Anti-Inflammatory Potential of n-3 Polyunsaturated Fatty Acids Enriched Hen Eggs Consumption in Improving Microvascular Endothelial Function of Healthy Individuals-Clinical Trial

Ana Stupin, Martina Mihalj, Nikolina Kolobarić, Petar Šušnjara, Luka Kolar, Zrinka Mihaljević, Anita Matić, Marko Stupin, Ivana Jukić, Zlata Kralik, Manuela Grčević, Gordana Kralik, Vatroslav Šerić, Ines Drenjančević, Ana Stupin, Martina Mihalj, Nikolina Kolobarić, Petar Šušnjara, Luka Kolar, Zrinka Mihaljević, Anita Matić, Marko Stupin, Ivana Jukić, Zlata Kralik, Manuela Grčević, Gordana Kralik, Vatroslav Šerić, Ines Drenjančević

Abstract

The effects of consumption of n-3 polyunsaturated fatty acids (n-3 PUFAs) enriched hen eggs on endothelium-dependent and endothelium-independent vasodilation in microcirculation, and on endothelial activation and inflammation were determined in young healthy individuals. Control group (N = 21) ate three regular hen eggs/daily (249 mg n-3 PUFAs/day), and n-3 PUFAs group (N = 19) ate three n-3 PUFAs enriched hen eggs/daily (1053 g n-3 PUFAs/day) for 3 weeks. Skin microvascular blood flow in response to iontophoresis of acetylcholine (AChID; endothelium-dependent) and sodium nitroprusside (SNPID; endothelium-independent) was assessed by laser Doppler flowmetry. Blood pressure (BP), body composition, body fluid status, serum lipid and free fatty acids profile, and inflammatory and endothelial activation markers were measured before and after respective dietary protocol. Results: Serum n-3 PUFAs concentration significantly increased, AChID significantly improved, and SNPID remained unchanged in n-3 PUFAs group, while none was changed in Control group. Interferon-γ (pro-inflammatory) significantly decreased and interleukin-10 (anti-inflammatory) significantly increased in n-3 PUFAs. BP, fat free mass, and total body water significantly decreased, while fat mass, interleukin-17A (pro-inflammatory), interleukin-10 and vascular endothelial growth factor A significantly increased in the Control group. Other measured parameters remained unchanged in both groups. Favorable anti-inflammatory properties of n-3 PUFAs consumption potentially contribute to the improvement of microvascular endothelium-dependent vasodilation in healthy individuals.

Keywords: cytokines; endothelium; inflammation; laser Doppler flowmetry; microvascular; n-3 polyunsaturated fatty acids; omega-3 polyunsaturated fatty acids.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
The summary of the potential mechanisms by which n-3 polyunsaturated fatty acids (n-3 PUFAs) supplementation may modulate endothelial function. Several possible targets by which n-3 PUFAs supplementation modulate endothelial function are: (a) increasing production of endothelium nitric oxide (NO), (b) reducing formation or increasing elimination of reactive oxygen species (ROS), (c) decreasing vascular or systemic inflammation (e.g., endothelial activation and endothelium–leukocyte interaction), (d) inducing angiogenesis/neovascularization and mobilization of bone-marrow derived endothelial progenitor cells (EPCs), and (e) increasing the expression and/or activity of other endothelium-derived vasodilators (e.g., eicosanoids). A—arachidonic acid; AChIR—acetylcholine induced relaxation; BH4—tetrahydrobiopterin; BH2—7,8-dihydrobiopterin; DHA—docosahexaenoic acid; eNOS—endothelial nitric oxide synthase; EPA—eicosapentaenoic acid; ICAM—1-intercellular adhesion molecule 1; n-3 PUFAs—n-3 polyunsaturated fatty acids; SDF-1α—stromal cell-derived factor 1; sLEx—Sialyl Lewisx; VCAM-1—vascular cell adhesion molecule 1; VEGF—vascular endothelial growth factor.
Figure 2
Figure 2
The effect of the three-week regular (Control group) and n-3 PUFAs (n-3 PUFAs group) enriched hen eggs consumption on skin microvascular endothelium-dependent and endothelium-independent vasodilation in young healthy individuals. (A) Acetylcholine-induced dilation (AChID), and (B) Sodium nitroprusside-induced dilation (SNPID). AChID and SNPID are expressed as flow increase following ACh or SNP administration compared to baseline flow. Data are presented as arithmetic mean ± standard deviation (SD). n-3 PUFA- n-3 polyunsaturated fatty acids. Control N = 21, n-3 PUFAs N = 19. * p = 0.014 before vs. after within the n-3 PUFA group (paired t-test).

References

    1. Versari D., Daghini E., Virdis A., Ghiadoni L., Taddei S. Endothelial Dysfunction as a Target for Prevention of Cardiovascular Disease. Diabetes Care. 2009;32:314–321. doi: 10.2337/dc09-S330.
    1. Zehr K.R., Walker M.K. Omega-3 polyunsaturated fatty acids improve endothelial function in humans at risk for atherosclerosis: A review. Prostaglandins Other Lipid Mediat. 2018;134:131–140. doi: 10.1016/j.prostaglandins.2017.07.005.
    1. Thies F., Garry J.M., Yaqoob P., Rerkasem K., Williams J., Shearman C.P., Gallagher P.J., Calder P.C., Grimble R.F. Association of n-3 polyunsaturated fatty acids with stability of atherosclerotic plaques: A randomised controlled trial. Lancet. 2003;361:477–485. doi: 10.1016/S0140-6736(03)12468-3.
    1. von Schacky C., Angerer P., Kothny W., Theisen K., Mudra H. The effect of dietary omega-3 fatty acids on coronary atherosclerosis. A randomized, double-blind, placebo-controlled trial. Ann. Intern. Med. 1999;130:554–562. doi: 10.7326/0003-4819-130-7-199904060-00003.
    1. Dolecek T.A. Epidemiological evidence of relationships between dietary polyunsaturated fatty acids and mortality in the multiple risk factor intervention trial. Proc. Soc. Exp. Biol. Med. 1992;200:177–182. doi: 10.3181/00379727-200-43413.
    1. Daviglus M.L., Stamler J., Orencia A.J., Dyer A.R., Liu K., Greenland P., Walsh M.K., Morris D., Shekelle R.B. Fish Consumption and the 30-Year Risk of Fatal Myocardial Infarction. N. Engl. J. Med. 1997;336:1046–1053. doi: 10.1056/NEJM199704103361502.
    1. Stupin M., Kibel A., Stupin A., Selthofer-Relatić K., Matić A., Mihalj M., Mihaljević Z., Jukić I., Drenjančević I. The Physiological Effect of n-3 Polyunsaturated Fatty Acids (n-3 PUFAs) Intake and Exercise on Hemorheology, Microvascular Function, and Physical Performance in Health and Cardiovascular Diseases; Is There an Interaction of Exercise and Dietary n-3 PUFA I. Front. Physiol. 2019;10:1129. doi: 10.3389/fphys.2019.01129.
    1. Ulu A., Stephen Lee K.S., Miyabe C., Yang J., Hammock B.G., Dong H., Hammock B.D. An Omega-3 Epoxide of Docosahexaenoic Acid Lowers Blood Pressure in Angiotensin-II–Dependent Hypertension. J. Cardiovasc. Pharmacol. 2014;64:87–99. doi: 10.1097/FJC.0000000000000094.
    1. Miller P.E., Van Elswyk M., Alexander D.D. Long-Chain Omega-3 Fatty Acids Eicosapentaenoic Acid and Docosahexaenoic Acid and Blood Pressure: A Meta-Analysis of Randomized Controlled Trials. Am. J. Hypertens. 2014;27:885–896. doi: 10.1093/ajh/hpu024.
    1. Renier G., Skamene E., DeSanctis J., Radzioch D. Dietary n-3 polyunsaturated fatty acids prevent the development of atherosclerotic lesions in mice. Modulation of macrophage secretory activities. Arterioscler. Thromb. 1993;13:1515–1524. doi: 10.1161/01.ATV.13.10.1515.
    1. Calder P.C. n−3 Polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am. J. Clin. Nutr. 2006;83:1505–1519. doi: 10.1093/ajcn/83.6.1505S.
    1. Thorlaksdottir A.Y., Skuladottir G.V., Petursdottir A.L., Tryggvadottir L., Ogmundsdottir H.M., Eyfjord J.E., Jonsson J.J., Hardardottir I. Positive association between plasma antioxidant capacity and n-3 PUFA in red blood cells from women. Lipids. 2006;41:119–125. doi: 10.1007/s11745-006-5079-5.
    1. Drenjančević I., Kralik G., Kralik Z., Mihalj M., Stupin A., Novak S., Grčević M. Polyunsaturated Fatty Acids on Cardiovascular Health: Revealing Potentials of Functional Food. In: Naofumi S., editor. Superfood and Functional Food-The Development of Superfoods and Their Roles as Medicine. 1st ed. InTechOpen; Rijeka, Croatia: 2017.
    1. Fraeye I., Bruneel C., Lemahieu C., Buyse J., Muylaert K., Foubert I. Dietary enrichment of eggs with omega-3 fatty acids: A review. Food Res. Int. 2012;48:961–969. doi: 10.1016/j.foodres.2012.03.014.
    1. Maki Van E., McCarthy S., Veith H., Ingram H., Calaguas D. Lipid Responses in Mildly Hypertriglyceridemic Men and Women to Consumption of Docosahexaenoic Acid-Enriched Eggs. Int. J. Vitam. Nutr. Res. 2003;73:357–368. doi: 10.1024/0300-9831.73.5.357.
    1. Lewis N.M., Schalch K., Scheideler S.E. Serum Lipid Response to n-3 Fatty Acid Enriched Eggs in Persons with Hypercholesterolemia. J. Am. Diet. Assoc. 2000;100:365–367. doi: 10.1016/S0002-8223(00)00111-5.
    1. American Heart Association News Fish oil supplements provide some benefit after heart attack, heart failure. [(accessed on 5 June 2020)]; Available online: .
    1. Bovet P., Faeh D., Madeleine G., Viswanathan B., Paccaud F. Decrease in blood triglycerides associated with the consumption of eggs of hens fed with food supplemented with fish oil. Nutr. Metab. Cardiovasc. Dis. 2007;17:280–287. doi: 10.1016/j.numecd.2005.12.010.
    1. Stupin A., Rasic L., Matic A., Stupin M., Kralik Z., Kralik G., Grcevic M., Drenjancevic I. Omega-3 polyunsaturated fatty acids-enriched hen eggs consumption enhances microvascular reactivity in young healthy individuals. Appl. Physiol. Nutr. Metab. 2018;43:988–995. doi: 10.1139/apnm-2017-0735.
    1. Hajianfar H., Paknahad Z., Bahonar A. The effect of omega-3 supplements on antioxidant capacity in patients with type 2 diabetes. Int. J. Prev. Med. 2013;4:S234–S238.
    1. Wu S.-Y., Mayneris-Perxachs J., Lovegrove J.A., Todd S., Yaqoob P. Fish-oil supplementation alters numbers of circulating endothelial progenitor cells and microparticles independently of eNOS genotype. Am. J. Clin. Nutr. 2014;100:1232–1243. doi: 10.3945/ajcn.114.088880.
    1. Ander B.P., Dupasquier C.M., Prociuk M.A., Pierce G.N. Polyunsaturated fatty acids and their effects on cardiovascular disease. Exp. Clin. Cardiol. 2003;8:164–172.
    1. Omura M., Kobayashi S., Mizukami Y., Mogami K., Todoroki-Ikeda N., Miyake T., Matsuzaki M. Eicosapentaenoic acid (EPA) induces Ca(2+)-independent activation and translocation of endothelial nitric oxide synthase and endothelium-dependent vasorelaxation. Febs Lett. 2001;487:361–366. doi: 10.1016/S0014-5793(00)02351-6.
    1. Hirafuji M., Machida T., Tsunoda M., Miyamoto A., Minami M. Docosahexaenoic acid potentiates interleukin-1β induction of nitric oxide synthase through mechanism involving p44/42 MAPK activation in rat vascular smooth muscle cells. Br. J. Pharmacol. 2002;136:613–619. doi: 10.1038/sj.bjp.0704768.
    1. Wiest E.F., Walsh-Wilcox M.T., Walker M.K. Omega-3 Polyunsaturated Fatty Acids Protect against Cigarette Smoke-Induced Oxidative Stress and Vascular Dysfunction. Toxicol. Sci. 2017;156(1):300–310. doi: 10.1093/toxsci/kfw255.
    1. De Caterina R., Cybulsky M.I., Clinton S.K., Gimbrone M.A., Libby P. The omega-3 fatty acid docosahexaenoate reduces cytokine-induced expression of proatherogenic and proinflammatory proteins in human endothelial cells. Arterioscler. Thromb. 1994;14:1829–1836. doi: 10.1161/01.ATV.14.11.1829.
    1. Huang C.-Y., Sheu W.H.-H., Chiang A.-N. Docosahexaenoic acid and eicosapentaenoic acid suppress adhesion molecule expression in human aortic endothelial cells via differential mechanisms. Mol. Nutr. Food Res. 2015;59:751–762. doi: 10.1002/mnfr.201400687.
    1. van den Elsen L., Garssen J., Willemsen L. Long chain N-3 polyunsaturated fatty acids in the prevention of allergic and cardiovascular disease. Curr. Pharm. Des. 2012;18:2375–2392. doi: 10.2174/138161212800165960.
    1. Sethi S., Ziouzenkova O., Ni H., Wagner D.D., Plutzky J., Mayadas T.N. Oxidized omega-3 fatty acids in fish oil inhibit leukocyte-endothelial interactions through activation of PPARα. Blood. 2002;100:1340–1346. doi: 10.1182/blood-2002-01-0316.
    1. Bobetić B. Challenges and expectations of the eu and croatian poultry in the medium term by 2030. [(accessed on 5 June 2020)];Proceedings of the Zbornik. 2019 12:18. Available online: .
    1. Jacobson T.A., Ito M.K., Maki K.C., Orringer C.E., Bays H.E., Jones P.H., McKenney J.M., Grundy S.M., Gill E.A., Wild R.A., et al. National Lipid Association recommendations for patient-centered management of dyslipidemia: Part 1 – executive summary. J. Clin. Lipidol. 2014;8:473–488. doi: 10.1016/j.jacl.2014.07.007.
    1. Kris-Etherton P.M., Harris W.S., Appel L.J. Fish Consumption, Fish Oil, Omega-3 Fatty Acids, and Cardiovascular Disease. Circulation. 2002;106:2747–2757. doi: 10.1161/01.CIR.0000038493.65177.94.
    1. Leslie M.A., Cohen D.J.A., Liddle D.M., Robinson L.E., Ma D.W.L. A review of the effect of omega-3 polyunsaturated fatty acids on blood triacylglycerol levels in normolipidemic and borderline hyperlipidemic individuals. Lipids Health Dis. 2015;14:53. doi: 10.1186/s12944-015-0049-7.
    1. Oh S.Y., Ryue J., Hsieh C.H., Bell D.E. Eggs enriched in ω-3 fatty acids and alterations in lipid concentrations in plasma and lipoproteins and in blood pressure. Am. J. Clin. Nutr. 1991;54:689–695. doi: 10.1093/ajcn/54.4.689.
    1. Burns-Whitmore B., Haddad E., Sabaté J., Rajaram S. Effects of supplementing n-3 fatty acid enriched eggs and walnuts on cardiovascular disease risk markers in healthy free-living lacto-ovo-vegetarians: A randomized, crossover, free-living intervention study. Nutr. J. 2014;13:29. doi: 10.1186/1475-2891-13-29.
    1. Appel L.J., Miller E.R., Seidler A.J., Whelton P.K. Does supplementation of diet with “fish oil” reduce blood pressure? A meta-analysis of controlled clinical trials. Arch. Intern. Med. 1993;153:1429–1438. doi: 10.1001/archinte.1993.00410120017003.
    1. Knapp H.R., FitzGerald G.A. The Antihypertensive Effects of Fish Oil. N. Engl. J. Med. 1989;320:1037–1043. doi: 10.1056/NEJM198904203201603.
    1. Bønaa K.H., Bjerve K.S., Straume B., Gram I.T., Thelle D. Effect of Eicosapentaenoic and Docosahexaenoic Acids on Blood Pressure in Hypertension. N. Engl. J. Med. 1990;322:795–801. doi: 10.1056/NEJM199003223221202.
    1. Kestin M., Clifton P., Belling G.B., Nestel P.J. n-3 fatty acids of marine origin lower systolic blood pressure and triglycerides but raise LDL cholesterol compared with n-3 and n-6 fatty acids from plants. Am. J. Clin. Nutr. 1990;51:1028–1034. doi: 10.1093/ajcn/51.6.1028.
    1. Rasmussen B.M., Vessby B., Uusitupa M., Berglund L., Pedersen E., Riccardi G., Rivellese A.A., Tapsell L., Hermansen K. Effects of dietary saturated, monounsaturated, and n−3 fatty acids on blood pressure in healthy subjects. Am. J. Clin. Nutr. 2006;83:221–226.
    1. Prabodh Shah A., Ichiuji A.M., Han J.K., Traina M., El-Bialy A., Kamal Meymandi S., Yvonne Wachsner R. Cardiovascular and Endothelial Effects of Fish Oil Supplementation in Healthy Volunteers. J. Cardiovasc. Pharmacol. Ther. 2007;12:213–219. doi: 10.1177/1074248407304749.
    1. Grieger J.A., Miller M.D., Cobiac L. Investigation of the effects of a high fish diet on inflammatory cytokines, blood pressure, and lipids in healthy older Australians. Food Nutr. Res. 2014;58:20369. doi: 10.3402/fnr.v58.20369.
    1. Hlais S., El-Bistami D., El Rahi B., Mattar M.A., Obeid O.A. Combined Fish Oil and High Oleic Sunflower Oil Supplements Neutralize their Individual Effects on the Lipid Profile of Healthy Men. Lipids. 2013;48:853–861. doi: 10.1007/s11745-013-3819-x.
    1. Root M., Collier S.R., Zwetsloot K.A., West K.L., McGinn M.C. A randomized trial of fish oil omega-3 fatty acids on arterial health, inflammation, and metabolic syndrome in a young healthy population. Nutr. J. 2013;12:40. doi: 10.1186/1475-2891-12-40.
    1. Martínez-Victoria E., Yago M.D. Omega 3 polyunsaturated fatty acids and body weight. Br. J. Nutr. 2012;107:107–116. doi: 10.1017/S000711451200150X.
    1. Bender N., Portmann M., Heg Z., Hofmann K., Zwahlen M., Egger M. Fish or n3-PUFA intake and body composition: A systematic review and meta-analysis. Obes. Rev. 2014;15:657–665. doi: 10.1111/obr.12189.
    1. Farrell D.J. Enrichment of hen eggs with n-3 long-chain fatty acids and evaluation of enriched eggs in humans. Am. J. Clin. Nutr. 1998;68:538–544. doi: 10.1093/ajcn/68.3.538.
    1. Calder P.C. Omega-3 fatty acids and inflammatory processes: From molecules to man. Biochem. Soc. Trans. 2017;45:1105–1115. doi: 10.1042/BST20160474.
    1. Du Y., Taylor C.G., Zahradka P. Modulation of endothelial cell responses and vascular function by dietary fatty acids. Nutr. Rev. 2019;77:614–629. doi: 10.1093/nutrit/nuz026.
    1. Khan F. The effects of dietary fatty acid supplementation on endothelial function and vascular tone in healthy subjects. Cardiovasc. Res. 2003;59:955–962. doi: 10.1016/S0008-6363(03)00395-X.
    1. Fuentes F., López-Miranda J., Pérez-Martínez P., Jiménez Y., Marín C., Gómez P., Fernández J.M., Caballero J., Delgado-Lista J., Pérez-Jiménez F. Chronic effects of a high-fat diet enriched with virgin olive oil and a low-fat diet enriched with α-linolenic acid on postprandial endothelial function in healthy men. Br. J. Nutr. 2008;100:159–165. doi: 10.1017/S0007114508888708.
    1. Stebbins C.L., Stice J.P., Hart C.M., Mbai F.N., Knowlton A.A. Effects of Dietary Decosahexaenoic Acid (DHA) on eNOS in Human Coronary Artery Endothelial Cells. J. Cardiovasc. Pharmacol. Ther. 2008;13:261–268. doi: 10.1177/1074248408322470.
    1. Agbor L.N., Wiest E.F., Rothe M., Schunck W.-H., Walker M.K. Role of CYP1A1 in Modulating the Vascular and Blood Pressure Benefits of Omega-3 Polyunsaturated Fatty Acids. J. Pharmacol. Exp. Ther. 2014;351:688–698. doi: 10.1124/jpet.114.219535.
    1. Baker E.J., Yusof M.H., Yaqoob P., Miles E.A., Calder P.C. Omega-3 fatty acids and leukocyte-endothelium adhesion: Novel anti-atherosclerotic actions. Mol. Asp. Med. 2018;64:169–181. doi: 10.1016/j.mam.2018.08.002.
    1. Holm P.W., Slart R.H.J.A., Zeebregts C.J., Hillebrands J.L., Tio R.A. Atherosclerotic plaque development and instability: A dual role for VEGF. Ann. Med. 2009;41:257–264. doi: 10.1080/07853890802516507.
    1. Rangel-Huerta O.D., Aguilera C.M., Mesa M.D., Gil A. Omega-3 long-chain polyunsaturated fatty acids supplementation on inflammatory biomakers: A systematic review of randomised clinical trials. Br. J. Nutr. 2012;107:159–170. doi: 10.1017/S0007114512001559.
    1. Eschen O., Christensen J., Decaterina R., Schmidt E. Soluble adhesion molecules in healthy subjects: A dose-response study using n-3 fatty acids. Nutr. Metab. Cardiovasc. Dis. 2004;14:180–185. doi: 10.1016/S0939-4753(04)80002-4.
    1. Yusof H.M., Miles E.A., Calder P. Influence of very long-chain n-3 fatty acids on plasma markers of inflammation in middle-aged men. Prostaglandins Leukot. Essent. Fat. Acids. 2008;78:219–228. doi: 10.1016/j.plefa.2008.02.002.
    1. Thies F., Miles E.A., Nebe-von-Caron G., Powell J.R., Hurst T.L., Newsholme E.A., Calder P.C. Influence of dietary supplementation with long-chain n−3 or n−6 polyunsaturated fatty acids on blood inflammatory cell populations and functions and on plasma soluble adhesion molecules in healthy adults. Lipids. 2001;36:1183–1193. doi: 10.1007/s11745-001-0831-4.
    1. Cazzola R., Russo-Volpe S., Miles E.A., Rees D., Banerjee T., Roynette C.E., Wells S.J., Goua M., Wahle K.W.J., Calder P.C., et al. Age- and dose-dependent effects of an eicosapentaenoic acid-rich oil on cardiovascular risk factors in healthy male subjects. Atherosclerosis. 2007;193:159–167. doi: 10.1016/j.atherosclerosis.2006.06.008.
    1. Paulo M.C., Andrade A.M., Andrade M.L., Morais M.G., Kiely M., Parra D., Martinéz J.A., Thorsdottir I., Bandarra N.M. Influence of n-3 polyunsaturated fatty acids on soluble cellular adhesion molecules as biomarkers of cardiovascular risk in young healthy subjects. Nutr. Metab. Cardiovasc. Dis. 2008;18:664–670. doi: 10.1016/j.numecd.2007.11.007.
    1. Rundblad A., Holven K.B., Bruheim I., Myhrstad M.C., Ulven S.M. Effects of fish and krill oil on gene expression in peripheral blood mononuclear cells and circulating markers of inflammation: A randomised controlled trial. J. Nutr. Sci. 2018;7:10. doi: 10.1017/jns.2018.2.
    1. Sierra S., Lara-Villoslada F., Comalada M., Olivares M., Xaus J. Dietary eicosapentaenoic acid and docosahexaenoic acid equally incorporate as decosahexaenoic acid but differ in inflammatory effects. Nutrition. 2008;24:245–254. doi: 10.1016/j.nut.2007.11.005.
    1. Calder P.C. Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance. Biochim. Biophys. Acta. 2015;1851:469–484. doi: 10.1016/j.bbalip.2014.08.010.
    1. Calder P.C. Omega-3 polyunsaturated fatty acids and inflammatory processes: Nutrition or pharmacology? Br. J. Clin. Pharmacol. 2013;75:645–662. doi: 10.1111/j.1365-2125.2012.04374.x.
    1. Li X., Bi X., Wang S., Zhang Z., Li F., Zhao A.Z. Therapeutic Potential of ω-3 Polyunsaturated Fatty Acids in Human Autoimmune Diseases. Front. Immunol. 2019;10:2241. doi: 10.3389/fimmu.2019.02241.
    1. Csapó J., Sugár L., Horn A., Kiss C. Chemical composition of milk from red deer roe and fallow deer kept in captivit. Acta Agron Hung. 1987;36:359–372.
    1. Wang L., Summerhill K., Rodriguez-Canas C., Mather I., Patel P., Eiden M., Young S., Forouhi N.G., Koulman A. Development and validation of a robust automated analysis of plasma phospholipid fatty acids for metabolic phenotyping of large epidemiological studies. Genome Med. 2013;5:39. doi: 10.1186/gm443.
    1. Barić L., Drenjančević I., Mihalj M., Matić A., Stupin M., Kolar L., Mihaljević Z., Mrakovčić-Šutić I., Šerić V., Stupin A. Enhanced Antioxidative Defense by Vitamins C and E Consumption Prevents 7-Day High-Salt Diet-Induced Microvascular Endothelial Function Impairment in Young Healthy Individuals. J. Clin. Med. 2020;9:843. doi: 10.3390/jcm9030843.
    1. Stupin M., Stupin A., Rasic L., Cosic A., Kolar L., Seric V., Lenasi H., Izakovic K., Drenjancevic I. Acute exhaustive rowing exercise reduces skin microvascular dilator function in young adult rowing athletes. Eur. J. Appl. Physiol. 2018;118:461–474. doi: 10.1007/s00421-017-3790-y.
    1. Barić L., Drenjančević I., Matić A., Stupin M., Kolar L., Mihaljević Z., Lenasi H., Šerić V., Stupin A. Seven-Day Salt Loading Impairs Microvascular Endothelium-Dependent Vasodilation without Changes in Blood Pressure, Body Composition and Fluid Status in Healthy Young Humans. Kidney Blood Press. Res. 2019;44:835–847. doi: 10.1159/000501747.

Source: PubMed

3
Abonnieren