Objective Assessment of Activity Limitation in Glaucoma with Smartphone Virtual Reality Goggles: A Pilot Study

Rachel L Z Goh, Yu Xiang George Kong, Colm McAlinden, John Liu, Jonathan G Crowston, Simon E Skalicky, Rachel L Z Goh, Yu Xiang George Kong, Colm McAlinden, John Liu, Jonathan G Crowston, Simon E Skalicky

Abstract

Purpose: To evaluate the use of smartphone-based virtual reality to objectively assess activity limitation in glaucoma.

Methods: Cross-sectional study of 93 patients (54 mild, 22 moderate, 17 severe glaucoma). Sociodemographics, visual parameters, Glaucoma Activity Limitation-9 and Visual Function Questionnaire - Utility Index (VFQ-UI) were collected. Mean age was 67.4 ± 13.2 years; 52.7% were male; 65.6% were driving. A smartphone placed inside virtual reality goggles was used to administer the Virtual Reality Glaucoma Visual Function Test (VR-GVFT) to participants, consisting of three parts: stationary, moving ball, driving. Rasch analysis and classical validity tests were conducted to assess performance of VR-GVFT.

Results: Twenty-four of 28 stationary test items showed acceptable fit to the Rasch model (person separation 3.02, targeting 0). Eleven of 12 moving ball test items showed acceptable fit (person separation 3.05, targeting 0). No driving test items showed acceptable fit. Stationary test person scores showed good criterion validity, differentiating between glaucoma severity groups (P = 0.014); modest convergence validity, with mild to moderate correlation with VFQ-UI, better eye (BE) mean deviation, BE pattern deviation, BE central scotoma, worse eye (WE) visual acuity, and contrast sensitivity (CS) in both eyes (R = 0.243-0.381); and suboptimal divergent validity. Multivariate analysis showed that lower WE CS (P = 0.044) and greater age (P = 0.009) were associated with worse stationary test person scores.

Conclusions: Smartphone-based virtual reality may be a portable objective simulation test of activity limitation related to glaucomatous visual loss.

Translational relevance: The use of simulated virtual environments could help better understand the activity limitations that affect patients with glaucoma.

Keywords: activity limitation; glaucoma; technology; virtual reality.

Figures

Figure 1
Figure 1
(A–C) Stationary scenes used for stationary test items. (D) Example driving test scene showing potential driving hazard (cyclist).

References

    1. Quigley H, Broman AT. . The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006; 90: 262– 267.
    1. Lorenzana L, Lankaranian D, Dugar J,et al. . A new method of assessing ability to perform activities of daily living: design, methods and baseline data. Ophthalmic Epidemiol. 2009; 16: 107– 114.
    1. Ramulu P. . Glaucoma and disability: which tasks are affected, and at what stage of disease? Curr Opin Ophtalmol. 2009; 20: 92– 98.
    1. Lahav K, Levkovitch-Verbin H, Belkin M, Glovinsky Y, Polat U. . Reduced mesopic and photopic foveal contrast sensitivity in glaucoma. Arch Ophthalmol. 2011; 129: 16– 22.
    1. Ramulu P, Maul E, Hochberg C,et al. . Real-world assessment of physical activity in glaucoma using an accelerometer. Ophthalmology. 2012; 119: 1159– 1166.
    1. Nelson P, Aspinall P, Papasouliotis O, Worton B, O'Brien C. . Quality of life in glaucoma and its relationship with visual function. J Glaucoma. 2003; 12: 139– 150.
    1. Goldberg I, Clement CI, Chiang TH,et al. . Assessing quality of life in patients with glaucoma using the Glaucoma Quality of Life-15 (GQL-15) questionnaire. J Glaucoma. 2009; 18: 6– 12.
    1. Shabana N, Cornilleau Peres V, Carkeet A, Chew PT. . Motion perception in glaucoma patients: a review. Surv Ophthalmol. 2003; 48: 92– 106.
    1. Haymes SA, Leblanc RP, Nicolela MT, Chiasson LA, Chauhan BC. . Risk of falls and motor vehicle collisions in glaucoma. Invest Ophthalmol Vis Sci. 2007; 48: 1149– 1155.
    1. Burton R, Crabb DP, Smith ND, Glen FC, Garway-Heath DF. . Glaucoma and reading: exploring the effects of contrast lowering of text. Optom Vis Sci. 2012; 89: 1282– 1287.
    1. Chan EW, Chiang PP, Liao J,et al. . Glaucoma and associated visual acuity and field loss significantly affect glaucoma-specific psychosocial functioning. Ophthalmology. 2015; 122: 494– 501.
    1. McKean-Cowdin R, Wang Y, Wu J,et al. . Impact of visual field loss on health-related quality of life in glaucoma: the Los Angeles Latino Eye Study. Ophthalmology. 2008; 115: 941– 948.
    1. Medeiros FA, Gracitelli CP, Boer ER, Weinreb RN, Zangwill LM, Rosen PN. . Longitudinal changes in quality of life and rates of progressive visual field loss in glaucoma patients. Ophthalmology. 2015; 122: 293– 301.
    1. Skalicky S, Goldberg I. . Depression and quality of life in patients with glaucoma: a cross-sectional analysis using the Geriatric Depression Scale-15, assessment of function related to vision, and the Glaucoma Quality of Life-15. J Glaucoma. 2008; 17: 546– 551.
    1. Mabuchi F, Yoshimura K, Kashiwagi K,et al. . High prevalence of anxiety and depression in patients with primary open-angle glaucoma. J Glaucoma. 2008; 17: 552– 557.
    1. Altangerel U, Spaeth GL, Steinmann WC. . Assessment of function related to vision (AFREV). Ophthalmic Epidemiol. 2006; 13: 67– 80.
    1. Richman J, Lorenzana LL, Lankaranian D,et al. . Importance of visual acuity and contrast sensitivity in patients with glaucoma. Arch Ophthalmol. 2010; 128: 1576– 1582.
    1. Warrian KJ, Katz LJ, Myers JS,et al. . A comparison of methods used to evaluate mobility performance in the visually impaired. Br J Ophthalmol. 2015; 99: 113– 118.
    1. Kowalski JW RA, Walt JG, Lloyd A,et al. . Rasch analysis in the development of a simplified version of the national eye institute visual-function questionnaire-25 for utility estimation. Qual Life Res. 2012; 21: 323– 334.
    1. Skalicky SE, McAlinden C, Khatib T,et al. . Activity limitation in glaucoma: objective assessment by the Cambridge Glaucoma Visual Function Test. Invest Ophthalmol Vis Sci. 2016; 57: 6158– 6166.
    1. Riva G, Wiederhold BK. . The new dawn of virtual reality in health care: medical simulation and experiential interface. Stud Health Technol Inform. 2015; 219: 3– 6.
    1. Foerster RM, Poth CH, Behler C, Botsch M, Schneider WX. . Using the virtual reality device Oculus Rift for neuropsychological assessment of visual processing capabilities. Sci Rep. 2016; 6: 37016.
    1. Diniz-Filho A, Boer ER, Gracitelli CP,et al. . Evaluation of postural control in patients with glaucoma using a virtual reality environment. Ophthalmology. 2015; 122: 1131– 1138.
    1. Wroblewski D, Francis BA, Sadun A, Vakili G, Chopra V. . Testing of visual field with virtual reality goggles in manual and visual grasp modes. Biomed Res Int. 2014; 2014: 206082.
    1. Matsumoto C, Yamao S, Nomoto H,et al. . Visual field testing with head-mounted perimeter ‘imo'. PLoS ONE. 2016; 11: e0161974.
    1. Anderson DR. . Automated Static Perimetry. St Louis, MO: Mosby; 1992: 123– 133.
    1. Keltner JL, Johnson CA, Cello KE,et al. . Visual field quality control in the Ocular Hypertension Treatment Study (OHTS). J Glaucoma. 2007; 16: 665– 669.
    1. Sawada H, Yoshino T, Fukuchi T, Abe H. . Assessment of the vision-specific quality of life using clustered visual field in glaucoma patients. J Glaucoma. 2014; 23: 81– 87.
    1. Dev MK, Paudel N, Joshi ND, Shah DN, Subba S. . Impact of visual impairment on vision-specific quality of life among older adults living in nursing home. Curr Eye Res. 2014; 39: 232– 238.
    1. Jampel H, Friedman DS, Quigley H, Miller R. . Correlation of the binocular visual field with patient assessment of vision. Invest Ophthalmol Vis Sci. 2002; 43: 1059– 1067.
    1. Zhou C, Qian S, Wu P, Qiu C. . Quality of life of glaucoma patients in China: sociodemographic, clinical, and psychological correlates—a cross-sectional study. Qual Life Res. 2014; 23: 999– 1008.
    1. Arora KS, Boland MV, Friedman DS, Jefferys JL, West SK, Ramulu PY. . The relationship between better-eye and integrated visual field mean deviation and visual disability. Ophthalmology. 2013; 120: 2476– 2484.
    1. Khadka J, Pesudovs K, McAlinden C, Vogel M, Kernt M, Hirneiss C. . Reengineering the glaucoma quality of life-15 questionnaire with rasch analysis. Invest Ophthalmol Vis Sci. 2011; 52: 6971– 6977.
    1. Goh RL, Fenwick E, Skalicky SE. . The visual function questionnaire: utility index: does it measure glaucoma-related preference-based status? J Glaucoma. 2016; 25: 822– 829.
    1. Linacre JM. . A User's Guide to Winsteps/Ministeps Rasch-Model Programs. Chicago, IL: MESA Press; 2005.
    1. Mallinson T. . Why measurement matters for measuring patient vision outcomes. Optom Vis Sci. 2007; 84: 675– 682.
    1. Lamoureux E, Pesudovs K. . Vision-specific quality-of-life research: a need to improve the quality. Am J Ophthalmol. 2011; 151: 195– 197.
    1. Rentz AM, Kowalski JW, Walt JG,et al. . Development of a preference-based index from the National Eye Institute Visual Function Questionnaire-25. JAMA Ophthalmol. 2014; 132: 310– 318.
    1. Google, Inc. Google Cardboard Technical Specification. Google, Inc.; 2015.
    1. Rasch G. . Probabilistic Models for Some Intelligence and Attainment Tests. Copenhagen, Denmark: Danish Institute for Educational Research; 1960.
    1. Khadka J, Gothwal VK, McAlinden C, Lamoureux EL, Pesudovs K. . The importance of rating scales in measuring patient-reported outcomes. Health Qual Life Outcomes. 2012; 10: 80.
    1. McAlinden C, Khadka J, de Freitas Santos Paranhos J, Schor P, Pesudovs K. . Psychometric properties of the NEI-RQL-42 questionnaire in keratoconus. Invest Ophthalmol Vis Sci. 2012; 53: 7370– 7374.
    1. Wright BD, Linacre JM, Gustafsson JE, Martin-Loff P. . Reasonable mean-square fit values. Rasch Meas Trans. 1994; 8: 370.
    1. McAlinden C, Jonsson M, Kugelberg M, Lundstrom M, Khadka J, Pesudovs K. . Establishing levels of indications for cataract surgery: combining clinical and questionnaire data into a measure of cataract impact. Invest Ophthalmol Vis Sci. 2012; 53: 1095– 1101.
    1. Gothwal VK, Wright TA, Lamoureux EL, Khadka J, McAlinden C, Pesudovs K. . Improvements in visual ability with first-eye, second-eye, and bilateral cataract surgery measured with the visual symptoms and quality of life questionnaire. J Cataract Refract Surg. 2011; 37: 1208– 1216.
    1. Mallinson T, Stelmack J, Velozo C. . A comparison of the separation ratio and coefficient alpha in the creation of minimum item sets. Med Care. 2004; 42: I17– 24.
    1. Khadka J, McAlinden C, Pesudovs K. . Quality assessment of ophthalmic questionnaires: review and recommendations. Optom Vis Sci. 2013; 90: 720– 744.
    1. McAlinden C, Pesudovs K, Moore JE. . The development of an instrument to measure quality of vision: the Quality of Vision (QoV) questionnaire. Invest Ophthalmol Vis Sci. 2010; 51: 5537– 5545.
    1. McAlinden C, Skiadaresi E, Gatinel D, Cabot F, Huang J, Pesudovs K. . The Quality of Vision questionnaire: subscale interchangeability. Optom Vis Sci. 2013; 90: 760– 764.
    1. Linacre JM. . Sample size and item calibration stability. Rasch Measurement Transactions. 1994; 7: 328.
    1. Friedman DS, Hahn SR, Gelb L,et al. . Doctor-patient communication, health-related beliefs, and adherence in glaucoma results from the Glaucoma Adherence and Persistency Study. Ophthalmology. 2008; 115: 1320– 1327.
    1. Musch DC, Gillespie BW, Niziol LM,et al. . Cataract extraction in the collaborative initial glaucoma treatment study: incidence, risk factors, and the effect of cataract progression and extraction on clinical and quality-of-life outcomes. Arch Ophthalmol. 2006; 124: 1694– 1700.
    1. Skalicky SE, Martin KR, Fenwick E, Crowston JG, Goldberg I, McCluskey P. . Cataract and quality of life in patients with glaucoma. Clin Exp Ophthalmol. 2015; 43: 335– 341.
    1. Nelson P, Aspinall P, Papasouliotis O, Worton B, O'Brien C. . Quality of life in glaucoma and its relationship with visual function. J Glaucoma. 2003; 12: 139– 150.
    1. Smith ND, Crabb DP, Garway-Heath DF. . An exploratory study of visual search performance in glaucoma. Ophthalmic Physiol Opt. 2011; 31: 225– 232.
    1. Smith ND, Glen FC, Crabb DP. . Eye movements during visual search in patients with glaucoma. BMC Ophthalmol. 2012; 12: 45.

Source: PubMed

3
Abonnieren