Randomized Double-Blind Placebo-Controlled Trial of the Corticosteroid-Sparing Effects of Immunoglobulin in Myasthenia Gravis

Vera Bril, Andrzej Szczudlik, Antanas Vaitkus, Csilla Rozsa, Anna Kostera-Pruszczyk, Petr Hon, Josef Bednarik, Michaela Tyblova, Wolfgang Köhler, Toomas Toomsoo, Richard J Nowak, Tahseen Mozaffar, Miriam L Freimer, Michael W Nicolle, Tim Magnus, Michael T Pulley, Michael Rivner, Mazen M Dimachkie, B Jane Distad, Robert M Pascuzzi, Donna Babiar, Jiang Lin, Montse Querolt Coll, Rhonda Griffin, Elsa Mondou, Vera Bril, Andrzej Szczudlik, Antanas Vaitkus, Csilla Rozsa, Anna Kostera-Pruszczyk, Petr Hon, Josef Bednarik, Michaela Tyblova, Wolfgang Köhler, Toomas Toomsoo, Richard J Nowak, Tahseen Mozaffar, Miriam L Freimer, Michael W Nicolle, Tim Magnus, Michael T Pulley, Michael Rivner, Mazen M Dimachkie, B Jane Distad, Robert M Pascuzzi, Donna Babiar, Jiang Lin, Montse Querolt Coll, Rhonda Griffin, Elsa Mondou

Abstract

Background and objectives: Myasthenia gravis (MG) is an autoimmune disease characterized by dysfunction at the neuromuscular junction. Treatment frequently includes corticosteroids (CSs) and IV immunoglobulin (IVIG). This study was conducted to determine whether immune globulin (human), 10% caprylate/chromatography purified (IGIV-C) could facilitate CS dose reduction in CS-dependent patients with MG.

Methods: In this randomized double-blind placebo-controlled trial, CS-dependent patients with MG (Myasthenia Gravis Foundation of America Class II-Iva; AChR+) received a loading dose of 2 g/kg IGIV-C over 2 days (maximum 80 g/d) or placebo at week 0 (baseline). Maintenance doses (1 g/kg IGIV-C or placebo) were administered every 3 weeks through week 36. Tapering of CS was initiated at week 9 and continued through week 36 unless the patient worsened (quantitative MG score ≥4 points from baseline). CS doses were increased (based on the current CS dose) in patients who worsened. Patients were withdrawn if worsening failed to improve within 6 weeks or if a second CS increase was required. The primary efficacy end point (at week 39) was a ≥50% reduction in CS dose. Secondary and safety end points were assessed throughout the study and follow-up (weeks 42 and 45). The study results and full protocol are available at clinicaltrials.gov/ct2/show/NCT02473965.

Results: The primary end point (≥50% reduction in CS dose) showed no significant difference between the IGIV-C treatment (60.0% of patients) and placebo (63.3%). There were no significant differences for secondary end points. Safety data indicated that IGIV-C was well tolerated.

Discussion: In this study, IGIV-C was not more effective than placebo in reducing daily CS dose. These results suggest that the effects of IGIV-C and CS are not synergistic and may be mechanistically different.

Trial registration information: The trial was registered on clinicaltrialsregister.eu (EudraCT #: 2013-005099-17) and clinicaltrials.gov (identifier NCT02473965).

Classification of evidence: This study provides Class II evidence that IVIG infusions in adult patients with MG do not increase the percentage of patients achieving a ≥50% reduction in corticosteroid dose compared with placebo.

© 2022 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.

Figures

Figure 1. Timeline for Evaluation of Potential…
Figure 1. Timeline for Evaluation of Potential Steroid-Sparing Effects of IV Immunoglobulin (IGIV-C) in Myasthenia Gravis
Additional information on patient disposition throughout the study is included in Figure 2. CS = corticosteroid.
Figure 2. Disposition of Participants
Figure 2. Disposition of Participants
aAll discontinuations effectively contributed to corticosteroid (CS) tapering efficacy end points except 3 participants who withdrew before week 9 (1 participant on IV immunoglobulin [IGIV-C] and 2 participants on placebo), as CS tapering was not to begin until at week 9 per the protocol. bAdverse events included worsening of myasthenia gravis (MG) (n = 4), hemolysis (n = 1), and dizziness (n = 1). cMG worsening in this figure refers to protocol-mandated discontinuation due to failed CS taper: CS unresponsive or second episode refers to MG worsening. dAdverse events included MG-related findings (n = 3) and sepsis (n = 1).
Figure 3. Percentage of Patients Achieving the…
Figure 3. Percentage of Patients Achieving the Primary Efficacy End Point: 50% Reduction in Corticosteroid (CS) Dose
Patients were stratified according to whether entry CS dose was at or below the median (n = 20 IGIV-C; n = 15 placebo) or above the median baseline dose (20 mg prednisone equivalent) (n = 10 IGIV-C; n = 15 Placebo). There were no significant differences between the treatment groups overall. Subgroups illustrate that numerically in both arms, a higher percentage achieved primary end point if entering in the higher CS dose quantile. IGIV-C = immune globulin (human), 10% caprylate/chromatography purified; IVIG = IV immunoglobulin.
Figure 4. Kaplan-Meier Analysis of Probability of…
Figure 4. Kaplan-Meier Analysis of Probability of Myasthenia Gravis (MG) Worsening Over the Study Period
There was no significant difference between the treatment groups (p = 0.744) based on the log-rank test. MG worsening was defined as a ≥ 4-point increase in the quantitative MG (QMG) score.

References

    1. Berrih-Aknin S, Frenkian-Cuvelier M, Eymard B. Diagnostic and clinical classification of autoimmune myasthenia gravis. J Autoimmun. 2014;48-49:143-148. doi: doi:10.1016/j.jaut.2014.01.003.
    1. Nguyen-Cao TM, Gelinas D, Griffin R, Mondou E. Myasthenia gravis: historical achievements and the “golden age” of clinical trials. J Neurol Sci. 2019;406:116428. doi: doi:10.1016/j.jns.2019.116428.
    1. Meriggioli MN, Sanders DB. Autoimmune myasthenia gravis: emerging clinical and biological heterogeneity. Lancet Neurol. 2009;8(5):475-490. doi: doi:10.1016/s1474-4422(09)70063-8.
    1. Drachman DB. Myasthenia gravis. Semin Neurol. 2016;36(5):419-424. doi: doi:10.1055/s-0036-1586265.
    1. Zinman L, Ng E, Bril V. IV immunoglobulin in patients with myasthenia gravis. Neurology. 2007;68(11):837. doi: doi:10.1212/01.wnl.0000256698.69121.45.
    1. Newsom-Davis J, Pinching AJ, Vincent A, Wilson SG. Function of circulating antibody to acetylcholine receptor in myasthenia gravis: investigation by plasma exchange. Neurology. 1978;28(3):266-272. doi: doi:10.1212/wnl.28.3.266.
    1. Yeh KM, Chiueh TS, Siu LK, et al. . Experience of using convalescent plasma for severe acute respiratory syndrome among healthcare workers in a Taiwan hospital. J Antimicrob Chemother. 2005;56(5):919-922. doi: doi:10.1093/jac/dki346.
    1. Gajdos P, Chevret S, Clair B, Tranchant C, Chastang C. Clinical trial of plasma exchange and high-dose intravenous immunoglobulin in myasthenia gravis. Myasthenia Gravis Clinical Study Group. Ann Neurol. 1997;41(6):789-796. doi: doi:10.1002/ana.410410615.
    1. Rønager J, Ravnborg M, Hermansen I, Vorstrup S. Immunoglobulin treatment versus plasma exchange in patients with chronic moderate to severe myasthenia gravis. Artif Organs. 2001;25(12):967-973. doi: doi:10.1046/j.1525-1594.2001.06717.x.
    1. Barth D, Nabavi Nouri M, Ng E, Nwe P, Bril V. Comparison of IVIg and PLEX in patients with myasthenia gravis. Neurology. 2011;76(23):2017-2023. doi: doi:10.1212/WNL.0b013e31821e5505.
    1. Sanders DB, Wolfe GI, Benatar M, et al. . International consensus guidance for management of myasthenia gravis: executive summary. Neurology. 2016;87(4):419-425. doi: doi:10.1212/wnl.0000000000002790.
    1. Zinman L, Bril V. IVIG treatment for myasthenia gravis: effectiveness, limitations, and novel therapeutic strategies. Ann N Y Acad Sci. 2008;1132:264-270. doi: doi:10.1196/annals.1405.038.
    1. Huscher D, Thiele K, Gromnica-Ihle E, et al. . Dose-related patterns of glucocorticoid-induced side effects. Ann Rheum Dis. 2009;68(7):1119-1124. doi: doi:10.1136/ard.2008.092163.
    1. Gajdos P, Tranchant C, Clair B, et al. . Treatment of myasthenia gravis exacerbation with intravenous immunoglobulin: a randomized, double-blind clinical trial. Neurology. 2005;62(11):1689-1693.
    1. Gamunex-C [immune globulin injection (human) 10% caprylate/chromatography purified]-package insert. Grifols therapeutics LLC. Accessed October 2, 2020. .
    1. Gotterer L, Li Y. Maintenance immunosuppression in myasthenia gravis. J Neurol Sci. 2016;369:294-302. doi: doi:10.1016/j.jns.2016.08.057.
    1. Jaretzki A III, Barohn RJ, Ernstoff RM, et al. . Myasthenia gravis: recommendations for clinical research standards. Task force of the medical scientific advisory board of the myasthenia gravis foundation of America. Neurology. 2000;55(1):16-23. doi: doi:10.1212/wnl.55.1.16.
    1. Resources for Professionals. MGFA Clinical Classification. Accessed December 8, 2020. .
    1. Katzberg HD, Barnett C, Merkies IS, Bril V. Minimal clinically important difference in myasthenia gravis: outcomes from a randomized trial. Muscle Nerve. 2014;49(5):661-665. doi: doi:10.1002/mus.23988.
    1. Burns TM, Conaway MR, Cutter GR, Sanders DB. Muscle Study G. Less is more, or almost as much: a 15-item quality-of-life instrument for myasthenia gravis. Muscle Nerve. 2008;38(2):957-963. doi: doi:10.1002/mus.21053.
    1. Burns TM, Grouse CK, Conaway MR, Sanders DB. Construct and concurrent validation of the MG-QOL15 in the practice setting. Muscle Nerve. 2010;41(2):219-226. doi: doi:10.1002/mus.21609.
    1. Burns TM, Grouse CK, Wolfe GI, et al. . The MG-QOL15 for following the health-related quality of life of patients with myasthenia gravis. Muscle Nerve. 2011;43(1):14-18. doi: doi:10.1002/mus.21883.
    1. Muppidi S. The myasthenia gravis–specific activities of daily living profile. Ann N Y Acad Sci. 2012;1274:114-119. doi: doi:10.1111/j.1749-6632.2012.06817.x.
    1. Burns TM. The MG composite: an outcome measure for myasthenia gravis for use in clinical trials and everyday practice. Ann N Y Acad Sci. 2012;1274:99-106. doi: doi:10.1111/j.1749-6632.2012.06812.x.
    1. Burns TM, Conaway M, Sanders DB. The MG Composite: a valid and reliable outcome measure for myasthenia gravis. Neurology. 2010;74(18):1434-1440. doi: doi:10.1212/WNL.0b013e3181dc1b1e.
    1. Benatar M, Sanders DB, Burns TM, et al. . Recommendations for myasthenia gravis clinical trials. Muscle Nerve. 2012;45(6):909-917. doi: doi:10.1002/mus.23330.
    1. Behin A, Le Panse R. New pathways and therapeutic targets in autoimmune myasthenia gravis. J Neuromuscul Dis. 2018;5(3):265-277. doi: doi:10.3233/JND-170294.
    1. Curtis JR, Westfall AO, Allison J, et al. . Population-based assessment of adverse events associated with long-term glucocorticoid use. Arthritis Rheum. 2006;55(3):420-426. doi: doi:10.1002/art.21984.
    1. Jolles S, Sewell WA, Misbah SA. Clinical uses of intravenous immunoglobulin. Clin Exp Immunol. 2005;142(1):1-11. doi: doi:10.1111/j.1365-2249.2005.02834.x.
    1. Bayry J, Lacroix-Desmazes S, Carbonneil C, et al. . Inhibition of maturation and function of dendritic cells by intravenous immunoglobulin. Blood. 2003;101(2):758-765. doi: doi:10.1182/blood-2002-05-1447.
    1. Shock A, Humphreys D, Nimmerjahn F. Dissecting the mechanism of action of intravenous immunoglobulin in human autoimmune disease: lessons from therapeutic modalities targeting Fcgamma receptors. J Allergy Clin Immunol. 2020;146(3):492-500. doi: doi:10.1016/j.jaci.2020.06.036.
    1. Bruhns P, Samuelsson A, Pollard JW, Ravetch JV. Colony-stimulating factor-1-dependent macrophages are responsible for IVIG protection in antibody-induced autoimmune disease. Immunity. 2003;18(4):573-581. doi: doi:10.1016/s1074-7613(03)00080-3.
    1. Tindall RS, Phillips JT, Rollins JA, Wells L, Hall K. A clinical therapeutic trial of cyclosporine in myasthenia gravis. Ann N Y Acad Sci. 1993;681:539-551. doi: doi:10.1111/j.1749-6632.1993.tb22937.x.
    1. Pasnoor M, He J, Herbelin L, et al. . A randomized controlled trial of methotrexate for patients with generalized myasthenia gravis. Neurology. 2016;87(1):57. doi: doi:10.1212/WNL.0000000000002795.
    1. Sanders DB, Hart IK, Mantegazza R, et al. . An international, phase III, randomized trial of mycophenolate mofetil in myasthenia gravis. Neurology. 2008;71(6):400-406. doi: doi:10.1212/.
    1. Wolfe GI, Barohn RJ, Foster BM, et al. . Randomized, controlled trial of intravenous immunoglobulin in myasthenia gravis. Muscle Nerve. 2002;26(4):549-552. doi: doi:10.1002/mus.10224.
    1. Alcantara M, Sarpong E, Barnett C, Katzberg H, Bril V. Chronic immunoglobulin maintenance therapy in myasthenia gravis. Eur J Neurol. 2021;28(2):639-646. doi: doi:10.1111/ene.14547.
    1. Palace J, Newsom-Davis J, Lecky B. A randomized double-blind trial of prednisolone alone or with azathioprine in myasthenia gravis. Myasthenia Gravis Study Group. Neurology. 1998;50(6):1778-1783. doi: doi:10.1212/wnl.50.6.1778.
    1. Karelis G, Balasa R, De Bleecker JL, et al. . A phase 3 multicenter, prospective, open-label efficacy and safety study of immune globulin (human) 10% caprylate/chromatography purified in patients with myasthenia gravis exacerbations. Eur Neurol. 2019;81(5-6):223-230. doi: doi:10.1159/000502818.

Source: PubMed

3
Abonnieren