Initiation and characterization of small cell lung cancer patient-derived xenografts from ultrasound-guided transbronchial needle aspirates

Wade C Anderson, Michael B Boyd, Jorge Aguilar, Brett Pickell, Amy Laysang, Marybeth A Pysz, Sheila Bheddah, Johanna Ramoth, Brian C Slingerland, Scott J Dylla, Edmundo R Rubio, Wade C Anderson, Michael B Boyd, Jorge Aguilar, Brett Pickell, Amy Laysang, Marybeth A Pysz, Sheila Bheddah, Johanna Ramoth, Brian C Slingerland, Scott J Dylla, Edmundo R Rubio

Abstract

Small cell lung cancer (SCLC) is a devastating disease with limited treatment options. Due to its early metastatic nature and rapid growth, surgical resection is rare. Standard of care treatment regimens remain largely unchanged since the 1980's, and five-year survival lingers near 5%. Patient-derived xenograft (PDX) models have been established for other tumor types, amplifying material for research and serving as models for preclinical experimentation; however, limited availability of primary tissue has curtailed development of these models for SCLC. The objective of this study was to establish PDX models from commonly collected fine needle aspirate biopsies of primary SCLC tumors, and to assess their utility as research models of primary SCLC tumors. These transbronchial needle aspirates efficiently engrafted as xenografts, and tumor histomorphology was similar to primary tumors. Resulting tumors were further characterized by H&E and immunohistochemistry, cryopreserved, and used to propagate tumor-bearing mice for the evaluation of standard of care chemotherapy regimens, to assess their utility as models for tumors in SCLC patients. When treated with Cisplatin and Etoposide, tumor-bearing mice responded similarly to patients from whom the tumors originated. Here, we demonstrate that PDX tumor models can be efficiently established from primary SCLC transbronchial needle aspirates, even after overnight shipping, and that resulting xenograft tumors are similar to matched primary tumors in cancer patients by both histology and chemo-sensitivity. This method enables physicians at non-research institutions to collaboratively contribute to the rapid establishment of extensive PDX collections of SCLC, enabling experimentation with clinically relevant tissues and development of improved therapies for SCLC patients.

Conflict of interest statement

Competing Interests: WCA, JA, BP, AL, MAP, SB, JR, BCS, and SJD are shareholders in Stem CentRx, Inc., a privately held and financed company. This does not alter the authors' adherence to PLOS ONE policies on sharing data and materials

Figures

Fig 1. Expression of SCLC antigens is…
Fig 1. Expression of SCLC antigens is maintained in PDX tumor models.
FFPE sections were prepared from PDX tumors (LU086p1 is represented). (A) Tissue sections were stained by IHC for diagnostic SCLC markers Chromagranin A (CHGA), Synaptophysin (SYP), or CD56. Scale bars represent 10um. (B) Tissue sections were stained by IHC for diagnostic non-SCLC markers Keratin 5 (KRT5), Keratin 6 (KRT6A), Keratin 7 (KRT7), Keratin 14 (KRT14), Keratin 20 (KRT20), Napsin A (NAPSA), TP63, or TTF1. Scale bars represent 10um. (C) PDX tumor cells were dissociated into single-cell suspensions and analyzed by flow cytometry for expression of EpCAM (CD326) and NCAM1 (CD56). Histograms displaying expression levels are shown (dark black line), whereas background signal was determined using a matched isotype control antibody (filled gray).
Fig 2. PDX response to P/E in…
Fig 2. PDX response to P/E in vivo generally reflects clinical response.
Upon reaching a mean tumor volume of 150–200 mm3, mice bearing A) LU073p2 or B) LU086p3 PDX tumors were randomized, administered either vehicle (closed triangles) or P/E (open circles; 5 mg/kg Cisplatin on day 1 and 8 mg/kg Etoposide on days 1, 2 & 3 of treatment), and tumors were measured weekly. The bracket indicates the time to progression (TTP). C) The mean TTP of PDX tumors following one course of P/E treatment was plotted versus observed clinical TTP. Data is represented as Mean ± SEM and reflects cohorts of n = 5 mice per group.

References

    1. Tarver T. Cancer Facts & Figures 2012. American Cancer Society (ACS). Journal of Consumer Health on the Internet. 2012; 16:366–7.
    1. Lally BE, Urbanic JJ, Blackstock AW, Miller AA, Perry MC. Small cell lung cancer: have we made any progress over the last 25 years? Oncologist. 2007; 12:1096–104.
    1. Park SH, Cho EK, Kim Y, Kyung SY, An CH, Lee SP, et al. Salvage treatment with topotecan in patients with irinotecan-refractory small cell lung cancer. Cancer chemotherapy and pharmacology. 2008; 62:1009–14. 10.1007/s00280-008-0690-1
    1. Owonikoko TK, Behera M, Chen Z, Bhimani C, Curran WJ, Khuri FR, et al. A systematic analysis of efficacy of second-line chemotherapy in sensitive and refractory small-cell lung cancer. Journal of thoracic oncology: official publication of the International Association for the Study of Lung Cancer. 2012; 7:866–72.
    1. O'Brien ME, Ciuleanu TE, Tsekov H, Shparyk Y, Cucevia B, Juhasz G, et al. Phase III trial comparing supportive care alone with supportive care with oral topotecan in patients with relapsed small-cell lung cancer. Journal of clinical oncology: official journal of the American Society of Clinical Oncology. 2006; 24:5441–7.
    1. Tentler JJ, Tan AC, Weekes CD, Jimeno A, Leong S, Pitts TM, et al. Patient-derived tumour xenografts as models for oncology drug development. Nat Rev Clin Oncol. 2012; 9:338–50. 10.1038/nrclinonc.2012.61
    1. Jin K, Teng L, Shen Y, He K, Xu Z, Li G. Patient-derived human tumour tissue xenografts in immunodeficient mice: a systematic review. Clin Transl Oncol. 2010; 12:473–80. 10.1007/s12094-010-0540-6
    1. Williams SA, Anderson WC, Santaguida MT, Dylla SD. Patient-derived xenografts, the cancer stem cell paradigm, and cancer pathobiology in the 21st century. Laboratory investigation; a journal of technical methods and pathology. 2013; 93:970–82. 10.1038/labinvest.2013.92
    1. Roschke AV, Tonon G, Gehlhaus KS, McTyre N, Bussey KJ, Lababidi S, et al. Karyotypic complexity of the NCI-60 drug-screening panel. Cancer research. 2003; 63:8634–47.
    1. Daniel VC, Marchionni L, Hierman JS, Rhodes JT, Devereux WL, Rudin CM, et al. A primary xenograft model of small-cell lung cancer reveals irreversible changes in gene expression imposed by culture in vitro. Cancer research. 2009; 69:3364–73. 10.1158/0008-5472.CAN-08-4210
    1. Leong TL, Marini KD, Rossello FJ, Jayasekara SN, Russell PA, Prodanovic Z, et al. Genomic Characterisation of Small Cell Lung Cancer Patient-Derived Xenografts Generated from Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration Specimens. PLoS ONE. 2014; 9(9): e106862 10.1371/journal.pone.0106862
    1. Poupon MF, Arvelo F, Goguel AF, Bourgeois Y, Jacrot M, Hanania N, et al. Response of small-cell lung cancer xenografts to chemotherapy: multidrug resistance and direct clinical correlates. J Natl Cancer Inst. 1993; 85:2023–9.
    1. Hodgkinson CL, Morrow CJ, Li Y, Metcalf RL, Rothwell DG, Trapani F, et al. Tumorigenicity and genetic profiling of circulating tumor cells in small-cell lung cancer. Nat Med. 2014; 8:897–903.10. 10.1038/nm.3600
    1. Bradley JD, Dehdashti F, Mintun MA, Govindan R, Trinkaus K, Siegel BA. Positron emission tomography in limited-stage small-cell lung cancer: a prospective study. Journal of clinical oncology: official journal of the American Society of Clinical Oncology. 2004; 22:3248–54.
    1. Shepherd FA, Crowley J, Van Houtte P, Postmus PE, Carney D, Chansky K, et al. The International Association for the Study of Lung Cancer lung cancer staging project: proposals regarding the clinical staging of small cell lung cancer in the forthcoming (seventh) edition of the tumor, node, metastasis classification for lung cancer. Journal of thoracic oncology: official publication of the International Association for the Study of Lung Cancer. 2007; 2:1067–77.
    1. Oken MM, Creech RH, Tormey DC, Horton J, Davis TE, McFadden ET, et al. Toxicity and response criteria of the Eastern Cooperative Oncology Group. American journal of clinical oncology. 1982; 5:649–55.
    1. Herth FJ, Eberhardt R, Vilmann P, Krasnik M, Ernst A. Real-time endobronchial ultrasound guided transbronchial needle aspiration for sampling mediastinal lymph nodes. Thorax. 2006; 61:795–8.
    1. Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. Journal of the National Cancer Institute. 2000; 92:205–16.
    1. Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, Cho RW, et al. Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci U S A. 2007; 104:10158–63.
    1. Dylla SJ, Beviglia L, Park IK, Chartier C, Raval J, Ngan L, et al. Colorectal cancer stem cells are enriched in xenogeneic tumors following chemotherapy. PLoS ONE. 2008; 3:e2428 10.1371/journal.pone.0002428
    1. Brambilla E, Travis WD, Colby TV, Corrin B, Shimosato Y. The new World Health Organization classification of lung tumours. The European respiratory journal. 2001; 18:1059–68.
    1. Dong X, Guan J, English JC, Flint J, Yee J, Evans K, et al. Patient-derived first generation xenografts of non-small cell lung cancers: promising tools for predicting drug responses for personalized chemotherapy. Clinical cancer research: an official journal of the American Association for Cancer Research. 2010; 16:1442–51. 10.1158/1078-0432.CCR-09-2878
    1. Marangoni E, Vincent-Salomon A, Auger N, Degeorges A, Assayag F, de Cremoux P, et al. A new model of patient tumor-derived breast cancer xenografts for preclinical assays. Clinical cancer research: an official journal of the American Association for Cancer Research. 2007; 13:3989–98.
    1. Reyal F, Guyader C, Decraene C, Lucchesi C, Auger N, Assayag F, et al. Molecular profiling of patient-derived breast cancer xenografts. Breast Cancer Res. 2012; 14:R11
    1. Pandita A, Aldape KD, Zadeh G, Guha A, James CD. Contrasting in vivo and in vitro fates of glioblastoma cell subpopulations with amplified EGFR. Genes Chromosomes Cancer. 2004; 39:29–36.
    1. De Witt Hamer PC, Van Tilborg AA, Eijk PP, Sminia P, Troost D, Van Noorden CJ, et al. The genomic profile of human malignant glioma is altered early in primary cell culture and preserved in spheroids. Oncogene. 2008; 27:2091–6.
    1. Sasai K, Romer JT, Lee Y, Rinkelstein D, Fuller C, McKinnon PJ, et al. Shh pathway activity is down-regulated in cultured medulloblastoma cells: implications for preclinical studies. Cancer research. 2006; 66:4215–22.
    1. Little CD, Nau MM, Carney DN, Gazdar AF, Minna JD. Amplification and expression of the c-myc oncogene in human lung cancer cell lines. Nature. 1983; 306:194–6.
    1. Grigorova M, Lyman RC, Caldas C, Edwards PA. Chromosome abnormalities in 10 lung cancer cell lines of the NCI-H series analyzed with spectral karyotyping. Cancer genetics and cytogenetics. 2005; 162:1–9.

Source: PubMed

3
Abonnieren