Treatment of resistant metastatic melanoma using sequential epigenetic therapy (decitabine and panobinostat) combined with chemotherapy (temozolomide)

Chang Xia, Roberto Leon-Ferre, Douglas Laux, Jeremy Deutsch, Brian J Smith, Melanie Frees, Mohammed Milhem, Chang Xia, Roberto Leon-Ferre, Douglas Laux, Jeremy Deutsch, Brian J Smith, Melanie Frees, Mohammed Milhem

Abstract

Purpose: To explore the safety and tolerability of combining two epigenetic drugs: decitabine (a DNA methyltransferase inhibitor) and panobinostat (a histone deacetylase inhibitor), with chemotherapy with temozolomide (an alkylating agent). The purpose of such combination is to evaluate the use of epigenetic priming to overcome resistance of melanoma to chemotherapy.

Methods: A Phase I clinical trial enrolling patients aged 18 years or older, with recurrent or unresectable stage III or IV melanoma of any site. This trial was conducted with full Institutional Review Board approval and was registered with the National Institutes of Health under the clinicaltrials.gov identifier NCT00925132. Patients were treated with subcutaneous decitabine 0.1 or 0.2 mg/kg three times weekly for 2 weeks (starting on day 1), in combination with oral panobinostat 10, 20, or 30 mg every 96 h (starting on day 8), and oral temozolomide 150 mg/m(2)/day on days 9 through 13. In cycle 2, temozolomide was increased to 200 mg/m(2)/day if neutropenia or thrombocytopenia had not occurred. Each cycle lasted 6 weeks, and patients could receive up to six cycles. Patients who did not demonstrate disease progression were eligible to enter a maintenance protocol with combination of weekly panobinostat and thrice-weekly decitabine until tumor progression, unacceptable toxicity, or withdrawal of consent.

Results: Twenty patients were initially enrolled, with 17 receiving treatment. The median age was 56 years. Eleven (65%) were male, and 6 (35%) were female. Eleven (64.7%) had cutaneous melanoma, 4 (23.5%) had ocular melanoma, and 2 (11.8%) had mucosal melanoma. All patients received at least one treatment cycle and were evaluable for toxicity. Patients received a median of two 6-week treatment cycles (range 1-6). None of the patients experienced DLT. MTD was not reached. Adverse events attributed to treatment included grade 3 lymphopenia (24%), anemia (12%), neutropenia (12%), and fatigue (12%), as well as grade 2 leukopenia (30%), neutropenia (23%), nausea (23%), and lymphopenia (18%). The most common reason for study discontinuation was disease progression.

Conclusions: This triple agent of dual epigenetic therapy in combination with traditional chemotherapy was generally well tolerated by the cohort and appeared safe to be continued in a Phase II trial. No DLTs were observed, and MTD was not reached.

Figures

Fig. 1
Fig. 1
Treatment schema. Cycle duration: 42 days. Decitabine: days 1, 3, 5, 8, 10, 12. Panobinostat: days 8, 12, 16, 20, 24, 28, 32, 36, 40. Temozolomide: days 9–13

References

    1. Alcazar O, Achberger S, Aldrich W, Hu Z, Negrotto S, Saunthararajah Y, Triozzi P. Epigenetic regulation by decitabine of melanoma differentiation in vitro and in vivo. Int J Cancer. 2012;131(1):18–29. doi: 10.1002/ijc.26320.
    1. Teodoridis JM, Hall J, Marsh S, Kannall HD, Smyth C, Curto J, Siddiqui N, Gabra H, McLeod HL, Strathdee G, Brown R. CpG island methylation of DNA damage response genes in advanced ovarian cancer. Cancer Res. 2005;65(19):8961–8967. doi: 10.1158/0008-5472.CAN-05-1187.
    1. Glasspool RM, Teodoridis JM, Brown R. Epigenetics as a mechanism driving polygenic clinical drug resistance. Br J Cancer. 2006;94(8):1087–1092. doi: 10.1038/sj.bjc.6603024.
    1. Dubovsky JA, McNeel DG. Inducible expression of a prostate cancer-testis antigen, SSX-2, following treatment with a DNA methylation inhibitor. Prostate. 2007;67(16):1781–1790. doi: 10.1002/pros.20665.
    1. Coral S, Sigalotti L, Covre A, Nicolay HJ, Natali PG, Maio M (2007) 5-AZA-2′-deoxycytidine in cancer immunotherapy: a mouse to man story. Cancer Res 67(6):2900–2901; author reply 2901–2902. doi:10.1158/0008-5472.CAN-06-2986
    1. Guo ZS, Hong JA, Irvine KR, Chen GA, Spiess PJ, Liu Y, Zeng G, Wunderlich JR, Nguyen DM, Restifo NP, Schrump DS. De novo induction of a cancer/testis antigen by 5-aza-2′-deoxycytidine augments adoptive immunotherapy in a murine tumor model. Cancer Res. 2006;66(2):1105–1113. doi: 10.1158/0008-5472.CAN-05-3020.
    1. Grunau C, Sanchez C, Ehrlich M, van der Bruggen P, Hindermann W, Rodriguez C, Krieger S, Dubeau L, Fiala E, De Sario A. Frequent DNA hypomethylation of human juxtacentromeric BAGE loci in cancer. Genes Chromosom Cancer. 2005;43(1):11–24. doi: 10.1002/gcc.20155.
    1. Weber J, Salgaller M, Samid D, Johnson B, Herlyn M, Lassam N, Treisman J, Rosenberg SA. Expression of the MAGE-1 tumor antigen is up-regulated by the demethylating agent 5-aza-2′-deoxycytidine. Cancer Res. 1994;54(7):1766–1771.
    1. de Vos D, van Overveld W. Decitabine: a historical review of the development of an epigenetic drug. Ann Hematol. 2005;84(Suppl 1):3–8. doi: 10.1007/s00277-005-0008-x.
    1. Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 2003;33(Suppl):245–254. doi: 10.1038/ng1089.
    1. Konkankit VV, Kim W, Koya RC, Eskin A, Dam MA, Nelson S, Ribas A, Liau LM, Prins RM. Decitabine immunosensitizes human gliomas to NY-ESO-1 specific T lymphocyte targeting through the Fas/Fas ligand pathway. J Transl Med. 2011;9:192. doi: 10.1186/1479-5876-9-192.
    1. Almstedt M, Blagitko-Dorfs N, Duque-Afonso J, Karbach J, Pfeifer D, Jager E, Lubbert M. The DNA demethylating agent 5-aza-2′-deoxycytidine induces expression of NY-ESO-1 and other cancer/testis antigens in myeloid leukemia cells. Leuk Res. 2010;34(7):899–905. doi: 10.1016/j.leukres.2010.02.004.
    1. Coral S, Sigalotti L, Altomonte M, Engelsberg A, Colizzi F, Cattarossi I, Maraskovsky E, Jager E, Seliger B, Maio M. 5-Aza-2′-deoxycytidine-induced expression of functional cancer testis antigens in human renal cell carcinoma: immunotherapeutic implications. Clin Cancer Res. 2002;8(8):2690–2695.
    1. Coral S, Sigalotti L, Gasparollo A, Cattarossi I, Visintin A, Cattelan A, Altomonte M, Maio M. Prolonged upregulation of the expression of HLA class I antigens and costimulatory molecules on melanoma cells treated with 5-aza-2′-deoxycytidine (5-AZA-CdR) J Immunother. 1999;22(1):16–24. doi: 10.1097/00002371-199901000-00003.
    1. Rockmann H, Schadendorf D. Drug resistance in human melanoma: mechanisms and therapeutic opportunities. Onkologie. 2003;26(6):581–587. doi: 10.1159/000074156.
    1. Jazirehi AR, Baritaki S, Koya RC, Bonavida B, Economou JS. Molecular mechanism of MART-1 +/A*0201 + human melanoma resistance to specific CTL-killing despite functional tumor-CTL interaction. Cancer Res. 2011;71(4):1406–1417. doi: 10.1158/0008-5472.CAN-10-1296.
    1. Villanueva J, Vultur A, Lee JT, Somasundaram R, Fukunaga-Kalabis M, Cipolla AK, Wubbenhorst B, Xu X, Gimotty PA, Kee D, Santiago-Walker AE, Letrero R, D’Andrea K, Pushparajan A, Hayden JE, Brown KD, Laquerre S, McArthur GA, Sosman JA, Nathanson KL, Herlyn M. Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell. 2010;18(6):683–695. doi: 10.1016/j.ccr.2010.11.023.
    1. Pollak M. Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer. 2008;8(12):915–928. doi: 10.1038/nrc2536.
    1. Baylin SB, Herman JG. DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet: TIG. 2000;16(4):168–174. doi: 10.1016/S0168-9525(99)01971-X.
    1. Plimack ER, Stewart DJ, Issa JP. Combining epigenetic and cytotoxic therapy in the treatment of solid tumors. J Clin Oncol. 2007;25(29):4519–4521. doi: 10.1200/JCO.2007.12.6029.
    1. Saunthararajah Y, Hillery CA, Lavelle D, Molokie R, Dorn L, Bressler L, Gavazova S, Chen YH, Hoffman R, DeSimone J. Effects of 5-aza-2′-deoxycytidine on fetal hemoglobin levels, red cell adhesion, and hematopoietic differentiation in patients with sickle cell disease. Blood. 2003;102(12):3865–3870. doi: 10.1182/blood-2003-05-1738.
    1. DeSimone J, Koshy M, Dorn L, Lavelle D, Bressler L, Molokie R, Talischy N. Maintenance of elevated fetal hemoglobin levels by decitabine during dose interval treatment of sickle cell anemia. Blood. 2002;99(11):3905–3908. doi: 10.1182/blood.V99.11.3905.
    1. Issa JP, Garcia-Manero G, Giles FJ, Mannari R, Thomas D, Faderl S, Bayar E, Lyons J, Rosenfeld CS, Cortes J, Kantarjian HM. Phase 1 study of low-dose prolonged exposure schedules of the hypomethylating agent 5-aza-2′-deoxycytidine (decitabine) in hematopoietic malignancies. Blood. 2004;103(5):1635–1640. doi: 10.1182/blood-2003-03-0687.
    1. Laille E, Shi T, Garcia-Manero G, Cogle CR, Gore SD, Kumar KJ, Skikne BS, MacBeth KJ (2012) Extended dosing of oral azacitidine (CC-486) for 14 and 21 days provides more effective methylation reversal than a 7-day schedule. ASH Annual Meeting Abstracts 120(21):1337
    1. Gore SD, Baylin S, Sugar E, Carraway H, Miller CB, Carducci M, Grever M, Galm O, Dauses T, Karp JE, Rudek MA, Zhao M, Smith BD, Manning J, Jiemjit A, Dover G, Mays A, Zwiebel J, Murgo A, Weng LJ, Herman JG. Combined DNA methyltransferase and histone deacetylase inhibition in the treatment of myeloid neoplasms. Cancer Res. 2006;66(12):6361–6369. doi: 10.1158/0008-5472.CAN-06-0080.
    1. Schrump DS, Fischette MR, Nguyen DM, Zhao M, Li X, Kunst TF, Hancox A, Hong JA, Chen GA, Pishchik V, Figg WD, Murgo AJ, Steinberg SM. Phase I study of decitabine-mediated gene expression in patients with cancers involving the lungs, esophagus, or pleura. Clin Cancer Res. 2006;12(19):5777–5785. doi: 10.1158/1078-0432.CCR-06-0669.
    1. Abele R, Clavel M, Dodion P, Bruntsch U, Gundersen S, Smyth J, Renard J, van Glabbeke M, Pinedo HM. The EORTC early clinical trials cooperative group experience with 5-aza-2′-deoxycytidine (NSC 127716) in patients with colo-rectal, head and neck, renal carcinomas and malignant melanomas. Eur J Cancer Clin oncol. 1987;23(12):1921–1924. doi: 10.1016/0277-5379(87)90060-5.
    1. Samlowski WE, Leachman SA, Wade M, Cassidy P, Porter-Gill P, Busby L, Wheeler R, Boucher K, Fitzpatrick F, Jones DA, Karpf AR. Evaluation of a 7-day continuous intravenous infusion of decitabine: inhibition of promoter-specific and global genomic DNA methylation. J Clin Oncol. 2005;23(17):3897–3905. doi: 10.1200/JCO.2005.06.118.
    1. Pohlmann P, DiLeone LP, Cancella AI, Caldas AP, Dal Lago L, Campos O, Jr, Monego E, Rivoire W, Schwartsmann G. Phase II trial of cisplatin plus decitabine, a new DNA hypomethylating agent, in patients with advanced squamous cell carcinoma of the cervix. Am J Clin Oncol. 2002;25(5):496–501. doi: 10.1097/00000421-200210000-00015.
    1. Bandyopadhyay D, Mishra A, Medrano EE. Overexpression of histone deacetylase 1 confers resistance to sodium butyrate-mediated apoptosis in melanoma cells through a p53-mediated pathway. Cancer Res. 2004;64(21):7706–7710. doi: 10.1158/0008-5472.CAN-03-3897.
    1. Hu J, Colburn NH. Histone deacetylase inhibition down-regulates cyclin D1 transcription by inhibiting nuclear factor-κB/p65 DNA binding. Mol Cancer Res. 2005;3(2):100–109. doi: 10.1158/1541-7786.MCR-04-0070.
    1. Wang R, Brunner T, Zhang L, Shi Y. Fungal metabolite FR901228 inhibits c-Myc and Fas ligand expression. Oncogene. 1998;17(12):1503–1508. doi: 10.1038/sj.onc.1202059.
    1. Bhalla KN. Epigenetic and chromatin modifiers as targeted therapy of hematologic malignancies. J Clin Oncol. 2005;23(17):3971–3993. doi: 10.1200/JCO.2005.16.600.
    1. Lindemann RK, Gabrielli B, Johnstone RW. Histone-deacetylase inhibitors for the treatment of cancer. Cell Cycle. 2004;3(6):779–788. doi: 10.4161/cc.3.6.927.
    1. Guo F, Sigua C, Tao J, Bali P, George P, Li Y, Wittmann S, Moscinski L, Atadja P, Bhalla K. Cotreatment with histone deacetylase inhibitor LAQ824 enhances Apo-2L/tumor necrosis factor-related apoptosis inducing ligand-induced death inducing signaling complex activity and apoptosis of human acute leukemia cells. Cancer Res. 2004;64(7):2580–2589. doi: 10.1158/0008-5472.CAN-03-2629.
    1. Bali P, Pranpat M, Bradner J, Balasis M, Fiskus W, Guo F, Rocha K, Kumaraswamy S, Boyapalle S, Atadja P, Seto E, Bhalla K. Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: a novel basis for antileukemia activity of histone deacetylase inhibitors. J Biol Chem. 2005;280(29):26729–26734. doi: 10.1074/jbc.C500186200.
    1. Fiskus W, Pranpat M, Bali P, Balasis M, Kumaraswamy S, Boyapalle S, Rocha K, Wu J, Giles F, Manley PW, Atadja P, Bhalla K. Combined effects of novel tyrosine kinase inhibitor AMN107 and histone deacetylase inhibitor LBH589 against Bcr-Abl—expressing human leukemia cells. Blood. 2006;108(2):645–652. doi: 10.1182/blood-2005-11-4639.
    1. Richon VM, Sandhoff TW, Rifkind RA, Marks PA. Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc Natl Acad Sci USA. 2000;97(18):10014–10019. doi: 10.1073/pnas.180316197.
    1. Glaser KB, Staver MJ, Waring JF, Stender J, Ulrich RG, Davidsen SK. Gene expression profiling of multiple histone deacetylase (HDAC) inhibitors: defining a common gene set produced by HDAC inhibition in T24 and MDA carcinoma cell lines. Mol Cancer Ther. 2003;2(2):151–163. doi: 10.4161/cbt.2.2.349.
    1. Scuto A, Kirschbaum M, Kowolik C, Kretzner L, Juhasz A, Atadja P, Pullarkat V, Bhatia R, Forman S, Yen Y, Jove R. The novel histone deacetylase inhibitor, LBH589, induces expression of DNA damage response genes and apoptosis in Ph—acute lymphoblastic leukemia cells. Blood. 2008;111(10):5093–5100. doi: 10.1182/blood-2007-10-117762.
    1. Kobayashi Y, Ohtsuki M, Murakami T, Kobayashi T, Sutheesophon K, Kitayama H, Kano Y, Kusano E, Nakagawa H, Furukawa Y. Histone deacetylase inhibitor FK228 suppresses the Ras-MAP kinase signaling pathway by upregulating Rap1 and induces apoptosis in malignant melanoma. Oncogene. 2006;25(4):512–524.
    1. Steele N, Finn P, Brown R, Plumb JA. Combined inhibition of DNA methylation and histone acetylation enhances gene re-expression and drug sensitivity in vivo. Br J Cancer. 2009;100(5):758–763. doi: 10.1038/sj.bjc.6604932.
    1. Saunthararajah Y, Hillery C, Lavelle D, et al. Effects of 5-aza-2′-deoxycytidine on fetal hemoglobin levels, red cell adhesion, and hematopoietic differentiation in patients with sickle cell disease. Blood. 2003;102:3865–3870. doi: 10.1182/blood-2003-05-1738.

Source: PubMed

3
Abonnieren