa M., Clark T. Transjugular intrahepatic portosystemic shunt: state of the art. Semin Roentgenol. 2011;46:125–132.
    1. Wang Q., Lv Y., Bai M., Wang Z., Liu H., He C. Eight millimetre covered TIPS does not compromise shunt function but reduces hepatic encephalopathy in preventing variceal rebleeding. J Hepatol. 2017;67:508–516.
    1. Riggio O., Ridola L., Angeloni S., Cerini F., Pasquale C., Attili A.F. Clinical efficacy of transjugular intrahepatic portosystemic shunt created with covered stents with different diameters: results of a randomized controlled trial. J Hepatol. 2010;53:267–272.
    1. Miraglia R., Maruzzelli L., Tuzzolino F., Petridis I., D’Amico M., Luca A. Transjugular intrahepatic portosystemic shunts in patients with cirrhosis with refractory ascites: comparison of clinical outcomes by using 8- and 10-mm PTFE-covered stents. Radiology. 2017;284:281–288.
    1. Pieper C.C., Jansen C., Meyer C., Nadal J., Lehmann J., Schild H.H. Prospective evaluation of passive expansion of partially dilated transjugular intrahepatic portosystemic shunt stent grafts – a three-dimensional sonography study. J Vasc Interv Radiol. 2016;28:117–125.
    1. Mollaiyan A., Bettinger D., Rössle M. The underdilation of nitinol stents at TIPS implantation: solution or illusion? Eur J Radiol. 2017;89:123–128.
    1. Gaba R.C., Parvinian A., Minocha J., Casadaban L.C., Knuttinen M.G., Ray C.E. Should transjugular intrahepatic portosystemic shunt stent grafts be underdilated? J Vasc Interv Radiol. 2015;26:382–387.
    1. Schepis F., Vizzutti F., Garcia-Tsao G., Marzocchi G., Rega L., De Maria N. Under-dilated TIPS associate with efficacy and reduced encephalopathy in a prospective, non-randomized study of patients with cirrhosis. Clin Gastroenterol Hepatol. 2018;16:1153–1162.
    1. Trebicka J., Bastgen D., Byrtus J., Praktiknjo M., Terstiegen S., Meyer C. Smaller-diameter covered transjugular intrahepatic portosystemic shunt stents are associated with increased survival. Clin Gastroenterol Hepatol. 2019;17:2793–2799.
    1. Harrod-Kim P., Saad W.E., Waldman D. Predictors of early mortality after transjugular intrahepatic portosystemic shunt creation for the treatment of refractory ascites. J Vasc Interv Radiol. 2006;17:1605–1610.
    1. Silva-Junior G., Turon F., Baiges A., Cerda E., García-Criado Á., Blasi A. Timing affects measurement of portal pressure gradient after placement of transjugular intrahepatic portosystemic shunts in patients with portal hypertension. Gastroenterology. 2017;152:1358–1365.
    1. Casado M., Bosch J., García-Pagán J.C., Bru C., Bañares R., Bandi J.C. Clinical events after transjugular intrahepatic portosystemic shunt: correlation with hemodynamic findings. Gastroenterology. 1998;114:1296–1303.
    1. Miraglia R., Maruzzelli L., Di Piazza A., Mamone G., Caruso S., Gentile G. Transjugular intrahepatic portosystemic shunt using the new gore VIATORR controlled expansion endoprosthesis: prospective, single-center, preliminary experience. Cardiovasc Intervent Radiol. 2019;42:78–86.
    1. Srinivasa R.N., Srinivasa R.N., Chick J.F.B., Hage A., Saad W.A. Transjugular intrahepatic portosystemic shunt reduction using the gore VIATORR controlled expansion endoprosthesis: hemodynamics of reducing an established 10-mm TIPS to 8-mm in diameter. Cardiovasc Intervent Radiol. 2018;41:518–521.
    1. Praktiknjo M., Clees C., Pigliacelli A., Fischer S., Jansen C., Lehmann J. Sarcopenia is associated with development of acute-on-chronic liver failure in decompensated liver cirrhosis receiving transjugular intrahepatic portosystemic shunt. Clin Transl Gastroenterol. 2019;10
    1. Praktiknjo M., Book M., Luetkens J., Pohlmann A., Meyer C., Thomas D. Fat-free muscle mass in magnetic resonance imaging predicts acute-on-chronic liver failure and survival in decompensated cirrhosis. Hepatology. 2018;67:1014–1026.
    1. Lehmann J., Praktiknjo M., Nielsen M.J., Schierwagen R., Meyer C., Thomas D. Collagen type IV remodelling gender-specifically predicts mortality in decompensated cirrhosis. Liver Int. 2019;39:885–893.
    1. Moore K.P., Wong F., Gines P., Bernardi M., Ochs A., Salerno F. The management of ascites in cirrhosis: report on the consensus conference of the International Ascites Club. Hepatology. 2003;38:258–266.
    1. Piano S., Singh V., Caraceni P., Maiwall R., Alessandria C., Fernandez J. Epidemiology and effects of bacterial infections in patients with cirrhosis worldwide. Gastroenterology. 2019;156:1368–1380.
    1. Billey C., Billet S., Robic M.A., Cognet T., Guillaume M., Vinel J.P. A prospective study identifying predictive factors of cardiac decompensation after TIPS: the Toulouse algorithm. Hepatology. 2019;70:1928–1941.
    1. Trebicka J., Krag A., Gansweid S., Appenrodt B., Schiedermaier P., Sauerbruch T. Endotoxin and tumor necrosis factor-receptor levels in portal and hepatic vein of patients with alcoholic liver cirrhosis receiving elective transjugular intrahepatic portosystemic shunt. Eur J Gastroenterol Hepatol. 2011;23:1218–1225.
    1. Trebicka J., Krag A., Gansweid S., Schiedermaier P., Strunk H.M., Fimmers R. Soluble TNF-alpha-receptors I are prognostic markers in TIPS-treated patients with cirrhosis and portal hypertension. PLoS One. 2013;8
    1. Praktiknjo M., Lehmann J., Nielsen M.J., Schierwagen R., Uschner F.E., Meyer C. Acute decompensation boosts hepatic collagen type III deposition and deteriorates experimental and human cirrhosis. Hepatol Commun. 2018;2:211–222.
    1. Jansen C., Schröder A., Schueler R., Lehmann J., Praktiknjo M., Uschner F.E. Left ventricular longitudinal contractility predicts acute-on-chronic liver failure development and mortality after transjugular intrahepatic portosystemic shunt. Hepatol Commun. 2019;3:340–347.
    1. Jansen C., Cox A., Schueler R., Schneider M., Lehmann J., Praktiknjo M. Increased myocardial contractility identifies patients with decompensated cirrhosis requiring liver transplantation. Liver Transpl. 2018;24:15–25.
    1. Scrucca L., Santucci A., Aversa F. Competing risk analysis using R: an easy guide for clinicians. Bone Marrow Transpl. 2007;40:381–387.
    1. Rössle M., Blanke P., Fritz B., Schultheiss M., Bettinger D. Free hepatic vein pressure is not useful to calculate the portal pressure gradient in cirrhosis: a morphologic and hemodynamic study. J Vasc Interv Radiol. 2016;27:1130–1137.
    1. La Mura V., Abraldes J.G., Berzigotti A., Erice E., Flores-Arroyo A., García-Pagán J.C. Right atrial pressure is not adequate to calculate portal pressure gradient in cirrhosis: a clinical-hemodynamic correlation study. Hepatology. 2010;51:2108–2116.
    1. Bosch J., García-Pagán J.C. Calculating hepatic venous pressure gradient: feel free to stay free. J Vasc Interv Radiol. 2016;27:1138–1139.
    1. Sauerbruch T., Mengel M., Dollinger M., Zipprich A., Rössle M., Panther E. Prevention of rebleeding from esophageal varices in patients with cirrhosis receiving small-diameter stents versus hemodynamically controlled medical therapy. Gastroenterology. 2015;149:660–668.
    1. Praktiknjo M., Simón-Talero M., Römer J., Roccarina D., Martínez J., Lampichler K. Total area of spontaneous portosystemic shunts independently predicts hepatic encephalopathy and mortality in liver cirrhosis. J Hepatol. 2020;72:1140–1150.
    1. Praktiknjo M., Monteiro S., Grandt J., Kimer N., Madsen J.L., Werge M.P. Cardiodynamic state is associated with systemic inflammation and fatal acute-on-chronic liver failure. Liver Int. 2020;40:1457–1466.
    1. Turco L., Garcia-Tsao G., Magnani I., Bianchini M., Costetti M., Caporali C. Cardiopulmonary hemodynamics and C-reactive protein as prognostic indicators in compensated and decompensated cirrhosis. J Hepatol. 2018;68:949–958.
    1. Isaak A., Praktiknjo M., Jansen C., Faron A., Sprinkart A.M., Pieper C.C. Myocardial fibrosis and inflammation in liver cirrhosis: MRI study of the liver-heart axis. Radiology. 2020;297:51–61.
    1. Busk T.M., Bendtsen F., Møller S. Cardiac and renal effects of a transjugular intrahepatic portosystemic shunt in cirrhosis. Eur J Gastroenterol Hepatol. 2013;25:523–530.
    1. Busk T.M., Bendtsen F., Poulsen J.H., Clemmesen J.O., Larsen F.S., Goetze J.P. Transjugular intrahepatic portosystemic shunt: impact on systemic hemodynamics and renal and cardiac function in patients with cirrhosis. Am J Physiol Gastrointest Liver Physiol. 2018;314:G275–G286.
    1. Armstrong M.J., Gohar F., Dhaliwal A., Nightingale P., Baker G., Greaves D. Diastolic dysfunction on echocardiography does not predict survival after transjugular intrahepatic portosystemic stent-shunt in patients with cirrhosis. Aliment Pharmacol Ther. 2019;49:797–806.
    1. Bhanji R.A., Montano-Loza A.J., Watt K.D. Sarcopenia in cirrhosis: looking beyond the skeletal muscle loss to see the systemic disease. Hepatology. 2019;70:2193–2203.
    1. Merli M., Giusto M., Lucidi C., Giannelli V., Pentassuglio I., Di Gregorio V. Muscle depletion increases the risk of overt and minimal hepatic encephalopathy: results of a prospective study. Metab Brain Dis. 2013;28:281–284.
    1. Nardelli S., Lattanzi B., Torrisi S., Greco F., Farcomeni A., Gioia S. Sarcopenia is risk factor for development of hepatic encephalopathy after transjugular intrahepatic portosystemic shunt placement. Clin Gastroenterol Hepatol. 2016;15:934–936.
    1. Tsien C., Shah S.N., McCullough A.J., Dasarathy S. Reversal of sarcopenia predicts survival after a transjugular intrahepatic portosystemic stent. Eur J Gastroenterol Hepatol. 2013;25:85–93.
    1. Dasarathy S., McCullough A.J., Muc S., Schneyer A., Bennett C.D., Dodig M. Sarcopenia associated with portosystemic shunting is reversed by follistatin. J Hepatol. 2011;54:915–921.
    1. Bai M., Qi X., Yang Z., Yin Z., Nie Y., Yuan S. Predictors of hepatic encephalopathy after transjugular intrahepatic portosystemic shunt in cirrhotic patients: a systematic review. J Gastroenterol Hepatol. 2011;26:943–951.
    1. Blue R.C., Lo G.C., Kim E., Patel R.S., Scott Nowakowski F., Lookstein R.A. Transjugular intrahepatic portosystemic shunt flow reduction with adjustable polytetrafluoroethylene-covered balloon-expandable stents using the “sheath control” technique. Cardiovasc Intervent Radiol. 2016;39:935–939.
    1. Laleman W., Simon-Talero M., Maleux G., Perez M., Ameloot K., Soriano G. Embolization of large spontaneous portosystemic shunts for refractory hepatic encephalopathy: a multicenter survey on safety and efficacy. Hepatology. 2013;57:2448–2457.
    1. He C., Lv Y., Wang Z., Guo W., Tie J., Li K. Association between non-variceal spontaneous portosystemic shunt and outcomes after TIPS in cirrhosis. Dig Liver Dis. 2018;50:1315–1323.
    1. Schindler P., Seifert L., Masthoff M., Riegel A., Köhler M., Wilms C. TIPS modification in the management of shunt-induced hepatic encephalopathy: analysis of predictive factors and outcome with shunt modification. J Clin Med. 2020;9:567.
    1. Piecha F., Radunski U.K., Ozga A.-K., Steins D., Drolz A., Horvatits T. Ascites control by TIPS is more successful in patients with a lower paracentesis frequency and is associated with improved survival. JHEP Rep. 2019;1:90–98.

Source: PubMed

3
Abonnieren