Adherence to Time-Restricted Feeding and Impact on Abdominal Obesity in Primary Care Patients: Results of a Pilot Study in a Pre-Post Design

Dorothea Kesztyüs, Petra Cermak, Markus Gulich, Tibor Kesztyüs, Dorothea Kesztyüs, Petra Cermak, Markus Gulich, Tibor Kesztyüs

Abstract

The epidemic of lifestyle-dependent diseases and the failure of previous interventions to combat the main causes demand an alternative approach. Abdominal obesity is associated with most of these diseases and is a good target for therapeutic and preventive measures. Time-restricted feeding (TRF) offers a low-threshold, easy-to-implement lifestyle-modification concept with promising results from animal testing. Here, we describe a pilot study of TRF with abdominally obese participants (waist-to-height ratio, WHtR ≥0.5) in a general practitioner's office. Participants (n = 40, aged 49.1 ± 12.4, 31 females) were asked to restrict their daily eating time to 8-9 hours in order to prolong their overnight fasting period to 15-16 hours. Questionnaires, anthropometrics, and blood samples were used at baseline and at follow-up. After three months of TRF, participants had reached the fasting target, on average, on 85.5 ± 15.2% of all days recorded. Waist circumference (WC) was reduced by -5.3 ± 3.1cm (p < 0.001), and three participants reached a WHtR <0.5. HbA1c was diminished by -1.4 ± 3.5 mmol/mol (p = 0.003). TRF may be an easily understandable and readily adoptable lifestyle change with the potential to reduce abdominal obesity and lower the risk for cardiometabolic diseases. Further well-designed studies are necessary to investigate the applicability and usefulness of TRF for public health.

Keywords: abdominal; fasting; general practitioners; lifestyle; noncommunicable diseases; obesity; pilot project.

Conflict of interest statement

The authors declare no conflicts of interest.

Figures

Figure 1
Figure 1
(a) Percentage of days where the fasting target was reached of all recorded days per participant, x axis subdivided into categories of 10% each; (b) mean fasting hours of all recorded days per participant, x axis subdivided into categories of 0.5 hours each.

References

    1. World Health Organisation (WHO) Noncommunicable Diseses, Factsheet. [(accessed on 4 October 2019)]; Available online: .
    1. World Health Organization (WHO) Germany WHO: Noncommunicable Diseases (NCD) Country Profiles. [(accessed on 4 October 2019)]; Available online: .
    1. National Center for Health Statistics Health, United States, 2017: With Special Feature on Mortality. [(accessed on 18 July 2019)]; Available online: .
    1. Ritchie S.A., Connell J.M.C. The Link between Abdominal Obesity, Metabolic Syndrome and Cardiovascular Disease. Nutr. Metab. Cardiovasc. Dis. 2007;17:319–326. doi: 10.1016/j.numecd.2006.07.005.
    1. Freemantle N., Holmes J., Hockey A., Kumar S. How Strong Is the Association between Abdominal Obesity and the Incidence of Type 2 Diabetes? Int. J. Clin. Pract. 2008;62:1391–1396. doi: 10.1111/j.1742-1241.2008.01805.x.
    1. Doyle S.L., Donohoe C.L., Lysaght J., Reynolds J.V. Visceral Adiposity, Insulin Resistance and Cancer Risk. Proc. Nutr. Soc. 2012;3:12. doi: 10.1186/1758-5996-3-12.
    1. Zammit C., Liddicoat H., Moonsie I., Makker H. Obesity and Respiratory Diseases. Int. J. Gen. Med. 2010;3:335–343. doi: 10.2147/IJGM.S11926.
    1. Kesztyüs D., Erhardt J., Schönsteiner D., Kesztyüs T. Therapeutic Treatment for Abdominal Obesity in Adults—A Meta-Analysis and Systematic Review of Randomized Controlled Trials. Dtsch. Arztebl. Int. 2018;115:487–493. doi: 10.3238/arztebl.2018.0.
    1. Johnston B.C., Kanters S., Bandayrel K., Wu P., Naji F., Siemieniuk R.A., Ball G.D.C., Busse J.W., Thorlund K., Guyatt G., et al. Comparison of Weight Loss among Named Diet Programs in Overweight and Obese Adults: A Meta-Analysis. JAMA. 2014;312:923–933. doi: 10.1001/jama.2014.10397.
    1. Arterburn D.E., Courcoulas A.P. Bariatric Surgery for Obesity and Metabolic Conditions in Adults. BMJ. 2014;349:1–15. doi: 10.1136/bmj.g3961.
    1. Patterson R.E., Sears D.D. Metabolic Effects of Intermittent Fasting. Annu. Rev. Nutr. 2017;37:371–393. doi: 10.1146/annurev-nutr-071816-064634.
    1. Chaix A., Zarrinpar A., Miu P., Panda S. Time-Restricted Feeding Is a Preventative and Therapeutic Intervention against Diverse Nutritional Challenges. Cell Metab. 2014;20:991–1005. doi: 10.1016/j.cmet.2014.11.001.
    1. Rothschild J., Hoddy K.K., Jambazian P., Varady K.A. Time-Restricted Feeding and Risk of Metabolic Disease: A Review of Human and Animal Studies. Nutr. Rev. 2014;72:308–318. doi: 10.1111/nure.12104.
    1. Gill S., Panda S. A Smartphone App Reveals Erratic Diurnal Eating Patterns in Humans that Can Be Modulated for Health Benefits. Cell Metab. 2015;22:789–798. doi: 10.1016/j.cmet.2015.09.005.
    1. Marinac C.R., Nelson S.H., Breen C.I., Hartman S.J., Natarajan L., Pierce J.P., Flatt S.W., Sears D.D., Patterson R.E. Prolonged Nightly Fasting and Breast Cancer Prognosis. JAMA Oncol. 2016;2:1049–1055. doi: 10.1001/jamaoncol.2016.0164.
    1. Antoni R., Robertson T.M., Robertson M.D., Johnston J.D. A Pilot Feasibility Study Exploring the Effects of a Moderate Time-Restricted Feeding Intervention on Energy Intake, Adiposity and Metabolic Physiology in Free-Living Human Subjects. J. Nutr. Sci. 2018:1–6. doi: 10.1017/jns.2018.13.
    1. Gabel K., Hoddy K.K., Haggerty N., Song J., Kroeger C.M., Trepanowski J.F., Panda S., Varady K.A. Effects of 8-Hour Time Restricted Feeding on Body Weight and Metabolic Disease Risk Factors in Obese Adults: A Pilot Study. Nutr. Heal. Aging. 2018;4:345–353. doi: 10.3233/NHA-170036.
    1. Moro T., Tinsley G., Bianco A., Marcolin G., Pacelli Q.F., Battaglia G., Palma A., Gentil P., Neri M., Paoli A. Effects of Eight Weeks of Time-Restricted Feeding (16/8) on Basal Metabolism, Maximal Strength, Body Composition, Inflammation, and Cardiovascular Risk Factors in Resistance-Trained Males. J. Transl. Med. 2016;14:1–10. doi: 10.1186/s12967-016-1044-0.
    1. Sutton E.F., Beyl R., Early K.S., Cefalu W.T., Ravussin E., Peterson C.M. Early Time-Restricted Feeding Improves Insulin Sensitivity, Blood Pressure, and Oxidative Stress Even without Weight Loss in Men with Prediabetes. Cell Metab. 2018;27:1212–1221. doi: 10.1016/j.cmet.2018.04.010.
    1. Jamshed H., Beyl R.A., Della Manna D.L., Yang E.S., Ravussin E., Peterson C.M. Early Time-Restricted Feeding Improves 24-Hour Glucose Levels and Affects Markers of the Circadian Clock, Aging, and Autophagy in Humans. Nutrients. 2019;11:1234. doi: 10.3390/nu11061234.
    1. Tinsley G.M., Forsse J.S., Butler N.K., Paoli A., Bane A.A., La Bounty P.M., Morgan G.B., Grandjean P.W. Time-Restricted Feeding in Young Men Performing Resistance Training: A Randomized Controlled Trial. Eur. J. Sport Sci. 2017;17:200–207. doi: 10.1080/17461391.2016.1223173.
    1. International Diabetes Federation . The IDF Consensus Worldwide Definition of the Metabolic Syndrome. International Diabetes Federation; Brussels, Belgium: 2006.
    1. Ashwell M., Cole T.C., Dixon A.K. Ratio of Waist Circumference to Height Is Strong Predictor of Intra-Abdominal Fat. BMJ. 1996;313:559–560. doi: 10.1136/bmj.313.7056.559d.
    1. De Toledo F.W., Buchinger A., Burggrabe H., Hölz G., Kuhn C., Lischka E., Lischka N., Lützner H., May W., Ritzmann-Widderich M., et al. Fasting Therapy—An Expert Panel Update of the 2002 Consensus Guidelines. Forsch. Komplementmed. 2013;20:434–443. doi: 10.1159/000357602.
    1. Kurth B.-M. Der Kinder-Und Jugendgesundheitssurvey (KiGGS): Ein Überblick Über Planung, Durchführung Und Ergebnisse Unter Berücksichtigung von Aspekten Eines Qualitätsmanagements TL—50. Bundesgesundheitsblatt Gesundheitsforsch. Gesundh. 2007;50:533–546. doi: 10.1007/s00103-007-0214-x.
    1. Dreyhaupt J., Koch B., Wirt T., Schreiber A., Brandstetter S., Kesztyues D., Wartha O., Kobel S., Kettner S., Prokopchuk D., et al. Evaluation of a Health Promotion Program in Children: Study Protocol and Design of the Cluster-Randomized Baden-Wuerttemberg Primary School Study [DRKS-ID: DRKS00000494] BMC Public Health. 2012;12:157. doi: 10.1186/1471-2458-12-157.
    1. Stewart A., Marfell-Jones M., Olds T., de Ridder H. International Standards for Anthropometric Assessment. ISAK; Lower Hutt, New Zealand: 2011.
    1. Ashwell M., Hsieh S.D. Six Reasons Why the Waist-to-Height Ratio is a Rapid and Effective Global Indicator for Health Risks of Obesity and How its Use Could Simplify the International Public Health Message on Obesity. Int. J. Food Sci. Nutr. 2005;56:303–307. doi: 10.1080/09637480500195066.
    1. Longo V.D., Panda S. Fasting, Circadian Rhythms, and Time-Restricted Feeding in Healthy Lifespan. Cell Metab. 2016;23:1048–1059. doi: 10.1016/j.cmet.2016.06.001.
    1. Hu D., Mao Y., Xu G., Liao W., Yang H., Zhang H. Gut Flora Shift Caused by Time-Restricted Feeding Might Protect the Host from Metabolic Syndrome, Inflammatory Bowel Disease and Colorectal Cancer. Transl. Cancer Res. 2018;7:1282–1289. doi: 10.21037/tcr.2018.10.18.
    1. Sunderram J., Sofou S., Kamisoglu K., Karantza V., Androulakis I.P. Time-Restricted Feeding and the Realignment of Biological Rhythms: Translational Opportunities and Challenges. J. Transl. Med. 2014;12:1–9. doi: 10.1186/1479-5876-12-79.
    1. Di Francesco A., Di Germanio C., Bernier M., De Cabo R. A Time to Fast. Science. 2018;362:770–775. doi: 10.1126/science.aau2095.
    1. Harrington J.M. Health Effects of Shift Work and Extended Hours of Work. Occup. Environ. Med. 2001;58:68–72. doi: 10.1136/oem.58.1.68.
    1. Gu F., Han J., Laden F., Pan A., Caporaso N.E., Stampfer M.J., Kawachi I., Rexrode K.M., Willett W.C., Hankinson S.E., et al. Total and Cause-Specific Mortality of U.S. Nurses Working Rotating Night Shifts. Am. J. Prev. Med. 2015;48:241–252. doi: 10.1016/j.amepre.2014.10.018.
    1. Hutchison A.T., Wittert G.A., Heilbronn L.K. Matching Meals to Body Clocks—Impact on Weight and Glucose Metabolism. Nutrients. 2017;9:222. doi: 10.3390/nu9030222.
    1. Kahleova H., Belinova L., Malinska H., Oliyarnyk O., Trnovska J., Skop V., Kazdova L., Dezortova M., Hajek M., Tura A., et al. Eating Two Larger Meals a Day (Breakfast and Lunch) is More Effective than Six Smaller Meals in a Reduced-Energy Regimen for Patients with Type 2 Diabetes: A Randomised Crossover Study. Diabetologia. 2014;57:1552–1560. doi: 10.1007/s00125-014-3253-5.
    1. Vaughan K.L., Mattison J.A. Watch the Clock, Not the Scale. Cell Metab. 2018;27:1159–1160. doi: 10.1016/j.cmet.2018.05.016.
    1. Bell M.L., Kenward M.G., Fairclough D.L., Horton N.J. Differential Dropout and Bias in Randomised Controlled Trials: When It Matters and When It May Not. BMJ. 2013;346:1–9. doi: 10.1136/bmj.e8668.
    1. Smith M.L., Bergeron C.D., Ahn S.N., Towne S.D., Mingo C.A., Robinson K.T., Mathis J., Meng L., Ory M.G. Engaging the Underrepresented Sex: Male Participation in Chronic Disease Self-Management Education (CDSME) Programs. Am. J. Mens. Health. 2018;12:935–943. doi: 10.1177/1557988317750943.
    1. Feldman S., Ammar W., Lo K., Trepman E., van Zuylen M., Etzioni O. Quantifying Sex Bias in Clinical Studies at Scale With Automated Data Extraction. JAMA Netw. Open. 2019;2:e196700. doi: 10.1001/jamanetworkopen.2019.6700.

Source: PubMed

3
Abonnieren