MRI of the lung (2/3). Why … when … how?

J Biederer, M Beer, W Hirsch, J Wild, M Fabel, M Puderbach, E J R Van Beek, J Biederer, M Beer, W Hirsch, J Wild, M Fabel, M Puderbach, E J R Van Beek

Abstract

Background: Among the modalities for lung imaging, proton magnetic resonance imaging (MRI) has been the latest to be introduced into clinical practice. Its value to replace X-ray and computed tomography (CT) when radiation exposure or iodinated contrast material is contra-indicated is well acknowledged: i.e. for paediatric patients and pregnant women or for scientific use. One of the reasons why MRI of the lung is still rarely used, except in a few centres, is the lack of consistent protocols customised to clinical needs.

Methods: This article makes non-vendor-specific protocol suggestions for general use with state-of-the-art MRI scanners, based on the available literature and a consensus discussion within a panel of experts experienced in lung MRI.

Results: Various sequences have been successfully tested within scientific or clinical environments. MRI of the lung with appropriate combinations of these sequences comprises morphological and functional imaging aspects in a single examination. It serves in difficult clinical problems encountered in daily routine, such as assessment of the mediastinum and chest wall, and even might challenge molecular imaging techniques in the near future.

Conclusion: This article helps new users to implement appropriate protocols on their own MRI platforms. Main Messages • MRI of the lung can be readily performed on state-of-the-art 1.5-T MRI scanners. • Protocol suggestions based on the available literature facilitate its use for routine • MRI offers solutions for complicated thoracic masses with atelectasis and chest wall invasion. • MRI is an option for paediatrics and science when CT is contra-indicated.

Figures

Fig. 1
Fig. 1
A 66-year-old male patient with fever and coughing, clinically suspected pneumonia. The plain chest X-ray (a) demonstrates a dense infiltrate in the left lower lung lobe which is confirmed on non-contrast-enhanced low dose CT (b; arrows). The patient volunteered to undergo MRI on the same day. Multi-breath-hold coronal T2-weighted fast spin echo (c) and single breath-hold T1-weighted 3D GRE imaging (d) as well as free breathing coronal steady state SSFP (e) and multi-breath-hold fat-saturated T2-weighted fast spin echo series (f) clearly demonstrate the infiltrates with particularly high signal on T2-weighted images
Fig. 2
Fig. 2
A 64-year-old woman with the incidental finding of an unspecific, 4-mm nodule in the right middle lobe. The nodule (open arrow) is clearly depicted on the coronal multi-breath-hold T2-weighted (a) and transverse contrast-enhanced, fat-saturated 3D GRE images (b)
Fig. 3
Fig. 3
Diffusion-weighted imaging highlighting pleural metastases of hepatocellular carcinoma at the right diaphragm (left, open arrow). The same spots are only hardly visible on the post-contrast fat-saturated breath-hold T1-weighted 3D GRE sequence (right).
Fig. 4
Fig. 4
An 18-year-old male cystic fibrosis patient, coronal T2-weighted half Fourier fast spin echo sequence (a) and coronal subtraction perfusion image (b). Notice the severe mucus plugging in the morphological T2-weighted image. The subtraction perfusion image shows correspoding areas with perfusion loss due to hypoxic vasoconstriction. Due to redistribution of perfusion both lower lobes show a high perfusion signal
Fig. 5
Fig. 5
Lung MRI of a 37-year-old male patient with cystic fibrosis. Coronal T2-weighted, respiration triggered and transverse breath-hold T1-weighted 3D GRE images show peripheral airways with enhanced signal due to mucus plugging. Note the “tree-in-bud” sign similar to the typical appearance on CT (dashed circles)
Fig. 6
Fig. 6
A 6-year-old child with lung metastases of osteosarcoma. Both acquisitions, the free breathing steady state free precession series (a) and the respiration triggered (navigator triggered) series (b) show a large mass with high signal intensity in the right upper lung lobe in expiration
Fig. 7
Fig. 7
Pneumonia (asterisk), chambered pleural effusion (arrowheads) and abscess (arrow) in the right lower chest of a 6-year-old child, images acquired in T2-weighted triggered fast spin echo technique
Fig. 8
Fig. 8
Recent fracture of the left 5th rib as incidental finding in a 29-year-old female volunteer with left chest pain, hardly visible on the non-contrast enhanced T1-weighteg breath-hold 3D GRE series (a) but with bright signal on the T2-weighted fat saturated image from an multiple breath-hold series (b, arrow)
Fig. 9
Fig. 9
A 77-year-old male patient with adenocarcinoma in segment 6 of the right lower lung lobe (arrow; transverse contrast-enhanced breath-hold 3D GRE study)
Fig. 10
Fig. 10
An 18-year-old female patient with clinical suspicion (dyspnoea and elevated D-dimers) of acute pulmonary embolism. The steady state free precession study shows an embolus inside the right pulmonary artery (a, arrow) that is also clearly depicted in the subtraction images form the contrast enhanced 3D flash MRA (b). The subtraction of the first pass perfusion study (c) confirm large perfusion deficits in the right lower lobe and a posterior segment of the left upper lobe (arrowheads)

References

    1. Puderbach M, Hintze C, Ley S, Eichinger M, Kauczor H-U, Biederer J. MR imaging of the chest: a practical approach at 1.5 T. Eur J Radiol. 2007;64:345–55. doi: 10.1016/j.ejrad.2007.08.009.
    1. Eibel R, Herzog P, Dietrich O, Rieger CT, Ostermann H, Reiser MF, Schoenberg SO. Pulmonary abnormalities in immunocompromised patients: comparative detection with parallel acquisition MR imaging and thin-section helical CT. Radiology. 2006;241:880–891. doi: 10.1148/radiol.2413042056.
    1. Biederer J. Magnetic resonance imaging: technical aspects and recent developments. Med Klin (Munich) 2005;100:62–72. doi: 10.1007/s00063-005-1124-z.
    1. Lotz J, Kivelitz D, Fischbach R, Beer M, Miller S. Recommendations for utilizing computerized tomography and magnetic resonance tomography in heart diagnosis. 2–Magnetic resonance tomography. Rofo. 2009;181:800–814. doi: 10.1055/s-0028-1109542.
    1. Biederer J, Bauman G, Hintze C, Fabel M, Both M. Magnetresonanztomographie. Der Pneumologe. 2011;8:234–242. doi: 10.1007/s10405-010-0440-z.
    1. Bankier AA, O’Donnell CR, Mai VM, Storey P, Maertelaer V, Edelman RR, Chen Q. Impact of lung volume on MR signal intensity changes of the lung parenchyma. J Magn Reson Imaging. 2004;20:961–966. doi: 10.1002/jmri.20198.
    1. Bauman G, Puderbach M, Deimling M, Jellus V, Chefd’hotel C, Dinkel J, Hintze C, Kauczor H-U, Schad LR. Non-contrast-enhanced perfusion and ventilation assessment of the human lung by means of fourier decomposition in proton MRI. Magn Reson Med. 2009;62:656–664. doi: 10.1002/mrm.22031.
    1. Biederer J, Hintze C, Fabel M. MRI of pulmonary nodules: technique and diagnostic value. Cancer Imaging. 2008;8:125–130. doi: 10.1102/1470-7330.2008.0018.
    1. Iwasawa T, Takahashi H, Ogura T, Asakura A, Gotoh T, Kagei S, J-ichi N, Obara M, Inoue T. Correlation of lung parenchymal MR signal intensity with pulmonary function tests and quantitative computed tomography (CT) evaluation: a pilot study. J Magn Reson Imaging. 2007;26:1530–1536. doi: 10.1002/jmri.21183.
    1. Bauman G, Lützen U, Ullrich M, Gaass T, Dinkel J, Elke G, Meybohm P, Frerichs I, Hoffmann B et al (2011) Pulmonary functional imaging: qualitative comparison of Fourier decomposition MR imaging with SPECT/CT in porcine lung. Radiology 260:551–559
    1. Ley-Zaporozhan J, Ley S, Eberhardt R, Kauczor H-U, Heussel CP. Visualization of morphological parenchymal changes in emphysema: comparison of different MRI sequences to 3D-HRCT. Eur J Radiol. 2010;73:43–49. doi: 10.1016/j.ejrad.2008.09.029.
    1. Biederer J, Busse I, Grimm J, Reuter M, Muhle C, Freitag S, Heller M. Sensitivity of MRI in detecting alveolar Infiltrates: Experimental studies. Rofo. 2002;174:1033–9. doi: 10.1055/s-2002-32923.
    1. Kersjes W, Hildebrandt G, Cagil H, Schunk K, Zitzewitz H, Schild H. Differentiation of alveolitis and pulmonary fibrosis in rabbits with magnetic resonance imaging after intrabronchial administration of bleomycin. Invest Radiol. 1999;34:13–21. doi: 10.1097/00004424-199901000-00003.
    1. Fink C, Puderbach M, Biederer J, Fabel M, Dietrich O, Kauczor H-U, Reiser MF, Schönberg SO. Lung MRI at 1.5 and 3 Tesla: observer preference study and lesion contrast using five different pulse sequences. Invest Radiol. 2007;42:377–83. doi: 10.1097/01.rli.0000261926.86278.96.
    1. Jacob RE, Amidan BG, Soelberg J, Minard KR. In vivo MRI of altered proton signal intensity and T2 relaxation in a bleomycin model of pulmonary inflammation and fibrosis. J Magn Reson Imaging. 2010;31:1091–1099. doi: 10.1002/jmri.22166.
    1. Rieger C, Herzog P, Eibel R, Fiegl M, Ostermann H. Pulmonary MRI–a new approach for the evaluation of febrile neutropenic patients with malignancies. Support Care Cancer. 2008;16:599–606. doi: 10.1007/s00520-007-0346-4.
    1. Fink C, Puderbach M, Biederer J, Fabel M, Dietrich O, Kauczor H-U, Reiser MF, Schönberg SO. Lung MRI at 1.5 and 3 Tesla: observer preference study and lesion contrast using five different pulse sequences. Invest Radiol. 2007;42:377–83. doi: 10.1097/01.rli.0000261926.86278.96.
    1. Biederer J, Schoene A, Freitag S, Reuter M, Heller M. Simulated pulmonary nodules implanted in a dedicated porcine chest phantom: sensitivity of MR imaging for detection. Radiology. 2003;227:475–83. doi: 10.1148/radiol.2272020635.
    1. Both M, Schultze J, Reuter M, Bewig B, Hubner R, Bobis I, Noth R, Heller M, Biederer J. Fast T1- and T2-weighted pulmonary MR-imaging in patients with bronchial carcinoma. Eur J Radiol. 2005;53:478–88. doi: 10.1016/j.ejrad.2004.05.007.
    1. Bruegel M, Gaa J, Woertler K, Ganter C, Waldt S, Hillerer C, Rummeny EJ. MRI of the lung: value of different turbo spin-echo, single-shot turbo spin-echo, and 3D gradient-echo pulse sequences for the detection of pulmonary metastases. J Magn Reson Imaging. 2007;25:73–81. doi: 10.1002/jmri.20824.
    1. Fabel M, Wintersperger BJ, Dietrich O, Eichinger M, Fink C, Puderbach M, Kauczor H-U, Schoenberg SO, Biederer J. MRI of respiratory dynamics with 2D steady-state free-precession and 2D gradient echo sequences at 1.5 and 3 Tesla: an observer preference study. Eur Radiol. 2009;19:391–9. doi: 10.1007/s00330-008-1148-x.
    1. Gamsu G, Geer G, Cann C, Müller N, Brito A. A preliminary study of MRI quantification of simulated calcified pulmonary nodules. Invest Radiol. 1987;22:853–858. doi: 10.1097/00004424-198711000-00001.
    1. Regier M, Kandel S, Kaul MG, Hoffmann B, Ittrich H, Bansmann PM, Kemper J, Nolte-Ernsting C, Heller M et al (2007) Detection of small pulmonary nodules in high-field MR at 3 T: evaluation of different pulse sequences using porcine lung explants. Eur Radiol 17:1341–51
    1. Chung MH, Lee HG, Kwon SS, Park SH. MR imaging of solitary pulmonary lesion: emphasis on tuberculomas and comparison with tumors. J Magn Reson Imaging. 2000;11:629–637. doi: 10.1002/1522-2586(200006)11:6<629::AID-JMRI9>;2-R.
    1. Kersjes W, Mayer E, Buchenroth M, Schunk K, Fouda N, Cagil H. Diagnosis of pulmonary metastases with turbo-SE MR imaging. Eur Radiol. 1997;7:1190–1194. doi: 10.1007/s003300050272.
    1. Kirchner J, Kirchner EM. Melanoptysis: findings on CT and MRI. Br J Radiol. 2001;74:1003–1006.
    1. Baumann T, Ludwig U, Pache G, Gall C, Saueressig U, Fisch D, Stankovic Z, Bartholomae J-P, Honal M u a. Detection of pulmonary nodules with move-during-scan magnetic resonance imaging using a free-breathing turbo inversion recovery magnitude sequence. Invest Radiol. 2008;43:359–367. doi: 10.1097/RLI.0b013e31816901fa.
    1. Khalil AM, Carette MF, Cadranel JL, Mayaud CM, Akoun GM, Bigot JM. Magnetic resonance imaging findings in pulmonary Kaposi’s sarcoma: a series of 10 cases. Eur Respir J. 1994;7:1285–1289. doi: 10.1183/09031936.94.07071285.
    1. Semelka RC, Cem Balci N, Wilber KP, Fisher LL, Brown MA, Gomez-Caminero A, Molina PL. Breath-hold 3D gradient-echo MR imaging of the lung parenchyma: evaluation of reproducibility of image quality in normals and preliminary observations in patients with disease. J Magn Reson Imaging. 2000;11:195–200. doi: 10.1002/(SICI)1522-2586(200002)11:2<195::AID-JMRI18>;2-Q.
    1. Biederer J, Both M, Graessner J, Liess C, Jakob P, Reuter M, Heller M. Lung morphology: fast MR imaging assessment with a volumetric interpolated breath-hold technique: initial experience with patients. Radiology. 2003;226:242–9. doi: 10.1148/radiol.2261011974.
    1. Chen W, Jian W, H-tao L, Li C, Y-ke Z, Xie B, D-quan Z, Y-ming D, Lin Y u a. Whole-body diffusion-weighted imaging vs. FDG-PET for the detection of non-small-cell lung cancer. How do they measure up? Magn Reson Imaging. 2010;28:613–620. doi: 10.1016/j.mri.2010.02.009.
    1. Yi CA, Shin KM, Lee KS, Kim B-T, Kim H, Kwon OJ, Choi JY, Chung MJ. Non-small cell lung cancer staging: efficacy comparison of integrated PET/CT versus 3.0-T whole-body MR imaging. Radiology. 2008;248:632–642. doi: 10.1148/radiol.2482071822.
    1. Hasegawa I, Boiselle PM, Kuwabara K, Sawafuji M, Sugiura H. Mediastinal lymph nodes in patients with non-small cell lung cancer: preliminary experience with diffusion-weighted MR imaging. J Thorac Imaging. 2008;23:157–161. doi: 10.1097/RTI.0b013e318166d2f5.
    1. Pauls S, Schmidt SA, Juchems MS, Klass O, Luster M, Reske SN, Brambs H-J, Feuerlein S (2012) Diffusion-weighted MR imaging in comparison to integrated [(18)F]-FDG PET/CT for N-staging in patients with lung cancer. Eur J Radiol 81:178–182
    1. Koyama H, Ohno Y, Aoyama N, Onishi Y, Matsumoto K, Nogami M, Takenaka D, Nishio W, Ohbayashi C et al (2010) Comparison of STIR turbo SE imaging and diffusion-weighted imaging of the lung: capability for detection and subtype classification of pulmonary adenocarcinomas. Eur Radiol 20:790–800
    1. Liu H, Liu Y, Yu T, Ye N. Usefulness of diffusion-weighted MR imaging in the evaluation of pulmonary lesions. Eur Radiol. 2010;20:807–815. doi: 10.1007/s00330-009-1629-6.
    1. Tondo F, Saponaro A, Stecco A, Lombardi M, Casadio C, Carriero A (2011) Role of diffusion-weighted imaging in the differential diagnosis of benign and malignant lesions of the chest-mediastinum. Radiol Med 116:720–733
    1. Kanauchi N, Oizumi H, Honma T, Kato H, Endo M, Suzuki J, Fukaya K, Sadahiro M (2009) Role of diffusion-weighted magnetic resonance imaging for predicting of tumor invasiveness for clinical stage IA non-small cell lung cancer. Eur J Cardiothorac Surg 35:706-710; discussion 710–711
    1. Qi LP, Zhang XP, Tang L, Li J, Sun YS, Zhu GY. Using diffusion-weighted MR imaging for tumor detection in the collapsed lung: a preliminary study. Eur Radiol. 2009;19:333–341. doi: 10.1007/s00330-008-1134-3.
    1. Uto T, Takehara Y, Nakamura Y, Naito T, Hashimoto D, Inui N, Suda T, Nakamura H, Chida K. Higher sensitivity and specificity for diffusion-weighted imaging of malignant lung lesions without apparent diffusion coefficient quantification. Radiology. 2009;252:247–254. doi: 10.1148/radiol.2521081195.
    1. Karabulut N (2009) Accuracy of diffusion-weighted MR imaging for differentiation of pulmonary lesions. Radiology 253:899; author reply 899–900
    1. Henzler T, Schmid-Bindert G, Schoenberg SO, Fink C. Diffusion and perfusion MRI of the lung and mediastinum. Eur J Radiol. 2010;76:329–336. doi: 10.1016/j.ejrad.2010.05.005.
    1. Regier M, Schwarz D, Henes FO, Groth M, Kooijman H, Begemann PG, Adam G. Diffusion-weighted MR-imaging for the detection of pulmonary nodules at 1.5 Tesla: intraindividual comparison with multidetector computed tomography. J Med Imaging Radiat Oncol. 2011;55:266–274. doi: 10.1111/j.1754-9485.2011.02263.x.
    1. Biederer J, Hintze C, Fabel M. MRI of pulmonary nodules: technique and diagnostic value. Cancer Imaging. 2008;8:125–30. doi: 10.1102/1470-7330.2008.0018.
    1. Kluge A, Müller C, Hansel J, Gerriets T, Bachmann G. Real-time MR with TrueFISP for the detection of acute pulmonary embolism: initial clinical experience. Eur Radiol. 2004;14:709–718. doi: 10.1007/s00330-003-2164-5.
    1. Kluge A, Gerriets T, Stolz E, Dill T, Mueller K-D, Mueller C, Bachmann G. Pulmonary perfusion in acute pulmonary embolism: agreement of MRI and SPECT for lobar, segmental and subsegmental perfusion defects. Acta Radiol. 2006;47:933–940. doi: 10.1080/02841850600885377.
    1. Kluge A, Gerriets T, Müller C, Ekinci O, Neumann T, Dill T, Bachmann G. Thoracic real-time MRI: experience from 2200 examinations in acute and ill-defined thoracic diseases. Rofo. 2005;177:1513–1521. doi: 10.1055/s-2005-858688.
    1. Moody AR, Liddicoat A, Krarup K. Magnetic resonance pulmonary angiography and direct imaging of embolus for the detection of pulmonary emboli. Invest Radiol. 1997;32:431–440. doi: 10.1097/00004424-199708000-00001.
    1. Moody AR. Magnetic resonance direct thrombus imaging. J Thromb Haemost. 2003;1:1403–1409. doi: 10.1046/j.1538-7836.2003.00333.x.
    1. Biederer J, Liess C, Charalambous N, Heller M. Volumetric interpolated contrast-enhanced MRA for the diagnosis of pulmonary embolism in an ex vivo system. J Magn Reson Imaging. 2004;19:428–37. doi: 10.1002/jmri.20021.
    1. Matsuoka S, Uchiyama K, Shima H, Terakoshi H, Oishi S, Nojiri Y, Ogata H. Effect of the rate of gadolinium injection on magnetic resonance pulmonary perfusion imaging. J Magn Reson Imaging. 2002;15:108–113. doi: 10.1002/jmri.10038.
    1. Meaney JF, Weg JG, Chenevert TL, Stafford-Johnson D, Hamilton BH, Prince MR. Diagnosis of pulmonary embolism with magnetic resonance angiography. N Engl J Med. 1997;336:1422–1427. doi: 10.1056/NEJM199705153362004.
    1. Gupta A, Frazer CK, Ferguson JM, Kumar AB, Davis SJ, Fallon MJ, Morris IT, Drury PJ, Cala LA. Acute pulmonary embolism: diagnosis with MR angiography. Radiology. 1999;210:353–359.
    1. Oudkerk M, Beek EJR, Wielopolski P, Ooijen PMA, Brouwers-Kuyper EMJ, Bongaerts AHH, Berghout A. Comparison of contrast-enhanced magnetic resonance angiography and conventional pulmonary angiography for the diagnosis of pulmonary embolism: a prospective study. Lancet. 2002;359:1643–1647. doi: 10.1016/S0140-6736(02)08596-3.
    1. Goyen M, Laub G, Ladd ME, Debatin JF, Barkhausen J, Truemmler KH, Bosk S, Ruehm SG. Dynamic 3D MR angiography of the pulmonary arteries in under four seconds. J Magn Reson Imaging. 2001;13:372–377. doi: 10.1002/jmri.1053.
    1. Stein PD, Chenevert TL, Fowler SE, Goodman LR, Gottschalk A, Hales CA, Hull RD, Jablonski KA, Leeper KV et al (2010) Gadolinium-enhanced magnetic resonance angiography for pulmonary embolism: a multicenter prospective study (PIOPED III). Ann Intern Med 152:434-443, W142-W143
    1. Eichinger M, Puderbach M, Fink C, Gahr J, Ley S, Plathow C, Tuengerthal S, Zuna I, Müller F-M et al (2006) Contrast-enhanced 3D MRI of lung perfusion in children with cystic fibrosis--initial results. Eur Radiol 16:2147–52
    1. Ersoy H, Goldhaber SZ, Cai T, Luu T, Rosebrook J, Mulkern R, Rybicki F. Time-resolved MR angiography: a primary screening examination of patients with suspected pulmonary embolism and contraindications to administration of iodinated contrast material. AJR Am J Roentgenol. 2007;188:1246–1254. doi: 10.2214/AJR.06.0901.
    1. Levin DL, Chen Q, Zhang M, Edelman RR, Hatabu H. Evaluation of regional pulmonary perfusion using ultrafast magnetic resonance imaging. Magn Reson Med. 2001;46:166–171. doi: 10.1002/mrm.1172.
    1. Arai TJ, Henderson AC, Dubowitz DJ, Levin DL, Friedman PJ, Buxton RB, Prisk GK, Hopkins SR. Hypoxic pulmonary vasoconstriction does not contribute to pulmonary blood flow heterogeneity in normoxia in normal supine humans. J Appl Physiol. 2009;106:1057–1064. doi: 10.1152/japplphysiol.90759.2008.
    1. Burnham KJ, Arai TJ, Dubowitz DJ, Henderson AC, Holverda S, Buxton RB, Prisk GK, Hopkins SR. Pulmonary perfusion heterogeneity is increased by sustained, heavy exercise in humans. J Appl Physiol. 2009;107:1559–1568. doi: 10.1152/japplphysiol.00491.2009.
    1. Eichinger M, Puderbach M, Fink C, Gahr J, Ley S, Plathow C, Tuengerthal S, Zuna I, Müller F-M et al (2006) Contrast-enhanced 3D MRI of lung perfusion in children with cystic fibrosis--initial results. Eur Radiol 16:2147–52
    1. Altes TA, Eichinger M, Puderbach M. Magnetic resonance imaging of the lung in cystic fibrosis. Proc Am Thorac Soc. 2007;4:321–327. doi: 10.1513/pats.200611-181HT.
    1. Eichinger M, Optazaite D-E, Kopp-Schneider A, Hintze C, Biederer J, Niemann A, Mall MA, Wielpütz MO, Kauczor H-U et al (2011) Morphologic and functional scoring of cystic fibrosis lung disease using MRI. Eur J Radiol (in press)
    1. Puderbach M, Eichinger M, Haeselbarth J, Ley S, Kopp-Schneider A, Tuengerthal S, Schmaehl A, Fink C, Plathow C et al (2007) Assessment of morphological MRI for pulmonary changes in cystic fibrosis (CF) patients: comparison to thin-section CT and chest x-ray. Invest Radiol 42:715–725
    1. Puderbach M, Eichinger M, Gahr J, Ley S, Tuengerthal S, Schmähl A, Fink C, Plathow C, Wiebel M et al (2007) Proton MRI appearance of cystic fibrosis: comparison to CT. Eur Radiol 17:716–724
    1. Biederer J, Reuter M, Both M, Muhle C, Grimm J, Graessner J, Heller M. Analysis of artefacts and detail resolution of lung MRI with breath-hold T1-weighted gradient-echo and T2-weighted fast spin-echo sequences with respiratory triggering. Eur Radiol. 2002;12:378–384. doi: 10.1007/s00330-001-1147-7.
    1. Fabel M, Wintersperger BJ, Dietrich O, Eichinger M, Fink C, Puderbach M, Kauczor H-U, Schoenberg SO, Biederer J. MRI of respiratory dynamics with 2D steady-state free-precession and 2D gradient echo sequences at 1.5 and 3 Tesla: an observer preference study. Eur Radiol. 2009;19:391–9. doi: 10.1007/s00330-008-1148-x.
    1. Biederer J, Dinkel J, Bolte H, Welzel T, Hoffmann B, Thierfelder C, Mende U, Debus J, Heller M et al (2007) Respiratory-gated helical computed tomography of lung: reproducibility of small volumes in an ex vivo model. Int J Radiat Oncol Biol Phys 69:1642–9
    1. Cai J, Read PW, Altes TA, Molloy JA, Brookeman JR, Sheng K. Evaluation of the reproducibility of lung motion probability distribution function (PDF) using dynamic MRI. Phys Med Biol. 2007;52:365–373. doi: 10.1088/0031-9155/52/2/004.
    1. Adamson J, Chang Z, Wang Z, Yin F-F, Cai J. Maximum intensity projection (MIP) imaging using slice-stacking MRI. Med Phys. 2010;37:5914–5920. doi: 10.1118/1.3503850.
    1. Tetzlaff R, Schwarz T, Kauczor H-U, Meinzer H-P, Puderbach M, Eichinger M. Lung function measurement of single lungs by lung area segmentation on 2D dynamic MRI. Acad Radiol. 2010;17:496–503. doi: 10.1016/j.acra.2009.11.009.
    1. Wild JM, Schmiedeskamp J, Paley MNJ, Filbir F, Fichele S, Kasuboski L, Knitz F, Woodhouse N, Swift A et al (2002) MR imaging of the lungs with hyperpolarized helium-3 gas transported by air. Phys Med Biol 47:N185–N190
    1. Scholz A-W, Wolf U, Fabel M, Weiler N, Heussel CP, Eberle B, David M, Schreiber WG. Comparison of magnetic resonance imaging of inhaled SF6 with respiratory gas analysis. Magn Reson Imaging. 2009;27:549–556. doi: 10.1016/j.mri.2008.08.010.
    1. Molinari F, Puderbach M, Eichinger M, Ley S, Fink C, Bonomo L, Kauczor H-U, Bock M. Oxygen-enhanced magnetic resonance imaging: influence of different gas delivery methods on the T1-changes of the lungs. Invest Radiol. 2008;43:427–432. doi: 10.1097/RLI.0b013e318169012d.
    1. Suga K, Ogasawara N, Tsukuda T, Matsunaga N. Assessment of regional lung ventilation in dog lungs with Gd-DTPA aerosol ventilation MR imaging. Acta Radiol. 2002;43:282–291. doi: 10.1034/j.1600-0455.2002.430309.x.
    1. Attenberger UI, Ingrisch M, Dietrich O, Herrmann K, Nikolaou K, Reiser MF, Schönberg SO, Fink C. Time-resolved 3D pulmonary perfusion MRI: comparison of different k-space acquisition strategies at 1.5 and 3 T. Invest Radiol. 2009;44:525–531. doi: 10.1097/RLI.0b013e3181b4c252.
    1. Peltola V, Ruuskanen O, Svedström E. Magnetic resonance imaging of lung infections in children. Pediatr Radiol. 2008;38:1225–1231. doi: 10.1007/s00247-008-0987-6.
    1. Ley-Zaporozhan J, Ley S, Sommerburg O, Komm N, Müller F-MC, Schenk JP. Clinical application of MRI in children for the assessment of pulmonary diseases. Rofo. 2009;181:419–432. doi: 10.1055/s-0028-1109128.
    1. Failo R, Wielopolski PA, Tiddens HAWM, Hop WCJ, Mucelli RP, Lequin MH. Lung morphology assessment using MRI: a robust ultra-short TR/TE 2D steady state free precession sequence used in cystic fibrosis patients. Magn Reson Med. 2009;61:299–306. doi: 10.1002/mrm.21841.
    1. Wagner M, Böwing B, Kuth R, Deimling M, Rascher W, Rupprecht T. Low field thoracic MRI–a fast and radiation free routine imaging modality in children. Magn Reson Imaging. 2001;19:975–983. doi: 10.1016/S0730-725X(01)00417-9.
    1. Rupprecht T, Kuth R, Bowing B, Gerling S, Wagner M, Rascher W. Sedation and monitoring of paediatric patients undergoing open low-field MRI. Acta Paediatr. 2000;89:1077–1081. doi: 10.1080/713794566.
    1. Serra G, Milito C, Mitrevski M, Granata G, Martini H, Pesce AM, Sfika I, Bonanni L, Catalano C et al (2011) Lung MRI as a possible alternative to CT scan for patients with primary immune deficiencies and increased radio sensitivity. Chest 140:1581–1589
    1. Hirsch W, Sorge I, Krohmer S, Weber D, Meier K, Till H. MRI of the lungs in children. Eur J Radiol. 2008;68:278–288. doi: 10.1016/j.ejrad.2008.05.017.
    1. Schaefer JF, Kramer U. Whole-body MRI in children and juveniles. Rofo. 2011;183:24–36. doi: 10.1055/s-0029-1245883.
    1. Sanborn PA, Michna E, Zurakowski D, Burrows PE, Fontaine PJ, Connor L, Mason KP. Adverse cardiovascular and respiratory events during sedation of pediatric patients for imaging examinations. Radiology. 2005;237:288–294. doi: 10.1148/radiol.2371041415.
    1. Lutterbey G, Wattjes MP, Doerr D, Fischer NJ, Gieseke J, Jr, Schild HH. Atelectasis in children undergoing either propofol infusion or positive pressure ventilation anesthesia for magnetic resonance imaging. Paediatr Anaesth. 2007;17:121–125. doi: 10.1111/j.1460-9592.2006.02045.x.
    1. Biederer J (2009) General requirements of MRI of the lung and suggested standard protocol. In: Kauczor H-U (ed) MRI of the lung. Springer, Berlin Heidelberg, pp 3–16
    1. Biederer J, Puderbach M. MR imaging of the chest. HIRE. 2009;3:39–42.
    1. Puderbach M, Hintze C, Ley S, Eichinger M, Kauczor H-U, Biederer J. MR imaging of the chest: a practical approach at 1.5 T. Eur J Radiol. 2007;64:345–55. doi: 10.1016/j.ejrad.2007.08.009.
    1. Hintze C, Biederer J, Kauczor H-U (2007) Magnetic resonance imaging of the chest. In: Magnevist Monograph. Springer, Berlin, Heidelberg, New York, pp 87–103
    1. BÄK Bundesärztekammer (2006) Bundesärztekammer—MRT Qualitätssicherung.
    1. Stein PD, Gottschalk A, Sostman HD, Chenevert TL, Fowler SE, Goodman LR, Hales CA, Hull RD, Kanal E et al (2008) Methods of prospective investigation of pulmonary embolism diagnosis III (PIOPED III). Semin Nucl Med 38:462–470
    1. Kluge A, Luboldt W, Bachmann G. Acute pulmonary embolism to the subsegmental level: diagnostic accuracy of three MRI techniques compared with 16-MDCT. AJR Am J Roentgenol. 2006;187:W7–W14. doi: 10.2214/AJR.04.1814.

Source: PubMed

3
Abonnieren