Classification of Hydration in Clinical Conditions: Indirect and Direct Approaches Using Bioimpedance

Henry C Lukaski, Nicanor Vega Diaz, Antonio Talluri, Lexa Nescolarde, Henry C Lukaski, Nicanor Vega Diaz, Antonio Talluri, Lexa Nescolarde

Abstract

Although the need to assess hydration is well recognized, laboratory tests and clinical impressions are impractical and lack sensitivity, respectively, to be clinically meaningful. Different approaches use bioelectrical impedance measurements to overcome some of these limitations and aid in the classification of hydration status. One indirect approach utilizes single or multiple frequency bioimpedance in regression equations and theoretical models, respectively, with anthropometric measurements to predict fluid volumes (bioelectrical impedance spectroscopy-BIS) and estimate fluid overload based on the deviation of calculated to reference extracellular fluid volume. Alternatively, bioimpedance vector analysis (BIVA) uses direct phase-sensitive measurements of resistance and reactance, measured at 50 kHz, normalized for standing height, then plotted on a bivariate graph, resulting in a vector with length related to fluid content, and direction with phase angle that indexes hydration status. Comparison with healthy population norms enables BIVA to classify (normal, under-, and over-) and rank (change relative to pre-treatment) hydration independent of body weight. Each approach has wide-ranging uses in evaluation and management of clinical groups with over-hydration with an evolving emphasis on prognosis. This review discusses the advantages and limitations of BIS and BIVA for hydration assessment with comments on future applications.

Keywords: bioelectrical impedance spectroscopy; bioelectrical impedance vector analysis; fluid overload; malnutrition; reactance; resistance.

Conflict of interest statement

The authors report no conflicts of interest. A. Talluri was founder and president of Akern Srl, and is no longer involved in this company.

Figures

Figure 1
Figure 1
Illustration of the body as a network of resistors and capacitors in a parallel configuration. The alternating current usually exceeds 1 kHz and typically is 50 kHz. CM is membrane capacitance and Re and Ri is extracellular and intracellular resistance, respectively.
Figure 2
Figure 2
Representation of the body as a parallel resistor-capacitor (RC) equivalent circuit. Delay of the current penetration at the cell membrane causes an out-phasing of current.
Figure 3
Figure 3
Geometric relationships among the resistance, reactance (capacitance, CM), impedance, and phase angle.
Figure 4
Figure 4
Plot of reactance and resistance of a healthy male obtained with a Xitron 4200 and derived using non-linear curve-fitting software based on the Cole model. Note that the majority of values (dashed lines) were estimated. R0 and R∞ were calculated and they approximate resistance at 0 and the highest frequency, respectively.
Figure 5
Figure 5
Resistance-reactance (RXc) plot with tolerance ellipses from healthy Caucasian males.

References

    1. Armstrong L.E. Assessing hydration status: The elusive gold standard. J. Am. Coll. Nutr. 2007;26(Suppl. 5):575S–584S. doi: 10.1080/07315724.2007.10719661.
    1. Di Somma S., Navarin S., Giordano S., Spadini F., Lippi G., Cervellin G., Dieffenbach B.V., Maisel A.S. The emerging role of biomarkers and bio-impedance in evaluating hydration status in patients with acute heart failure. Clin. Chem. Lab. Med. 2012;50:2093–2105. doi: 10.1515/cclm-2012-0289.
    1. Moore F.D., Boyden C.M. Body cell mass and limits of hydration of the fat-free body: Their relation to estimated skeletal weight. Ann. N. Y. Acad. Sci. 1963;110:62–71. doi: 10.1111/j.1749-6632.1963.tb17072.x.
    1. Snyder W.S., Cook M.J., Nasset E.S., Karhausen L.R., Howells G.P., Tipton I.H. Report of the Task Group on Reference Man. Pergamon Press; Oxford, UK: 1975. pp. 27–32.
    1. Wang Z., Deurenberg P., Wang W., Pietrobelli A., Baumgartner R.N., Heymsfield S.B. Hydration of fat-free body mass: Review and critique of a classic body-composition constant. Am. J. Clin. Nutr. 1999;69:833–841. doi: 10.1093/ajcn/69.5.833.
    1. Chumlea W.C., Schubert C.M., Sun S.S., Demerath E., Towne B., Siervogel R.M. A review of body water status and the effects of age and body fatness in children and adults. J. Nutr. Health Aging. 2007;11:111–118.
    1. Armstrong L.E., Kavouras S.A., Walsh N.P., Roberts W.O. Diagnosing dehydration? Blend evidence with clinical observations. Curr. Opin. Clin. Nutr. Metab. Care. 2016;19:434–438. doi: 10.1097/MCO.0000000000000320.
    1. Lukaski H.C. Biological indexes considered in the derivation of the bioelectrical impedance analysis. Am. J. Clin. Nutr. 1996;64(Suppl. 3):397S–404S. doi: 10.1093/ajcn/64.3.397S.
    1. Kyle U.G., Bosaeus I., De Lorenzo A.D., Deurenberg P., Elia M., Gómez J.M., Heitmann B.L., Kent-Smith L., Melchior J.C., Pirlich M., et al. Composition of the ESPEN Working Group. Bioelectrical impedance analysis-part I: Review of principles and methods. Eur. J. Clin. Nutr. 2004;23:1226–1243. doi: 10.1016/j.clnu.2004.06.004.
    1. Lukaski H.C. Evolution of bioimpedance: A circuitous journey from estimation of physiological function to assessment of body composition and a return to clinical research. Eur. J. Clin. Nutr. 2013;67(Suppl. 1):S2–S9. doi: 10.1038/ejcn.2012.149.
    1. Faes T.J., van der Meij H.A., de Munck J.C., Heethaar R.M. The electric resistivity of human tissues (100 Hz–10 MHz): A meta-analysis of review studies. Physiol. Meas. 1999;20:R1–R10. doi: 10.1088/0967-3334/20/4/201.
    1. Foster K.R., Lukaski H.C. Whole-body impedance—What does it measure? Am. J. Clin. Nutr. 1996;64(Suppl. 3):388S–396S. doi: 10.1093/ajcn/64.3.388S.
    1. Grimnes S., Martinsen O. Bioimpedance and Bioelectricity Basics. 3rd ed. Elsevier Ltd.; London, UK: 2015. pp. 1–8.
    1. Racette S.B., Schoeller D.A., Luke A.H., Shay K., Hnilicka J., Kushner R.F. Relative dilution spaces of 2H-and 18O-labeled water in humans. Am. J. Physiol. 1994;267:E585–E590. doi: 10.1152/ajpendo.1994.267.4.E585.
    1. Schoeller D.A. Hydrometry. In: Heymsfield S.B., Lohman T.G., Wang Z.M., Going S.B., editors. Human Body Composition. 2nd ed. Human Kinetics; Champaign, IL, USA: 2005. pp. 35–50.
    1. Piccoli A., Pastori G., Guizzo M., Rebeschini M., Naso A., Cascone C. Equivalence of information from single versus multiple frequency bioimpedance vector analysis in hemodialysis. Kidney Int. 2005;67:301–313. doi: 10.1111/j.1523-1755.2005.00083.x.
    1. Matthie J.R. Bioimpedance measurements of human body composition: Critical analysis and outlook. Expert Rev. Med. Devices. 2008;5:239–261. doi: 10.1586/17434440.5.2.239.
    1. Kyle U.G., Bosaeus I., De Lorenzo A.D., Deurenberg P., Elia M., Gómez J.M., Lilienthal Heitmann B., Kent-Smith L., Melchior J.C., Pirlich M., et al. Bioelectrical impedance analysis-part II: Utilization in clinical practice. Eur. J. Clin. Nutr. 2004;23:1430–1453. doi: 10.1016/j.clnu.2004.09.012.
    1. Mulasi U., Kuchnia A.J., Cole A.J., Earthman C.P. Bioimpedance at the bedside: Current applications, limitations, and opportunities. Nutr. Clin. Pract. 2015;30:180–193. doi: 10.1177/0884533614568155.
    1. Sun S.S., Chumlea W.C., Heymsfield S.B., Lukaski H.C., Schoeller D., Friedl K., Kuczmarski R.J., Flegal K.M., Johnson C.L., Hubbard V.S. Development of bioelectrical impedance analysis prediction equations for body composition with the use of a multicomponent model for use in epidemiological surveys. Am. J. Clin. Nutr. 2003;77:331–340. doi: 10.1093/ajcn/77.2.331.
    1. Ellis K.J., Wong W.W. Human hydrometry: Comparison of multifrequency bioelectrical impedance with 2H2O and bromine dilution. J. Appl. Physiol. 1998;85:1056–1062. doi: 10.1152/jappl.1998.85.3.1056.
    1. Ellis K.J., Bell S.J., Chertow G.M., Chumlea W.C., Knox T.A., Kotler D.P., Lukaski H.C., Schoeller D.A. Bioelectrical impedance methods in clinical research: A follow-up to the NIH Technology Assessment Conference. Nutrition. 1999;15:874–880. doi: 10.1016/S0899-9007(99)00147-1.
    1. Ellis K.J. Human body composition: In vivo methods. Physiol. Rev. 2000;80:649–680. doi: 10.1152/physrev.2000.80.2.649.
    1. Cole K.S. Cold Spring Harbor Symposia on Quantitative Biology. Volume 8. Cold Spring Harbor Laboratory Press; Cold Spring Harbor, NY, USA: 1940. Permeability and impermeability of cell membranes for ions; pp. 110–122.
    1. Hanai T. Electrical properties of emulsions. In: Sherman P.H., editor. Emulsion Science. Academic Press; London, UK: 1968. pp. 354–477.
    1. De Lorenzo A., Andreoli A., Matthie J., Withers P. Predicting body cell mass with bioimpedance by using theoretical methods: A technological review. J. Appl. Physiol. 1997;82:1542–1558. doi: 10.1152/jappl.1997.82.5.1542.
    1. Bolton M.P., Ward L.C., Khan A., Campbell I., Nightingale P., Dewit O., Elia M. Sources of error in bioimpedance spectroscopy. Physiol. Meas. 1998;19:235–246. doi: 10.1088/0967-3334/19/2/011.
    1. Buendia R., Seoane F., Lindecrantz K., Bosaeus I., Gil-Pita R., Johannsson G., Ellegárd L., Ward L.C. Estimation of body fluids with bioimpedance spectroscopy: State of the art methods and proposal of novel methods. Physiol. Meas. 2015;36:2171–2187. doi: 10.1088/0967-3334/36/10/2171.
    1. Ward L.C., Isenring E., Dyer J.M., Kagawa M., Essex T. Resistivity coefficients for body composition analysis using bioimpedance spectroscopy: Effects of body dominance and mixture theory algorithm. Physiol. Meas. 2015;36:1529–1549. doi: 10.1088/0967-3334/36/7/1529.
    1. Cox-Reijven P.L., Soeters P.B. Validation of bio-impedance spectroscopy: Effects of degree of obesity and ways of calculating volumes from measured resistance values. Int. J. Obes. Relat. Metab. Disord. 2000;24:271–280. doi: 10.1038/sj.ijo.0801123.
    1. Cox-Reijven P.L., van Kreel B., Soeters P.B. Accuracy of bioelectrical impedance spectroscopy in measuring changes in body composition during severe weight loss. J. Parenter. Enter. Nutr. 2002;26:120–127. doi: 10.1177/0148607102026002120.
    1. Mager J.R., Sibley S.D., Beckman T.R., Kellogg T.A., Earthman C.P. Multifrequency bioelectrical impedance analysis and bioimpedance spectroscopy for monitoring fluid and body cell mass changes after gastric bypass surgery. Clin. Nutr. 2008;27:832–841. doi: 10.1016/j.clnu.2008.06.007.
    1. Moissl U.M., Wabel P., Chamney P.W., Bosaeus I., Levin N.W., Bosy-Westphal A., Korth O., Müller M.J., Ellegård L., Malmros V., et al. Body fluid volume determination via body composition spectroscopy in health and disease. Physiol. Meas. 2006;27:921–933. doi: 10.1088/0967-3334/27/9/012.
    1. Gonzalez M.C., Correia M.I.T.D., Heymsfield S.B. A requiem for BMI in the clinical setting. Curr. Opin. Clin. Nutr. Metab. Care. 2017;20:314–321. doi: 10.1097/MCO.0000000000000395.
    1. Raimann J.G., Zhu F., Wang J., Thijssen S., Kuhlmann M.K., Kotanko P., Levin N.W., Kaysen G.A. Comparison of fluid volume estimates in chronic hemodialysis patients by bioimpedance, direct isotopic, and dilution methods. Kidney Int. 2014;85:898–908. doi: 10.1038/ki.2013.358.
    1. Raimann J.G., Abbas S.R., Liu L., Zhu F., Larive B., Kotanko P., Levin N.W., Kaysen G.A., FHN Trial Agreement of single-and multi-frequency bioimpedance measurements in hemodialysis patients: An ancillary study of the Frequent Hemodialysis Network Daily Trial. Nephron Clin. Pract. 2014;128:115–126. doi: 10.1159/000366447.
    1. Piccoli A. Estimation of fluid volumes in hemodialysis patients: Comparing bioimpedance with isotopic dilution methods. Kidney Int. 2014;85:738–741. doi: 10.1038/ki.2013.434.
    1. Seoane F., Abtahi S., Abtahi F., Ellegárd L., Johannsson G., Bosaeus I., Ward L.C. Slightly superior performance of bioimpedance spectroscopy over single frequency regression equations for assessment of total body water; Proceedings of the IEEE Engineering in Medicine and Biology Society (EMBC); Milan, Italy. 25–29 August 2015; pp. 3707–3710.
    1. Seoane F., Abtahi S., Abtahi F., Ellegárd L., Johannsson G., Bosaeus I., Ward L.C. Mean expected error in prediction of total body water: A true accuracy comparison between bioimpedance spectroscopy and single frequency regression equations. Biomed. Res. Int. 2015;11:656323. doi: 10.1155/2015/656323.
    1. Piccoli A., Rossi B., Pillon L., Bucciante G. A new method for monitoring body fluid variation by bioimpedance analysis: The RXc graph. Kidney Int. 1994;46:534–539. doi: 10.1038/ki.1994.305.
    1. Chumlea W.C., Guo S.S., Kuczmarski R.J., Johnson C.L., Flegel K., Heymsfield S., Lukaski H., Schoeller D., Friedl K., Hubbard V.S. Body composition estimates from NHANES III bioelectrical impedance data. Int. J. Obes. 2002;26:1596–1609. doi: 10.1038/sj.ijo.0802167.
    1. Nescolarde L., Lukaski H., De Lorenzo A., de-Mateo-Silleras B., Redondo-Del-Río M.P., Camina-Martín M.A. Different displacement of bioimpedance vector due to Ag/AgCl electrode effect. Eur. J. Clin. Nutr. 2016;70:1401–1407. doi: 10.1038/ejcn.2016.121.
    1. Pillon L., Piccoli A., Lowrie E.G., Lazarus J.M., Chertow G.M. Vector length as a proxy for the adequacy of ultrafiltration in hemodialysis. Kidney Int. 2004;66:1266–1271. doi: 10.1111/j.1523-1755.2004.00881.x.
    1. Piccoli A., Codognotto M. Bioimpedance vector migration up to three days after the hemodialysis session. Kidney Int. 2004;66:2091–2092. doi: 10.1111/j.1523-1755.2004.989_7.x.
    1. Piccoli A. Whole body--single frequency bioimpedance. Contrib. Nephrol. 2005;149:150–161.
    1. Piccoli A. Identification of operational clues to dry weight prescription in hemodialysis using bioimpedance vector analysis. The Italian Hemodialysis-Bioelectrical Impedance Analysis (HD-BIA) Study Group. Kidney Int. 1998;53:1036–1043. doi: 10.1111/j.1523-1755.1998.00843.x.
    1. Piccoli A., Italian CAPD-BIA Study Group Bioelectric impedance vector distribution in peritoneal dialysis patients with different hydration status. Kidney Int. 2004;65:1050–1063. doi: 10.1111/j.1523-1755.2004.00467.x.
    1. Guyton A.C. Textbook of Medical Physiology. Saunders; Philadelphia, PA, USA: 1991. p. 282.
    1. Piccoli A., Pittoni G., Facco E., Favaro E., Pillon L. Relationship between central venous pressure and bioimpedance vector analysis in critically ill patients. Crit. Care Med. 2000;28:132–137. doi: 10.1097/00003246-200001000-00022.
    1. Basso F., Berdin G., Virzì G.M., Mason G., Piccinni P., Day S., Cruz D.N., Wjewodzka M., Giuliani A., Brendolan A., et al. Fluid management in the intensive care unit: Bioelectrical impedance vector analysis as a tool to assess hydration status and optimal fluid balance in critically ill patients. Blood Purif. 2013;36:192–199. doi: 10.1159/000356366.
    1. Samoni S., Vigo V., Reséndiz L.I., Villa G., De Rosa S., Nalesso F., Ferrari F., Meola M., Brendolan A., Malacarne P., et al. Impact of hyperhydration on the mortality risk in critically ill patients admitted in intensive care units: Comparison between bioelectrical impedance vector analysis and cumulative fluid balance recording. Crit. Care. 2016;20:95. doi: 10.1186/s13054-016-1269-6.
    1. Valle R., Aspromonte N., Milani L., Peacock F.W., Maisel A.S., Santini M., Ronco C. Optimizing fluid management in patients with acute decompensated heart failure (ADHF): The emerging role of combined measurement of body hydration status and brain natriuretic peptide (BNP) levels. Heart Fail. Rev. 2011;16:519–559. doi: 10.1007/s10741-011-9244-4.
    1. Bouchard J., Soroko S.B., Chertow G.M., Himmelfarb J., Ikizler T.A., Paganini E.P., Mehta R.L., Program to Improve Care in Acute Renal Disease (PICARD) Study Group Fluid accumulation, survival and recovery of kidney function in critically ill patients with acute kidney injury. Kidney Int. 2009;76:422–427. doi: 10.1038/ki.2009.159.
    1. Hise A.C.D.R., Gonzalez M.C. Assessment of hydration status using bioelectrical impedance vector analysis in critical patients with acute kidney injury. Clin. Nutr. 2018;37:695–700. doi: 10.1016/j.clnu.2017.02.016.
    1. Maioli M., Toso A., Leoncini M., Musilli N., Bellandi F., Rosner M.H., McCullough P.A., Ronco C. Pre-procedural bioimpedance vectorial analysis of fluid status and prediction of contrast-induced acute kidney injury. J. Am. Coll. Cardiol. 2014;63:1387–1394. doi: 10.1016/j.jacc.2014.01.025.
    1. Maioli M., Toso A., Leoncini M., Musilli N., Grippo G., Ronco C., McCullough P.A., Bellandi F. Bioimpedance-Guided Hydration for the Prevention of Contrast-Induced Kidney Injury: The HYDRA Study. J. Am. Coll. Cardiol. 2018;71:2880–2889. doi: 10.1016/j.jacc.2018.04.022.
    1. Di Somma S., Lalle I., Magrini L., Russo V., Navarin S., Castello L., Avanzi G.C., Di Stasio E., Maisel A. Additive diagnostic and prognostic value of bioelectrical impedance vector analysis (BIVA) to brain natriuretic peptide ‘grey-zone’ in patients with acute heart failure in the emergency department. Eur. Heart J. Acute Cardiovasc. Care. 2014;3:167–175. doi: 10.1177/2048872614521756.
    1. Massari F., Scicchitano P., Ciccone M.M., Caldarola P., Aspromonte N., Iacoviello M., Barro S., Pantano I., Valle R. Bioimpedance vector analysis predicts hospital length of stay in acute heart failure. Nutrition. 2018;61:56–60. doi: 10.1016/j.nut.2018.10.028.
    1. Núñez J., Mascarell B., Stubbe H., Ventura S., Bonanad C., Bodí V., Núñez E., Miñana G., Fácila L., Bayés-Genis A., et al. Bioelectrical impedance vector analysis and clinical outcomes in patients with acute heart failure. J. Cardiovasc. Med. 2016;17:283–290. doi: 10.2459/JCM.0000000000000208.
    1. Santarelli S., Russo V., Lalle I., De Berardinis B., Navarin S., Magrini L., Piccoli A., Codognotto M., Castello L.M., Avanzi G.C., et al. Usefulness of combining admission brain natriuretic peptide (BNP) plus hospital discharge bioelectrical impedance vector analysis (BIVA) in predicting 90 days cardiovascular mortality in patients with acute heart failure. Intern. Emerg. Med. 2017;12:445–451. doi: 10.1007/s11739-016-1581-9.
    1. Piccoli A., Codognotto M., Cianci V., Vettore G., Zaninotto M., Plebani M., Maisel A., Peacock W.F. Differentiation of cardiac and noncardiac dyspnea using bioelectrical impedance vector analysis (BIVA) J. Card. Fail. 2012;18:226–232. doi: 10.1016/j.cardfail.2011.11.001.
    1. Davies S.J., Davenport A. The role of bioimpedance and biomarkers in helping to aid clinical decision-making of volume assessments in dialysis patients. Kidney Int. 2014;86:489–496. doi: 10.1038/ki.2014.207.
    1. Chamney P.W., Wabel P., Moissl U.M., Müller M.J., Bosy-Westphal A., Korth O., Fuller N.J. A whole-body model to distinguish excess fluid from the hydration of major body tissues. Am. J. Clin. Nutr. 2007;85:80–89. doi: 10.1093/ajcn/85.1.80.
    1. Wabel P., Moissl U., Chamney P., Jirka T., Machek P., Ponce P., Taborsky P., Tetta C., Velasco N., Vlasak J., et al. Towards improved cardiovascular management: The necessity of combining blood pressure and fluid overload. Nephrol. Dial. Transplant. 2008;23:2965–2971. doi: 10.1093/ndt/gfn228.
    1. Oei E.L., Fan S.L. Practical aspects of volume control in chronic kidney disease using whole body bioimpedance. Blood Purif. 2015;39:32–36. doi: 10.1159/000368953.
    1. O’Lone E.L., Visser A., Finney H., Fan S.L. Clinical significance of multi-frequency bioimpedance spectroscopy in peritoneal dialysis patients: Independent predictor of patient survival. Nephrol. Dial. Transplant. 2014;29:1430–1437. doi: 10.1093/ndt/gfu049.
    1. Wabel P., Chamney P., Moissl U., Jirka T. Importance of whole-body bioimpedance spectroscopy for the management of fluid balance. Blood Purif. 2009;7:75–80. doi: 10.1159/000167013.
    1. Wizemann V., Wabel P., Chamney P., Zaluska W., Moissl U., Rode C., Malecka-Masalska T., Marcelli D. The mortality risk of overhydration in haemodialysis patients. Nephrol. Dial. Transplant. 2009;24:1574–1579. doi: 10.1093/ndt/gfn707.
    1. Tabinor M., Elphick E., Dudson M., Kwok C.S., Lambie M., Davies S.J. Bioimpedance-defined overhydration predicts survival in end stage kidney failure (ESKF): Systematic review and subgroup meta-analysis. Sci. Rep. 2018;13:4441. doi: 10.1038/s41598-018-21226-y.
    1. Hur E., Usta M., Toz H., Asci G., Wabel P., Kahvecioglu S., Kayikcioglu M., Demirci M.S., Ozkahya M., Duman S., et al. Effect of fluid management guided by bioimpedance spectroscopy on cardiovascular parameters in hemodialysis patients: A randomized controlled trial. Am. J. Kidney Dis. 2013;61:957–965. doi: 10.1053/j.ajkd.2012.12.017.
    1. Onofriescu M., Hogas S., Voroneanu L., Apetrii M., Nistor I., Kanbay M., Covic A.C. Bioimpedance-guided fluid management in maintenance hemodialysis: A pilot randomized controlled trial. Am. J. Kidney Dis. 2014;64:111–118. doi: 10.1053/j.ajkd.2014.01.420.
    1. Van Biesen W., Williams J.D., Covic A.C., Fan S., Claes K., Lichodziejewska-Niemierko M., Verger C., Steiger J., Schoder V., Wabel P., et al. Fluid status in peritoneal dialysis patients: The European Body Composition Monitoring (EuroBCM) study cohort. PLoS ONE. 2011;6:e17148. doi: 10.1371/journal.pone.0017148.
    1. Ronco C., Verger C., Crepaldi C., Pham J., De Los Ríos T., Gauly A., Wabel P., Van Biesen W., IPOD-PD Study Group Baseline hydration status in incident peritoneal dialysis patients: The initiative of patient outcomes in dialysis (IPOD-PD study) Nephrol. Dial. Transplant. 2015;30:849–858. doi: 10.1093/ndt/gfv013.
    1. Organ L.W., Bradham G.B., Gore D.T., Lozier S.L. Segmental bioelectrical impedance analysis: Theory and application of a new technique. J. Appl. Physiol. 1994;77:98–112. doi: 10.1152/jappl.1994.77.1.98.
    1. Sipahi S., Hur E., Demirtas S., Kocayigit I., Bozkurt D., Tamer A., Gunduz H., Duman S. Body composition monitor measurement technique for the detection of volume status in peritoneal dialysis patients: The effect of abdominal fullness. Int. Urol. Nephrol. 2011;43:1195–1199. doi: 10.1007/s11255-011-9977-y.
    1. Parmentier S.P., Schirutschke H., Schmitt B., Schewe J., Herbrig K., Pistrosch F., Passauer J. Influence of peritoneal dialysis solution on measurements of fluid status by bioimpedance spectroscopy. Int. Urol. Nephrol. 2013;45:229–232. doi: 10.1007/s11255-012-0216-y.
    1. Arroyo D., Panizo N., Abad S., Vega A., Rincón A., de José A.P., López-Gómez J.M. Intraperitoneal fluid overestimates hydration status assessment by bioimpedance spectroscopy. Perit. Dial. Int. 2015;35:85–89. doi: 10.3747/pdi.2013.00187.
    1. Oh K.H., Baek S.H., Joo K.W., Kim D.K., Kim Y.S., Kim S., Oh Y.K., Han B.G., Chang J.H., Chung W., et al. Control of fluid balance guided by body composition monitoring in patients on peritoneal dialysis (COMPASS) study. Does routine bioimpedance-guided fluid management provide additional benefit to non-anuric peritoneal dialysis patients? Results from COMPASS clinical trial. Perit. Dial. Int. 2018;38:131–138.
    1. Tabinor M., Davies S.J. The use of bioimpedance spectroscopy to guide fluid management in patients receiving dialysis. Curr. Opin. Nephrol. Hypertens. 2018;27:406–412. doi: 10.1097/MNH.0000000000000445.
    1. Zha Y., Qian Q. Protein nutrition and malnutrition in CKD and ESRD. Nutrients. 2017;9:208. doi: 10.3390/nu9030208.
    1. Cupisti A., Brunori G., Di Iorio B.R., D’Alessandro C., Pasticci F., Cosola C., Bellizzi V., Bolasco P., Capitanini A., Fantuzzi A.L., et al. Nutritional treatment of advanced CKD: Twenty consensus statements. J. Nephrol. 2018;31:457–473. doi: 10.1007/s40620-018-0497-z.
    1. Bellizzi V., Scalfi L., Terracciano V., De Nicola L., Minutolo R., Marra M., Guida B., Cianciaruso B., Conte G., Di Iorio B.R. Early changes in bioelectrical estimates of body composition in chronic kidney disease. J. Am. Soc. Nephrol. 2006;17:1481–1487. doi: 10.1681/ASN.2005070756.
    1. Lukaski H.C., Kyle U.G., Kondrup J. Assessment of adult malnutrition and prognosis with bioelectrical impedance analysis: Phase angle and impedance ratio. Curr. Opin. Clin. Nutr. Metab. Care. 2017;20:330–339. doi: 10.1097/MCO.0000000000000387.
    1. Piccoli A., Codognotto M., Piasentin P., Naso A. Combined evaluation of nutrition and hydration in dialysis patients with bioelectrical impedance vector analysis (BIVA) Clin. Nutr. 2014;33:673–677. doi: 10.1016/j.clnu.2013.08.007.
    1. Piccoli A., Pastori G., Codognotto M., Paoli A. Equivalence of information from single frequency v. bioimpedance spectroscopy in bodybuilders. Br. J. Nutr. 2007;97:182–192. doi: 10.1017/S0007114507243077.
    1. Teruel-Briones J.L., Fernández-Lucas M., Ruiz-Roso G., Sánchez-Ramírez H., Rivera-Gorrin M., Gomis-Couto A., Rodríguez-Mendiola N., Quereda C. Analysis of concordance between the bioelectrical impedance vector analysis and the bioelectrical impedance spectroscopy in haemodialysis patients. Nefrologia. 2012;32:389–395.
    1. Gonzales-Correa C.H., Caicedo-Eraso J.C. Bioelectrical impedance analysis (BIA): A proposal for the standardization of the classical method for adults. J. Phys. Conf. Ser. 2012;407:012018. doi: 10.1088/1742-6596/407/1/012018.
    1. Genton L., Herrmann F.R., Spörri A., Graf C.E. Association of mortality and phase angle measured by different bioelectrical impedance analysis (BIA) devices. Clin. Nutr. 2018;37:1066–1069. doi: 10.1016/j.clnu.2017.03.023.
    1. Silva A.M., Matias C.N., Nunes C.L., Santos D.A., Marini E., Lukaski H.C., Sardinha L.B. Lack of agreement of in vivo raw bioimpedance measurements obtained from two single and multi-frequency bioelectrical impedance devices. Eur. J. Clin. Nutr. 2018;1:22. doi: 10.1038/s41430-018-0355-z.
    1. Di Somma S., Lukaski H.C., Codognotto M., Peacock W.F., Fiorini F., Aspromonte N., Ronco C., Santarelli S., Lalle I., Autunno A., et al. Consensus paper on the use of BIVA (Bioeletrical Impendance Vector Analysis) in medicine for the management of body hydration. Emerg. Care J. 2011;4:6–14. doi: 10.4081/ecj.2011.4.6.
    1. Covic A., Ciumanghel A.I., Siriopol D., Kanbay M., Dumea R., Gavrilovici C., Nistor I. Value of bioimpedance analysis estimated “dry weight” in maintenance dialysis patients: A systematic review and meta-analysis. Int. Urol. Nephrol. 2017;49:2231–2245. doi: 10.1007/s11255-017-1698-4.
    1. Scotland G., Cruickshank M., Jacobsen E., Cooper D., Fraser C., Shimonovich M., Marks A., Brazzelli M. Multiple-frequency bioimpedance devices for fluid management in people with chronic kidney disease receiving dialysis: A systematic review and economic evaluation. Health Technol. Assess. 2018;22:1–138. doi: 10.3310/hta22010.

Source: PubMed

3
Abonnieren