Effects of Exercise on Gene Expression of Inflammatory Markers in Human Peripheral Blood Cells: A Systematic Review

Gyrd O Gjevestad, Kirsten B Holven, Stine M Ulven, Gyrd O Gjevestad, Kirsten B Holven, Stine M Ulven

Abstract

Regular physical activity seems to be one of the most important contributors to prevent disease and promote health. Being physically active reduces the risk of developing chronic diseases such as cardiovascular disease, diabetes, and some types of cancers. The molecular mechanisms are however not fully elucidated. Depending on duration and intensity, exercise will cause disruption of muscle fibers triggering a temporary inflammatory response. This response may not only involve the muscle tissue, but also peripheral tissues such as white blood cells, which are important components of the immune system. The immune system plays a vital role in the development of atherosclerosis, thereby making white blood cells relevant to study when looking at molecular mechanisms induced by physical activity. In this review, we summarize the existing literature on exercise and gene expression in human white blood cells, and discuss these results in relation to inflammation and atherosclerosis.

Keywords: Atherosclerosis; Exercise; Gene expression; Inflammation; Leukocytes; Lymphocytes; Monocytes; PBMCs; Peripheral mononuclear blood cells; Physical activity.

Figures

Fig. 1
Fig. 1
Flow chart showing the result of the combined literature search in Ovid Medline and EMBASE and the selection of papers

References

    1. Ross R. Atherosclerosis—an inflammatory disease. N Engl J Med. 1999;340(2):115–126. doi: 10.1056/NEJM199901143400207.
    1. Lee IM, et al. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet. 2012;380(9838):219–229. doi: 10.1016/S0140-6736(12)61031-9.
    1. Ahmed HM, et al. Effects of physical activity on cardiovascular disease. Am J Cardiol. 2012;109(2):288–295. doi: 10.1016/j.amjcard.2011.08.042.
    1. Roberts CK, Barnard RJ. Effects of exercise and diet on chronic disease. J. Appl. Physiol. (1985) 2005;98(1):3–30. doi: 10.1152/japplphysiol.00852.2004.
    1. Woods JA, Vieira VJ, Keylock KT. Exercise, inflammation, and innate immunity. Neurol Clin. 2006;24(3):585–599. doi: 10.1016/j.ncl.2006.03.008.
    1. Baynard T et al. Exercise training effects on inflammatory gene expression in white adipose tissue of young mice. Mediators Inflamm. 2012;767953. doi:10.1155/2012/767953.
    1. Cruzat VF, Krause M, Newsholme P. Amino acid supplementation and impact on immune function in the context of exercise. J Int Soc Sports Nutr. 2014;11(1):61. doi: 10.1186/s12970-014-0061-8.
    1. Peake J, Della Gatta P, Cameron-Smith D. Aging and its effects on inflammation in skeletal muscle at rest and following exercise-induced muscle injury. Am J Physiol Regul Integr Comp Physiol. 2010;298(6):R1485–R1495. doi: 10.1152/ajpregu.00467.2009.
    1. Bruunsgaard H, et al. Exercise-induced increase in serum interleukin-6 in humans is related to muscle damage. J Physiol. 1997;499(Pt 3):833–841. doi: 10.1113/jphysiol.1997.sp021972.
    1. Karalaki M, et al. Muscle regeneration: cellular and molecular events. In Vivo. 2009;23(5):779–796.
    1. Smith LR, Meyer G, Lieber RL. Systems analysis of biological networks in skeletal muscle function. Wiley Interdiscip Rev Syst Biol Med. 2013;5(1):55–71. doi: 10.1002/wsbm.1197.
    1. Radom-Aizik S, et al. Brief bout of exercise alters gene expression in peripheral blood mononuclear cells of early- and late-pubertal males. Pediatr Res. 2009;65(4):447–452. doi: 10.1203/PDR.0b013e3181993473.
    1. Radom-Aizik S, et al. A brief bout of exercise alters gene expression and distinct gene pathways in peripheral blood mononuclear cells of early- and late-pubertal females. J. Appl. Physiol. (1985) 2009;107(1):168–175. doi: 10.1152/japplphysiol.00121.2009.
    1. Libby P. Inflammatory mechanisms: the molecular basis of inflammation and disease. Nutr Rev. 2007;65(12 Pt 2):S140–S146. doi: 10.1301/nr.2007.dec.S140-S146.
    1. Thompson D, et al. Time course of changes in inflammatory markers during a 6-mo exercise intervention in sedentary middle-aged men: a randomized-controlled trial. J. Appl. Physiol. (1985) 2010;108(4):769–779. doi: 10.1152/japplphysiol.00822.2009.
    1. Gano LB, et al. Increased proinflammatory and oxidant gene expression in circulating mononuclear cells in older adults: amelioration by habitual exercise. Physiol Genomics. 2011;43(14):895–902. doi: 10.1152/physiolgenomics.00204.2010.
    1. Pasterkamp G, Daemen M. Circulating cells: the biofactory for markers of atherosclerotic disease. Eur Heart J. 2008;29(22):2701–2702. doi: 10.1093/eurheartj/ehn469.
    1. Visvikis-Siest S, et al. Peripheral blood mononuclear cells (PBMCs): a possible model for studying cardiovascular biology systems. Clin Chem Lab Med. 2007;45(9):1154–1168. doi: 10.1515/CCLM.2007.255.
    1. Hoefer IE, et al. Circulating cells as predictors of secondary manifestations of cardiovascular disease: design of the CIRCULATING CELLS study. Clin Res Cardiol. 2013;102(11):847–856. doi: 10.1007/s00392-013-0607-9.
    1. Hayden MS, West AP, Ghosh S. NF-kappaB and the immune response. Oncogene. 2006;25(51):6758–6780. doi: 10.1038/sj.onc.1209943.
    1. Ullum H, et al. Bicycle exercise enhances plasma IL6 but does not change IL-1 alpha, IL-1 beta, IL6, or TNF-alpha pre-mRNA in BMNC. J. Appl. Physiol. (1985) 1994;77(1):93–97.
    1. Natelson BH, et al. Effect of acute exhausting exercise on cytokine gene expression in men. Int J Sports Med. 1996;17(4):299–302. doi: 10.1055/s-2007-972850.
    1. Ostrowski K, et al. Evidence that interleukin-6 is produced in human skeletal muscle during prolonged running. J Physiol. 1998;508(Pt 3):949–953. doi: 10.1111/j.1469-7793.1998.949bp.x.
    1. Fehrenbach E, et al. Transcriptional and translational regulation of heat shock proteins in leukocytes of endurance runners. J Appl Physiol. 2000;89(2):704–710.
    1. Moldoveanu AI, Shephard RJ, Shek PN. Exercise elevates plasma levels but not gene expression of IL-1beta, IL6, and TNF-alpha in blood mononuclear cells. J. Appl. Physiol. (1985) 2000;89(4):1499–1504.
    1. Niess AM, et al. Expression of the inducible nitric oxide synthase (iNOS) in human leukocytes: responses to running exercise. Med Sci Sports Exerc. 2000;32(7):1220–1225. doi: 10.1097/00005768-200007000-00006.
    1. Thompson D, et al. Exercise-induced expression of heme oxygenase-1 in human lymphocytes. Free Radic Res. 2005;39(1):63–69. doi: 10.1080/10715760400022327.
    1. Ferrer MD, et al. Antioxidant regulatory mechanisms in neutrophils and lymphocytes after intense exercise. J Sports Sci. 2009;27(1):49–58. doi: 10.1080/02640410802409683.
    1. Sakharov DA, et al. Short-term highly intense physiological stress causes an increase in the expression of heat shock protein in human leukocytes. Bull Exp Biol Med. 2009;147(3):361–365. doi: 10.1007/s10517-009-0509-z.
    1. Sureda A, et al. Effects of exercise intensity on lymphocyte H2O2 production and antioxidant defences in soccer players. Br J Sports Med. 2009;43(3):186–190. doi: 10.1136/bjsm.2007.043943.
    1. Jenkins NT, et al. Effects of acute and chronic endurance exercise on intracellular nitric oxide and superoxide in circulating CD34(+) and CD34(−) cells. J. Appl. Physiol. (1985) 2011;111(3):929–937. doi: 10.1152/japplphysiol.00541.2011.
    1. Li H, Howk C, Geib RW. A pilot study on the effect of acute Tai Chi practice on peripheral blood cytokine expression in healthy volunteers. Biomed Sci Instrum. 2012;48:254–259.
    1. Nickel T, et al. Modulation of dendritic cells and toll-like receptors by marathon running. Eur J Appl Physiol. 2012;112(5):1699–1708. doi: 10.1007/s00421-011-2140-8.
    1. Thomas AW, et al. Exercise-associated generation of PPAR ligands activates PPAR signaling events and upregulates genes related to lipid metabolism. J Appl Physiol. 2012;112(5):806–815. doi: 10.1152/japplphysiol.00864.2011.
    1. Bernecker C, et al. Evidence for an exercise induced increase of TNF-alpha and IL6 in marathon runners. Scand J Med Sci Sports. 2013;23(2):207–214. doi: 10.1111/j.1600-0838.2011.01372.x.
    1. Ulven SM et al. An acute bout of exercise modulate the inflammatory response in peripheral blood mononuclear cells in healthy young men. Arch Physiol Biochem. 2015;27:1–9. doi:10.3109/13813455.2014.1003566.
    1. Xiang L, Rehm KE, Marshall GD., Jr Effects of strenuous exercise on Th1/Th2 gene expression from human peripheral blood mononuclear cells of marathon participants. Mol Immunol. 2014;60(2):129–134. doi: 10.1016/j.molimm.2014.03.004.
    1. Connolly PH, et al. Effects of exercise on gene expression in human peripheral blood mononuclear cells. J. Appl. Physiol. (1985) 2004;97(4):1461–1469. doi: 10.1152/japplphysiol.00316.2004.
    1. Buttner P, et al. Exercise affects the gene expression profiles of human white blood cells. J. Appl. Physiol. (1985) 2007;102(1):26–36. doi: 10.1152/japplphysiol.00066.2006.
    1. Carlson LA, et al. Changes in transcriptional output of human peripheral blood mononuclear cells following resistance exercise. Eur J Appl Physiol. 2011;111(12):2919–2929. doi: 10.1007/s00421-011-1923-2.
    1. Kimsa M, et al. Expression pattern of the transforming growth factor beta signaling genes in human peripheral blood mononuclear cells after exercise-inflammatory aspects. Am J Hum Biol. 2012;24(6):859–862. doi: 10.1002/ajhb.22311.
    1. Maltseva DV, et al. Effect of exercise on the expression of HSPBP1, PGLYRP1, and HSPA1A genes in human leukocytes. Bull Exp Biol Med. 2012;153(6):866–868. doi: 10.1007/s10517-012-1846-x.
    1. Sakharov DA, et al. Passing the anaerobic threshold is associated with substantial changes in the gene expression profile in white blood cells. Eur J Appl Physiol. 2012;112(3):963–972. doi: 10.1007/s00421-011-2048-3.
    1. Kimsa MC, et al. Differential expression of inflammation-related genes after intense exercise. Prague Med Rep. 2014;115(1–2):24–32. doi: 10.14712/23362936.2014.3.
    1. Radom-Aizik S, et al. Impact of brief exercise on circulating monocyte gene and microRNA expression: implications for atherosclerotic vascular disease. Brain Behav Immun. 2014;39:121–129. doi: 10.1016/j.bbi.2014.01.003.
    1. Storey AG, et al. Stress responses to short-term intensified and reduced training in competitive weightlifters. Scand J Med Sci Sports. 2015.
    1. Jimenez-Jimenez R, et al. Eccentric training impairs NF-kappaB activation and over-expression of inflammation-related genes induced by acute eccentric exercise in the elderly. Mech Ageing Dev. 2008;129(6):313–321. doi: 10.1016/j.mad.2008.02.007.
    1. Yakeu G et al. Low-intensity exercise enhances expression of markers of alternative activation in circulating leukocytes: roles of PPARgamma and Th2 cytokines. Atherosclerosis. 2010;212(2):668–73.
    1. Fernandez-Gonzalo R, et al. Effects of eccentric exercise on toll-like receptor 4 signaling pathway in peripheral blood mononuclear cells. J. Appl. Physiol. (1985) 2012;112(12):2011–2018. doi: 10.1152/japplphysiol.01499.2011.
    1. Fernandez-Gonzalo R, et al. TLR4-mediated blunting of inflammatory responses to eccentric exercise in young women. Mediators Inflamm. 2014;2014:479395. doi: 10.1155/2014/479395.
    1. Rodriguez-Miguelez P, et al. Role of toll-like receptor 2 and 4 signaling pathways on the inflammatory response to resistance training in elderly subjects. Age (Dordr) 2014;36(6):9734. doi: 10.1007/s11357-014-9734-0.
    1. Tringali C, et al. Protective role of 17-beta-estradiol towards IL6 leukocyte expression induced by intense training in young female athletes. J Sports Sci. 2014;32(5):452–461. doi: 10.1080/02640414.2013.830190.
    1. Dias RG, et al. PBMCs express a transcriptome signature predictor of oxygen uptake responsiveness to endurance exercise training in men. Physiol Genomics. 2015;47(2):13–23. doi: 10.1152/physiolgenomics.00072.2014.
    1. Lea T. Immunologiske metoder og teknikker. Fagbokforlaget Vigmostad & Bjørke AS, 3rd edition, 2006.
    1. Gay NJ, et al. Assembly and localization of toll-like receptor signalling complexes. Nat Rev Immunol. 2014;14(8):546–558. doi: 10.1038/nri3713.
    1. McCarthy CG, et al. Toll-like receptors and damage-associated molecular patterns: novel links between inflammation and hypertension. Am J Physiol Heart Circ Physiol. 2014;306(2):H184–H196. doi: 10.1152/ajpheart.00328.2013.
    1. Asea A, et al. HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med. 2000;6(4):435–442. doi: 10.1038/74697.
    1. Fehrenbach E, et al. Changes of HSP72-expression in leukocytes are associated with adaptation to exercise under conditions of high environmental temperature. J Leukoc Biol. 2001;69(5):747–754.
    1. Gabriel H, Kindermann W. The acute immune response to exercise: what does it mean? Int J Sports Med. 1997;18(Suppl 1):S28–S45. doi: 10.1055/s-2007-972698.
    1. Philippou A, et al. Cytokines in muscle damage. Adv Clin Chem. 2012;58:49–87.
    1. Pedersen BK. Muscle as a secretory organ. Compr Physiol. 2013;3(3):1337–1362.
    1. Fehrenbach E. Multifarious microarray-based gene expression patterns in response to exercise. J. Appl. Physiol. (1985) 2007;102(1):7–8. doi: 10.1152/japplphysiol.01079.2006.
    1. Uwe S. Anti-inflammatory interventions of NF-κB signaling: potential applications and risks. Biochem Pharmacol. 2008;75(8):1567–1579. doi: 10.1016/j.bcp.2007.10.027.
    1. Perkins ND, Gilmore TD. Good cop, bad cop: the different faces of NF-kappaB. Cell Death Differ. 2006;13(5):759–772. doi: 10.1038/sj.cdd.4401838.
    1. Baker RG, Hayden MS, Ghosh S. NF-kappaB, inflammation, and metabolic disease. Cell Metab. 2011;13(1):11–22. doi: 10.1016/j.cmet.2010.12.008.
    1. Verstrepen L, et al. TLR4, IL-1R and TNF-R signaling to NF-kappaB: variations on a common theme. Cell Mol Life Sci. 2008;65(19):2964–2978. doi: 10.1007/s00018-008-8064-8.
    1. Petry A, Weitnauer M, Gorlach A. Receptor activation of NADPH oxidases. Antioxid Redox Signal. 2010;13(4):467–487. doi: 10.1089/ars.2009.3026.
    1. Fukai T, Ushio-Fukai M. Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal. 2011;15(6):1583–1606. doi: 10.1089/ars.2011.3999.
    1. Alberts B, Johnson A, Lewis J, et al. Molecular biology of the cell. 4. New York: Garland Science; 2002.
    1. Mosmann TR, Sad S. The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol Today. 1996;17(3):138–146. doi: 10.1016/0167-5699(96)80606-2.
    1. Matzinger P, Kamala T. Tissue-based class control: the other side of tolerance. Nat Rev Immunol. 2011;11(3):221–230. doi: 10.1038/nri2940.
    1. Gleeson M. Immune function in sport and exercise. J. Appl. Physiol. (1985) 2007;103(2):693–699. doi: 10.1152/japplphysiol.00008.2007.
    1. Capomaccio S, et al. Athletic humans and horses: comparative analysis of interleukin-6 (IL6) and IL6 receptor (IL6R) expression in peripheral blood mononuclear cells in trained and untrained subjects at rest. BMC Physiol. 2011;11:3. doi: 10.1186/1472-6793-11-3.
    1. Radom-Aizik S, et al. Effects of 30 min of aerobic exercise on gene expression in human neutrophils. J. Appl. Physiol. (1985) 2008;104(1):236–243. doi: 10.1152/japplphysiol.00872.2007.
    1. Peake J, Nosaka K, Suzuki K. Characterization of inflammatory responses to eccentric exercise in humans. Exerc Immunol Rev. 2005;11:64–85.
    1. Lamason R, et al. Sexual dimorphism in immune response genes as a function of puberty. BMC Immunol. 2006;7:2. doi: 10.1186/1471-2172-7-2.
    1. Bruunsgaard H. Effects of tumor necrosis factor-alpha and interleukin-6 in elderly populations. Eur Cytokine Netw. 2002;13(4):389–391.
    1. Gleeson M, et al. The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat Rev Immunol. 2011;11(9):607–615. doi: 10.1038/nri3041.

Source: PubMed

3
Abonnieren