Determinants of Quantitative Optical Coherence Tomography Angiography Metrics in Patients with Diabetes

Fang Yao Tang, Danny S Ng, Alexander Lam, Fiona Luk, Raymond Wong, Carmen Chan, Shaheeda Mohamed, Angie Fong, Jerry Lok, Tiffany Tso, Frank Lai, Marten Brelen, Tien Y Wong, Clement C Tham, Carol Y Cheung, Fang Yao Tang, Danny S Ng, Alexander Lam, Fiona Luk, Raymond Wong, Carmen Chan, Shaheeda Mohamed, Angie Fong, Jerry Lok, Tiffany Tso, Frank Lai, Marten Brelen, Tien Y Wong, Clement C Tham, Carol Y Cheung

Abstract

Early microvascular damage in diabetes (e.g. capillary nonperfusion and ischemia) can now be assessed and quantified with optical coherence tomography-angiography (OCT-A). The morphology of vascular tissue is indeed affected by different factors; however, there is a paucity of data examining whether OCT-A metrics are influenced by ocular, systemic and demographic variables in subjects with diabetes. We conducted an observational cross-sectional study and included 434 eyes from 286 patients with diabetes. Foveal avascular zone (FAZ) area, FAZ circularity, total and parafoveal vessel density (VD), fractal dimension (FD), and vessel diameter index (VDI) from the superficial capillary plexus OCT-angiogram were measured by a customized automated image analysis program. We found that diabetic retinopathy (DR) severity was associated with increased FAZ area, decreased FAZ circularity, lower VD, lower FD, and increased VDI. Enlarged FAZ area was correlated with shorter axial length and thinner central subfield macular thickness. Decreased FAZ circularity was correlated with a reduction in visual function. Decreased VD was correlated with thinner macular ganglion-cell inner plexiform layer. Increased VDI was correlated with higher fasting glucose level. We concluded that the effects of ocular and systemic factors in diabetics should be taken into consideration when assessing microvascular alterations via OCT-A.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Figure 1
Figure 1
Associations between (a) foveal avascular zone (FAZ) area, (b) FAZ circularity, (c) total vessel density, (d) parafoveal vessel density, (e) fractal dimension, and (f) vessel diameter index with diabetic retinopathy severity. P-trend represents the trend across four increased DR severity categories. Vertical bars indicate 95% confidence intervals.
Figure 2
Figure 2
Quantification of retinal capillary network from OCT-angiograms using our customized program in normal and patients with different DR severity. A series of OCT-A metrics including foveal avascular zone (FAZ) area, FAZ circularity, total and parafoveal vessel density, fractal dimension and vessel diameter index can be calculated automatically. The parafoveal region was defined as an annulus with an outer diameter of 3 mm and an inner diameter of 1 mm.

References

    1. Wong TY, Cheung CM, Larsen M, Sharma S, Simo R. Diabetic retinopathy. Nat Rev Dis Primers. 2016;2:16012. doi: 10.1038/nrdp.2016.12.
    1. Cunha-Vaz J, Ribeiro L, Lobo C. Phenotypes and biomarkers of diabetic retinopathy. Prog Retin Eye Res. 2014;41:90–111. doi: 10.1016/j.preteyeres.2014.03.003.
    1. Jia Y, et al. Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye. Proc Natl Acad Sci USA. 2015;112:E2395–2402. doi: 10.1073/pnas.1500185112.
    1. Spaide RF, Klancnik JM, Jr., Cooney MJ. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol. 2015;133:45–50. doi: 10.1001/jamaophthalmol.2014.3616.
    1. Ishibazawa A, et al. Optical Coherence Tomography Angiography in Diabetic Retinopathy: A Prospective Pilot Study. Am J Ophthalmol. 2015;160:35–44 e31. doi: 10.1016/j.ajo.2015.04.021.
    1. Hwang TS, et al. Optical Coherence Tomography Angiography Features of Diabetic Retinopathy. Retina. 2015;35:2371–2376. doi: 10.1097/IAE.0000000000000716.
    1. Couturier A, et al. Capillary Plexus Anomalies in Diabetic Retinopathy on Optical Coherence Tomography Angiography. Retina. 2015;35:2384–2391. doi: 10.1097/IAE.0000000000000859.
    1. Freiberg, F. J. et al. Optical coherence tomography angiography of the foveal avascular zone in diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol (2015).
    1. Matsunaga DR, et al. Optical Coherence Tomography Angiography of Diabetic Retinopathy in Human Subjects. Ophthalmic Surg Lasers Imaging Retina. 2015;46:796–805. doi: 10.3928/23258160-20150909-03.
    1. Stanga PE, et al. New Findings in Diabetic Maculopathy and Proliferative Disease by Swept-Source Optical Coherence Tomography Angiography. Dev Ophthalmol. 2016;56:113–121. doi: 10.1159/000442802.
    1. de Carlo TE, et al. Detection of Microvascular Changes in Eyes of Patients with Diabetes but Not Clinical Diabetic Retinopathy Using Optical Coherence Tomography Angiography. Retina. 2015;35:2364–2370. doi: 10.1097/IAE.0000000000000882.
    1. Di G, et al. A morphological study of the foveal avascular zone in patients with diabetes mellitus using optical coherence tomography angiography. Graefes Arch Clin Exp Ophthalmol. 2016;254:873–879. doi: 10.1007/s00417-015-3143-7.
    1. Kim AY, et al. Quantifying Microvascular Density and Morphology in Diabetic Retinopathy Using Spectral-Domain Optical Coherence Tomography Angiography. Invest Ophthalmol Vis Sci. 2016;57:OCT362–370. doi: 10.1167/iovs.15-18904.
    1. Miwa, Y. et al. Relationship between Functional and Structural Changes in Diabetic Vessels in Optical Coherence Tomography Angiography. Sci Rep6, 29064 (2016).
    1. Cennamo, G., Romano, M. R., Nicoletti, G., Velotti, N. & de Crecchio, G. Optical coherence tomography angiography versus fluorescein angiography in the diagnosis of ischaemic diabetic maculopathy. Acta Ophthalmol (2016).
    1. Al-Sheikh M, Akil H, Pfau M, Sadda SR. Swept-Source OCT Angiography Imaging of the Foveal Avascular Zone and Macular Capillary Network Density in Diabetic Retinopathy. Invest Ophthalmol Vis Sci. 2016;57:3907–3913. doi: 10.1167/iovs.16-19570.
    1. Samara, W. A. et al. Quantification of Diabetic Macular Ischemia Using Optical Coherence Tomography Angiography and Its Relationship with Visual Acuity. Ophthalmology (2016).
    1. Lin, A. D. et al. Association between OCT-based microangiography perfusion indices and diabetic retinopathy severity. Br J Ophthalmol (2016).
    1. Fluorescein angiographic risk factors for progression of diabetic retinopathy. ETDRS report number 13. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmology98, 834–840 (1991).
    1. Takase N, et al. Enlargement of Foveal Avascular Zone in Diabetic Eyes Evaluated by En Face Optical Coherence Tomography Angiography. Retina. 2015;35:2377–2383. doi: 10.1097/IAE.0000000000000849.
    1. Bhanushali D, et al. Linking Retinal Microvasculature Features With Severity of Diabetic Retinopathy Using Optical Coherence Tomography Angiography. Invest Ophthalmol Vis Sci. 2016;57:OCT519–525. doi: 10.1167/iovs.15-18901.
    1. Balaratnasingam, C. et al. Visual Acuity Is Correlated with the Area of the Foveal Avascular Zone in Diabetic Retinopathy and Retinal Vein Occlusion. Ophthalmology (2016).
    1. Mammo Z, et al. Quantitative Noninvasive Angiography of the Fovea Centralis Using Speckle Variance Optical Coherence Tomography. Invest Ophthalmol Vis Sci. 2015;56:5074–5086. doi: 10.1167/iovs.15-16773.
    1. Tan CS, et al. Optical Coherence Tomography Angiography Evaluation of the Parafoveal Vasculature and Its Relationship With Ocular Factors. Invest Ophthalmol Vis Sci. 2016;57:OCT224–234. doi: 10.1167/iovs.15-18869.
    1. Savini G, Barboni P, Parisi V, Carbonelli M. The influence of axial length on retinal nerve fibre layer thickness and optic-disc size measurements by spectral-domain OCT. Br J Ophthalmol. 2012;96:57–61. doi: 10.1136/bjo.2010.196782.
    1. Leung CK, et al. Optic disc measurements in myopia with optical coherence tomography and confocal scanning laser ophthalmoscopy. Invest Ophthalmol Vis Sci. 2007;48:3178–3183. doi: 10.1167/iovs.06-1315.
    1. Domalpally A, et al. Circularity index as a risk factor for progression of geographic atrophy. Ophthalmology. 2013;120:2666–2671. doi: 10.1016/j.ophtha.2013.07.047.
    1. Sim DA, et al. The effects of macular ischemia on visual acuity in diabetic retinopathy. Invest Ophthalmol Vis Sci. 2013;54:2353–2360. doi: 10.1167/iovs.12-11103.
    1. Samara WA, et al. Correlation of Foveal Avascular Zone Size with Foveal Morphology in Normal Eyes Using Optical Coherence Tomography Angiography. Retina. 2015;35:2188–2195. doi: 10.1097/IAE.0000000000000847.
    1. Tick S, et al. Foveal shape and structure in a normal population. Invest Ophthalmol Vis Sci. 2011;52:5105–5110. doi: 10.1167/iovs.10-7005.
    1. Lee, J., Moon, B. G., Cho, A. R. & Yoon, Y. H. Optical Coherence Tomography Angiography of DME and Its Association with Anti-VEGF Treatment Response. Ophthalmology (2016).
    1. Spaide RF, Fujimoto JG, Waheed NK. Image Artifacts in Optical Coherence Tomography Angiography. Retina. 2015;35:2163–2180. doi: 10.1097/IAE.0000000000000765.
    1. Zhang M, et al. Projection-resolved optical coherence tomographic angiography. Biomed Opt Express. 2016;7:816–828. doi: 10.1364/BOE.7.000816.
    1. Zhang A, Zhang Q, Wang RK. Minimizing projection artifacts for accurate presentation of choroidal neovascularization in OCT micro-angiography. Biomed Opt Express. 2015;6:4130–4143. doi: 10.1364/BOE.6.004130.
    1. Sohn EH, et al. Retinal neurodegeneration may precede microvascular changes characteristic of diabetic retinopathy in diabetes mellitus. Proc Natl Acad Sci USA. 2016;113:E2655–2664. doi: 10.1073/pnas.1522014113.
    1. Ng DS, et al. Retinal ganglion cell neuronal damage in diabetes and diabetic retinopathy. Clin Exp Ophthalmol. 2016;44:243–250. doi: 10.1111/ceo.12724.
    1. van Dijk HW, et al. Early neurodegeneration in the retina of type 2 diabetic patients. Invest Ophthalmol Vis Sci. 2012;53:2715–2719. doi: 10.1167/iovs.11-8997.
    1. Antonetti DA, Klein R, Gardner TW. Diabetic retinopathy. N Engl J Med. 2012;366:1227–1239. doi: 10.1056/NEJMra1005073.
    1. Tsai AS, et al. Differential association of retinal arteriolar and venular caliber with diabetes and retinopathy. Diabetes Res Clin Pract. 2011;94:291–298. doi: 10.1016/j.diabres.2011.07.032.
    1. Nguyen TT, et al. Relationship of retinal vascular caliber with diabetes and retinopathy: the Multi-Ethnic Study of Atherosclerosis (MESA) Diabetes Care. 2008;31:544–549. doi: 10.2337/dc07-1528.
    1. Wong TY, et al. Retinal vascular caliber, cardiovascular risk factors, and inflammation: the multi-ethnic study of atherosclerosis (MESA) Invest Ophthalmol Vis Sci. 2006;47:2341–2350. doi: 10.1167/iovs.05-1539.
    1. Cheung CY, Ikram MK, Klein R, Wong TY. The clinical implications of recent studies on the structure and function of the retinal microvasculature in diabetes. Diabetologia. 2015;58:871–885. doi: 10.1007/s00125-015-3511-1.
    1. Ikram MK, et al. Retinal vascular caliber as a biomarker for diabetes microvascular complications. Diabetes Care. 2013;36:750–759. doi: 10.2337/dc12-1554.
    1. Hwang, T. S. et al. Automated Quantification of Capillary Nonperfusion Using Optical Coherence Tomography Angiography in Diabetic Retinopathy. JAMA Ophthalmol, 1–7 (2016).
    1. Schottenhamml, J. et al. An Automatic, Intercapillary Area-Based Algorithm for Quantifying Diabetes-Related Capillary Dropout Using Optical Coherence Tomography Angiography. Retina (2016).
    1. Zhang M, et al. Automated Quantification of Nonperfusion in Three Retinal Plexuses Using Projection-Resolved Optical Coherence Tomography Angiography in Diabetic Retinopathy. Invest Ophthalmol Vis Sci. 2016;57:5101–5106. doi: 10.1167/iovs.16-19776.
    1. Spaide RF. Volume-Rendered Optical Coherence Tomography of Diabetic Retinopathy Pilot Study. Am J Ophthalmol. 2015;160:1200–1210. doi: 10.1016/j.ajo.2015.09.010.
    1. Wilkinson CP, et al. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology. 2003;110:1677–1682. doi: 10.1016/S0161-6420(03)00475-5.
    1. Stanga PE, et al. Swept-Source Optical Coherence Tomography Angio (Topcon Corp, Japan): Technology Review. Dev Ophthalmol. 2016;56:13–17. doi: 10.1159/000442771.
    1. Tang F, Cheung CY. Quantitative Retinal Optical Coherence Tomography Angiography in Patients With Diabetes Without Diabetic Retinopathy. Invest Ophthalmol Vis Sci. 2017;58:1766. doi: 10.1167/iovs.17-21552.
    1. Buades A, Coll B, Morel JM. Image Denoising Methods. A New Nonlocal Principle. SIAM Review. 2010;52:113–147. doi: 10.1137/090773908.
    1. Bao, M., Guo, S., Tang, Q. & Zhang, F. Optimization of the bwmorph Function in the MATLAB Image Processing Toolbox for Binary Skeleton Computation. in Proceedings of the 2009 International Conference on Computational Intelligence and Natural Computing - Volume 02 273-276 (IEEE Computer Society, 2009).
    1. Walter SD, Eliasziw M, Donner A. Sample size and optimal designs for reliability studies. Stat Med. 1998;17:101–110. doi: 10.1002/(SICI)1097-0258(19980115)17:1<101::AID-SIM727>;2-E.

Source: PubMed

3
Abonnieren