Distinct Analgesic Actions of DHA and DHA-Derived Specialized Pro-Resolving Mediators on Post-operative Pain After Bone Fracture in Mice

Linlin Zhang, Niccolò Terrando, Zhen-Zhong Xu, Sangsu Bang, Sven-Eric Jordt, William Maixner, Charles N Serhan, Ru-Rong Ji, Linlin Zhang, Niccolò Terrando, Zhen-Zhong Xu, Sangsu Bang, Sven-Eric Jordt, William Maixner, Charles N Serhan, Ru-Rong Ji

Abstract

Mechanisms of pain resolution are largely unclear. Increasing evidence suggests that specialized pro-resolving mediators (SPMs), derived from fish oil docosahexaenoic acid (DHA), promote the resolution of acute inflammation and potently inhibit inflammatory and neuropathic pain. In this study, we examined the analgesic impact of DHA and DHA-derived SPMs in a mouse model of post-operative pain induced by tibial bone fracture (fPOP). Intravenous perioperative treatment with DHA (500 μg), resolvin D1 (RvD1, 500 ng) and maresin 1 (MaR1, 500 ng), 10 min and 24 h after the surgery, delayed the development of fPOP (mechanical allodynia and cold allodynia). In contrast, post-operative intrathecal (IT) administration of DHA (500 μg) 2 weeks after the surgery had no effects on established mechanical and cold allodynia. However, by direct comparison, IT post-operative treatment (500 ng) with neuroprotectin D1 (NPD1), MaR1, and D-resolvins, RvD1 and RvD5, but not RvD3 and RvD4, effectively reduced mechanical and cold allodynia. ELISA analysis showed that perioperative DHA treatment increased RvD1 levels in serum and spinal cord samples after bone fracture. Interestingly, sham surgery resulted in transient allodynia and increased RvD1 levels, suggesting a correlation of enhanced SPM levels with acute pain resolution after sham surgery. Our findings suggest that (1) perioperative treatment with DHA is effective in preventing and delaying the development of fPOP and (2) post-treatment with some SPMs can attenuate established fPOP. Our data also indicate that orthopedic surgery impairs SPM production. Thus, DHA and DHA-derived SPMs should be differentially supplemented for treating fPOP and improving recovery.

Keywords: DHA (docosahexaenoic acid); SPMs (specialized pro-resolving mediators); fPOP (post-operative pain after bone fracture); omega-3 poly unsaturated fatty acids; orthopedic surgery; post-surgical pain; spinal cord.

Figures

FIGURE 1
FIGURE 1
Effects of sham surgery, bone fracture, and perioperative DHA treatment on the development of fPOP. Development of mechanical allodynia, assessed by paw withdrawal threshold (A) and paw withdrawal frequency to 0.16 g filament (B) in von Frey test, after sham surgery, tibial bone fracture, and perioperative treatment of DHA (0.5 mg, 100 μl, i.v.), given 10 min and 24 h after bone fracture surgery (indicated by blue arrows). (C) Development of cold allodynia, assessed by cold response scoring in the acetone test, after sham surgery, tibial bone fracture, and the perioperative DHA treatment after bone fracture surgery (indicated by blue arrows). $P < 0.05, one-way ANOVA in Sham group vs. baseline; ∗P < 0.05 vs. Sham surgery; #P < 0.05, fracture vs. fracture + DHA; two-way ANOVA followed by Bonferroni test, n = 6–7 mice/group. Data are presented as mean ± SEM.
FIGURE 2
FIGURE 2
Perioperative DHA treatment increases RvD1 levels in serum and spinal cord. (A) RvD1 standard curve produced by the Cayman Chemical ELISA assay, demonstrating reliable measurements within the specified concentration range. RvD1 levels in serum samples (B), brain samples (C), and spinal cord samples (D) of naïve mice and mice after sham surgery or bone fracture with vehicle and DHA treatment (the same as described in Figure 1). Samples were collected at post-operative day 5 (POD 5). Note that RvD1 levels are elevated after sham surgery and in serum and spinal cord samples after the DHA treatment. ∗P < 0.05, one-way ANOVA; n = 3–10 mice per group. Data are presented as mean ± SEM.
FIGURE 3
FIGURE 3
Perioperative treatment of RvD1 and MaR1 attenuates fPOP. Impact of perioperative treatment of RvD1 and MaR1 (500 ng, 100 μl, i.v.), given 10 min and 24 h after bone fracture surgery (indicated by blue arrows), on mechanical allodynia, assessed by paw withdrawal threshold (A) and paw withdrawal frequency (B) in the von Frey test, as well as on cold allodynia, assessed by cold response scoring in the acetone test (C). ∗P < 0.05 vs. vehicle (5% ethanol), two-way ANOVA followed by Bonferroni test, n = 5 mice/group. Data are presented as mean ± SEM.
FIGURE 4
FIGURE 4
Distinct actions of post-treatment of DHAand DHA-derived SPMs on fPOP. Impact of post-surgical treatment with DHA (500 μg, i.t.) or DHA-derived SPMs RvD1, MaR1, NPD1, and RvD5 (500 ng, 10 μl, i.t.), given 2 weeks after bone fracture surgery (indicated by blue arrows) on mechanical allodynia, assessed by measurements of paw withdrawal threshold (A) and paw withdrawal frequency (B) in the von Frey test, as well as of cold allodynia, assessed by cold response scoring in the acetone test (C). Note that post-treatment of DHA has no effects on fPOP. ∗P < 0.05 vs. vehicle (10% ethanol), two-way ANOVA followed by Bonferroni test, n = 5–7 mice/group. Data are presented as mean ± SEM.
FIGURE 5
FIGURE 5
Area under curve (AUC) comparison of distinct post-treatment effects of DHA and DHA-derived SPMs on fPOP. (A–C) AUC showing the effects of post-surgical IT treatment of DHA (500 μg, 10 μl) and NPD1, MaR1, RvD1, RvD3, RvD4, and RvD5 (500 ng, 10 μl), given 2 weeks after bone fracture surgery on mechanical and cold allodynia. AUC data were collected at 1–5 h after the drug injection. ∗P < 0.05 vs. vehicle (10% ethanol), two-way ANOVA followed by Bonferroni test, n = 5–7 mice/group. Data are presented as mean ± SEM.

References

    1. Abdulrazaq M., Innes J. K., Calder P. C. (2017). Effect of omega-3 polyunsaturated fatty acids on arthritic pain: a systematic review. Nutrition 3 57–66. 10.1016/j.nut.2016.12.003
    1. Arnardottir H. H., Dalli J., Norling L. V., Colas R. A., Perretti M., Serhan C. N. (2016). Resolvin D3 is dysregulated in arthritis and reduces arthritic inflammation. J. Immunol. 197 2362–2368. 10.4049/jimmunol.1502268
    1. Bang S., Yoo S., Oh U., Hwang S. W. (2010). Endogenous lipid-derived ligands for sensory TRP ion channels and their pain modulation. Arch. Pharm. Res. 33 1509–1520. 10.1007/s12272-010-1004-9
    1. Bisicchia E., Sasso V., Catanzaro G., Leuti A., Besharat Z. M., Chiacchiarini M., et al. (2018). Resolvin D1 halts remote neuroinflammation and improves functional recovery after focal brain damage via ALX/FPR2 receptor-regulated MicroRNAs. Mol. Neurobiol. 10.1007/s12035-018-0889-z [Epub ahead of print].
    1. Brennan T. J., Vandermeulen E. P., Gebhart G. F. (1996). Characterization of a rat model of incisional pain. Pain 64 493–501. 10.1016/0304-3959(95)01441-1
    1. Campbell J. N., Meyer R. A. (2006). Mechanisms of neuropathic pain. Neuron 52 77–92. 10.1016/j.neuron.2006.09.021
    1. Chiang N., Fredman G., Backhed F., Oh S. F., Vickery T., Schmidt B. A., et al. (2012). Infection regulates pro-resolving mediators that lower antibiotic requirements. Nature 484 524–528. 10.1038/nature11042
    1. Chi-Fei Wang J., Hung C. H., Gerner P., Ji R. R., Strichartz G. R. (2013). The qualitative hyperalgesia profile: a new metric to assess chronic post-thoracotomy pain. Open Pain J. 6 190–198. 10.2174/1876386301306010190
    1. Dalli J., Winkler J. W., Colas R. A., Arnardottir H., Cheng C. Y., Chiang N., et al. (2013). Resolvin D3 and aspirin-triggered resolvin D3 are potent immunoresolvents. Chem. Biol. 20 188–201. 10.1016/j.chembiol.2012.11.010
    1. Dworkin R. H., Backonja M., Rowbotham M. C., Allen R. R., Argoff C. R., Bennett G. J., et al. (2003). Advances in neuropathic pain: diagnosis, mechanisms, and treatment recommendations. Arch. Neurol. 60 1524–1534. 10.1001/archneur.60.11.1524
    1. Fredman G., Kamaly N., Spolitu S., Milton J., Ghorpade D., Chiasson R., et al. (2015). Targeted nanoparticles containing the proresolving peptide Ac2-26 protect against advanced atherosclerosis in hypercholesterolemic mice. Sci. Transl. Med. 7:275ra220. 10.1126/scitranslmed.aaa1065
    1. Gold M. S., Gebhart G. F. (2010). Nociceptor sensitization in pain pathogenesis. Nat. Med. 16 1248–1257. 10.1038/nm.2235
    1. Han Q., Kim Y. H., Wang X., Liu D., Zhang Z. J., Bey A. L., et al. (2016). SHANK3 deficiency impairs heat hyperalgesia and TRPV1 signaling in primary sensory neurons. Neuron 92 1279–1293. 10.1016/j.neuron.2016.11.007
    1. Huang L., Wang C. F., Serhan C. N., Strichartz G. (2011). Enduring prevention and transient reduction of postoperative pain by intrathecal resolvin D1. Pain 152 557–565. 10.1016/j.pain.2010.11.021
    1. Hylden J. L., Wilcox G. L. (1980). Intrathecal morphine in mice: a new technique. Eur. J. Pharmacol. 67 313–316. 10.1016/0014-2999(80)90515-4
    1. Ji R. R., Nackley A., Huh Y., Terrando N., Maixner W. (2018). Neuroinflammation and central sensitization in chronic and widespread pain. Anesthesiology. 10.1097/ALN.0000000000002130 [Epub ahead of print].
    1. Ji R. R., Berta T., Nedergaard M. (2013). Glia and pain: is chronic pain a gliopathy? Pain 154(Suppl. 1) S10–S28. 10.1016/j.pain.2013.06.022
    1. Ji R. R., Xu Z. Z., Strichartz G., Serhan C. N. (2011). Emerging roles of resolvins in the resolution of inflammation and pain. Trends Neurosci. 34 599–609. 10.1016/j.tins.2011.08.005
    1. Kehlet H., Jensen T. S., Woolf C. J. (2006). Persistent postsurgical pain: risk factors and prevention. Lancet 367 1618–1625. 10.1016/S0140-6736(06)68700-X
    1. Leoni G., Neumann P. A., Kamaly N., Quiros M., Nishio H., Jones H. R., et al. (2015). Annexin A1-containing extracellular vesicles and polymeric nanoparticles promote epithelial wound repair. J. Clin. Invest. 125 1215–1227. 10.1172/JCI76693
    1. Li W. W., Guo T. Z., Shi X., Sun Y., Wei T., Clark D. J., et al. (2015). Substance P spinal signaling induces glial activation and nociceptive sensitization after fracture. Neuroscience 310 73–90. 10.1016/j.neuroscience.2015.09.036
    1. Lima-Garcia J. F., Dutra R. C., da Silva K., Motta E. M., Campos M. M., Calixto J. B. (2011). The precursor of resolvin D series and aspirin-triggered resolvin D1 display anti-hyperalgesic properties in adjuvant-induced arthritis in rats. Br. J. Pharmacol. 164 278–293. 10.1111/j.1476-5381.2011.01345.x
    1. Liu Z. H., Yip P. K., Adams L., Davies M., Lee J. W., Michael G. J., et al. (2015). A single bolus of docosahexaenoic acid promotes neuroplastic changes in the innervation of spinal cord interneurons and motor neurons and improves functional recovery after spinal cord injury. J. Neurosci. 35 12733–12752. 10.1523/JNEUROSCI.0605-15.2015
    1. Lu Y., Zhao L. X., Cao D. L., Gao Y. J. (2013). Spinal injection of docosahexaenoic acid attenuates carrageenan-induced inflammatory pain through inhibition of microglia-mediated neuroinflammation in the spinal cord. Neuroscience 241 22–31. 10.1016/j.neuroscience.2013.03.003
    1. Luo X., Fitzsimmons B., Mohan A., Zhang L., Terrando N., Kordasiewicz H., et al. (2017). Intrathecal administration of antisense oligonucleotide against p38alpha but not p38beta MAP kinase isoform reduces neuropathic and postoperative pain and TLR4-induced pain in male mice. Brain Behav. Immun. 10.1016/j.bbi.2017.11.007 [Epub ahead of print].
    1. Martini A. C., Berta T., Forner S., Chen G., Bento A. F., Ji R. R., et al. (2016). Lipoxin A4 inhibits microglial activation and reduces neuroinflammation and neuropathic pain after spinal cord hemisection. J. Neuroinflammation 13:75. 10.1186/s12974-016-0540-8
    1. McMahon S. B., Malcangio M. (2009). Current challenges in glia-pain biology. Neuron 64 46–54. 10.1016/j.neuron.2009.09.033
    1. Norling L. V., Headland S. E., Dalli J., Arnardottir H. H., Haworth O., Jones H. R., et al. (2016). Proresolving and cartilage-protective actions of resolvin D1 in inflammatory arthritis. JCI Insight 1:e85922. 10.1172/jci.insight.85922
    1. Norling L. V., Spite M., Yang R., Flower R. J., Perretti M., Serhan C. N. (2011). Cutting edge: humanized nano-proresolving medicines mimic inflammation-resolution and enhance wound healing. J. Immunol. 186 5543–5547. 10.4049/jimmunol.1003865
    1. Norris P. C., Arnardottir H., Sanger J. M., Fichtner D., Keyes G. S., Serhan C. N. (2016). Resolvin D3 multi-level proresolving actions are host protective during infection. Prostaglandins Leukot. Essent Fatty Acids 10.1016/j.plefa.2016.01.001 [Epub ahead of print].
    1. Norris P. C., Libreros S., Chiang N., Serhan C. N. (2017). A cluster of immunoresolvents links coagulation to innate host defense in human blood. Sci. Signal. 10:eaan1471. 10.1126/scisignal.aan1471
    1. Park C. K., Lu N., Xu Z. Z., Liu T., Serhan C. N., Ji R. R. (2011a). Resolving TRPV1- and TNF-α-mediated spinal cord synaptic plasticity and inflammatory pain with neuroprotectin D1. J. Neurosci. 31 15072–15085. 10.1523/JNEUROSCI.2443-11.2011
    1. Park C. K., Xu Z. Z., Liu T., Lu N., Serhan C. N., Ji R. R. (2011b). Resolvin d2 is a potent endogenous inhibitor for transient receptor potential subtype v1/a1, inflammatory pain, and spinal cord synaptic plasticity in mice: distinct roles of resolvin d1, d2, and e1. J. Neurosci. 31 18433–18438. 10.1523/JNEUROSCI.4192-11.2011
    1. Ramsden C. E., Faurot K. R., Zamora D., Palsson O. S., MacIntosh B. A., Gaylord S., et al. (2015). Targeted alterations in dietary n-3 and n-6 fatty acids improve life functioning and reduce psychological distress among patients with chronic headache: a secondary analysis of a randomized trial. Pain 156 587–596. 10.1097/01.j.pain.0000460348.84965.47
    1. Ramsden C. E., Faurot K. R., Zamora D., Suchindran C. M., Macintosh B. A., Gaylord S., et al. (2013). Targeted alteration of dietary n-3 and n-6 fatty acids for the treatment of chronic headaches: a randomized trial. Pain 154 2441–2451. 10.1016/j.pain.2013.07.028
    1. Saber H., Yakoob M. Y., Shi P., Longstreth W. T., Jr., Lemaitre R. N., Siscovick D., et al. (2017). Omega-3 fatty acids and incident ischemic stroke and its atherothrombotic and cardioembolic subtypes in 3 US cohorts. Stroke 48 2678–2685. 10.1161/STROKEAHA.117.018235
    1. Serhan C. N., Chiang N., Van Dyke T. E. (2008). Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat. Rev. Immunol. 8 349–361. 10.1038/nri2294
    1. Serhan C. N., Dalli J., Karamnov S., Choi A., Park C. K., Xu Z. Z., et al. (2012). Macrophage proresolving mediator maresin 1 stimulates tissue regeneration and controls pain. FASEB J. 26 1755–1765. 10.1096/fj.11-201442
    1. Serhan C. N., Hong S., Gronert K., Colgan S. P., Devchand P. R., Mirick G., et al. (2002). Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. J. Exp. Med. 196 1025–1037. 10.1084/jem.20020760
    1. Serra J., Sola R., Quiles C., Casanova-Molla J., Pascual V., Bostock H., et al. (2009). C-nociceptors sensitized to cold in a patient with small-fiber neuropathy and cold allodynia. Pain 147 46–53. 10.1016/j.pain.2009.07.028
    1. Sommer C., Birklein F. (2011). Resolvins and inflammatory pain. F1000. Med. Rep. 3:19. 10.3410/M3-19
    1. Sun G. Y., Simonyi A., Fritsche K. L., Chuang D. Y., Hannink M., Gu Z., et al. (2017). Docosahexaenoic acid (DHA): an essential nutrient and a nutraceutical for brain health and diseases. Prostaglandins Leukot. Essent Fatty Acids 10.1016/j.plefa.2017.03.006 [Epub ahead of print].
    1. Sun Y. P., Oh S. F., Uddin J., Yang R., Gotlinger K., Campbell E., et al. (2007). Resolvin D1 and its aspirin-triggered 17R epimer. Stereochemical assignments, anti-inflammatory properties, and enzymatic inactivation. J. Biol. Chem. 282 9323–9334. 10.1074/jbc.M609212200
    1. Svensson C. I., Zattoni M., Serhan C. N. (2007). Lipoxins and aspirin-triggered lipoxin inhibit inflammatory pain processing. J. Exp. Med. 204 245–252. 10.1084/jem.20061826
    1. Terrando N., Eriksson L. I., Ryu J. K., Yang T., Monaco C., Feldmann M., et al. (2011). Resolving postoperative neuroinflammation and cognitive decline. Ann. Neurol. 70 986–995. 10.1002/ana.22664
    1. Terrando N., Gomez-Galan M., Yang T., Carlstrom M., Gustavsson D., Harding R. E., et al. (2013). Aspirin-triggered resolvin D1 prevents surgery-induced cognitive decline. FASEB J. 27 3564–3571. 10.1096/fj.13-230276
    1. Tsuda M. (2017). Modulation of pain and itch by spinal glia. Neurosci Bull. 34 178–185. 10.1007/s12264-017-0129-y
    1. Van De Ven T., Ji R. R. (2013). Dietary control of chronic headache: involvement of pro-resolution lipid mediators. Pain 154 2247–2248. 10.1016/j.pain.2013.08.006
    1. Wang J. C., Strichartz G. R. (2017). Prevention of chronic post-thoracotomy pain in rats by intrathecal resolvin D1 and D2: effectiveness of perioperative and delayed drug delivery. J. Pain. 18 535–545. 10.1016/j.jpain.2016.12.012
    1. Wei T., Guo T. Z., Li W. W., Kingery W. S., Clark J. D. (2016). Acute versus chronic phase mechanisms in a rat model of CRPS. J. Neuroinflammation 13:14. 10.1186/s12974-015-0472-8
    1. Whittington R. A., Planel E., Terrando N. (2017). Impaired resolution of inflammation in Alzheimer’s disease: a review. Front. Immunol. 8:1464. 10.3389/fimmu.2017.01464
    1. Willemen H. L., Eijkelkamp N., Garza Carbajal A., Wang H., Mack M., Zijlstra J., et al. (2014). Monocytes/Macrophages control resolution of transient inflammatory pain. J. Pain 15 496–506. 10.1016/j.jpain.2014.01.491
    1. Winkler J. W., Libreros S., De La Rosa X., Sansbury B. E., Norris P. C., Chiang N., et al. (2018). Structural insights into Resolvin D4 actions and further metabolites via a new total organic synthesis and validation. J. Leukoc. Biol. 10.1002/JLB.3MI0617-254R [Epub ahead of print].
    1. Winkler J. W., Orr S. K., Dalli J., Cheng C. Y., Sanger J. M., Chiang N., et al. (2016). Resolvin D4 stereoassignment and its novel actions in host protection and bacterial clearance. Sci. Rep. 6:18972. 10.1038/srep18972
    1. Woolf C. J. (2011). Central sensitization: implications for the diagnosis and treatment of pain. Pain 152 S2–S15. 10.1016/j.pain.2010.09.030
    1. Woolf C. J., Mannion R. J. (1999). Neuropathic pain: aetiology, symptoms, mechanisms, and management. Lancet 353 1959–1964. 10.1016/S0140-6736(99)01307-0
    1. Xu Z. Z., Berta T., Ji R. R. (2013a). Resolvin E1 inhibits neuropathic pain and spinal cord microglial activation following peripheral nerve injury. J. Neuroimmune Pharmacol. 8 37–41. 10.1007/s11481-012-9394-8
    1. Xu Z. Z., Liu X. J., Berta T., Park C. K., Lu N., Serhan C. N., et al. (2013b). Neuroprotectin/protectin D1 protects against neuropathic pain in mice after nerve trauma. Ann. Neurol. 74 490–495. 10.1002/ana.23928
    1. Xu Z. Z., Zhang L., Liu T., Park J. Y., Berta T., Yang R., et al. (2010). Resolvins RvE1 and RvD1 attenuate inflammatory pain via central and peripheral actions. Nat. Med. 16 592–597. 10.1038/nm.2123
    1. Zhang M., Wang S., Mao L., Leak R. K., Shi Y., Zhang W., et al. (2014). Omega-3 fatty acids protect the brain against ischemic injury by activating Nrf2 and upregulating heme oxygenase 1. J. Neurosci. 34 1903–1915. 10.1523/JNEUROSCI.4043-13.2014
    1. Zhang M. D., Barde S., Yang T., Lei B., Eriksson L. I., Mathew J. P., et al. (2016). Orthopedic surgery modulates neuropeptides and BDNF expression at the spinal and hippocampal levels. Proc. Natl. Acad. Sci. U.S.A. 113 E6686–E6695. 10.1073/pnas.1614017113
    1. Zhuang Z. Y., Wen Y. R., Zhang D. R., Borsello T., Bonny C., Strichartz G. R., et al. (2006). A peptide c-Jun N-terminal kinase (JNK) inhibitor blocks mechanical allodynia after spinal nerve ligation: respective roles of JNK activation in primary sensory neurons and spinal astrocytes for neuropathic pain development and maintenance. J. Neurosci. 26 3551–3560. 10.1523/JNEUROSCI.5290-05.2006
    1. Zimmermann M. (1983). Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16 109–110. 10.1016/0304-3959(83)90201-4

Source: PubMed

3
Abonnieren