Everolimus-facilitated calcineurin inhibitor reduction in Asian de novo kidney transplant recipients: 2-year results from the subgroup analysis of the TRANSFORM study

Yoshihiko Watarai, Romina Danguilan, Concesa Casasola, Shen-Shin Chang, Prajej Ruangkanchanasetr, Terence Kee, Hin Seng Wong, Takashi Kenmochi, Angel Joaquin Amante, Kuo-Hsiung Shu, Atiporn Ingsathit, Peter Bernhardt, Maria Pilar Hernandez-Gutierrez, Duck Jong Han, Myoung Soo Kim, Yoshihiko Watarai, Romina Danguilan, Concesa Casasola, Shen-Shin Chang, Prajej Ruangkanchanasetr, Terence Kee, Hin Seng Wong, Takashi Kenmochi, Angel Joaquin Amante, Kuo-Hsiung Shu, Atiporn Ingsathit, Peter Bernhardt, Maria Pilar Hernandez-Gutierrez, Duck Jong Han, Myoung Soo Kim

Abstract

Objective: We analyzed the efficacy and safety of an everolimus with reduced-exposure calcineurin inhibitor (EVR+rCNI) versus mycophenolic acid with standard-exposure CNI (MPA+sCNI) regimen in Asian patients from the TRANSFORM study.

Methods: In this 24-month, open-label study, de novo kidney transplant recipients (KTxRs) were randomized (1:1) to receive EVR+rCNI or MPA+sCNI, along with induction therapy and corticosteroids.

Results: Of the 2037 patients randomized in the TRANSFORM study, 293 were Asian (EVR+rCNI, N = 136; MPA+sCNI, N = 157). At month 24, EVR+rCNI was noninferior to MPA+sCNI for the binary endpoint of estimated glomerular filtration rate (eGFR) < 50 ml/min/1.73 m2 or treated biopsy-proven acute rejection (27.0% vs. 29.2%, P = .011 for a noninferiority margin of 10%). Graft loss and death were reported for one patient each in both arms. Mean eGFR was higher in EVR+rCNI versus MPA+sCNI (72.2 vs. 66.3 ml/min/1.73 m2 , P = .0414) even after adjusting for donor type and donor age (64.3 vs. 59.3 ml/min/1.73 m2 , P = .0582). Overall incidence of adverse events was comparable. BK virus (4.4% vs. 12.1%) and cytomegalovirus (4.4% vs. 13.4%) infections were significantly lower in the EVR+rCNI arm.

Conclusion: This subgroup analysis in Asian de novo KTxRs demonstrated that the EVR+rCNI versus MPA+sCNI regimen provides comparable antirejection efficacy, better renal function, and reduced viral infections (NCT01950819).

Keywords: everolimus; kidney transplant; reduced calcineurin inhibitor; reduced cyclosporine; reduced tacrolimus.

Conflict of interest statement

Yoshihiko Watarai has received consulting honoraria and travel grants from Novartis, Astellas, and Chugai Pharma. Romina Danguilan has received speaker's honoraria from Novartis, Astellas, MSD, Sanofi, Macropharma, and Pharmalink. Concesa Casasola, Shen‐Shin Chang, Prajej Ruangkanchanasetr, Terence Kee, Hin Seng Wong, Takashi Kenmochi, Angel Joaquin Amante, Kuo‐Hsiung Shu, Atiporn Ingsathit, Duck Jong Han, and Myoung Soo Kim have no conflict of interest. Peter Bernhardt and Maria Pilar Hernandez‐Gutierrez are employees of Novartis.

© 2021 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

Figures

FIGURE 1
FIGURE 1
Patient disposition. Abbreviations: EVR, everolimus; MPA, mycophenolic acid; rCNI, reduced‐exposure calcineurin inhibitors; sCNI, standard‐exposure CNI
FIGURE 2
FIGURE 2
Trough concentrations of (A) everolimus (B) tacrolimus, and (C) cyclosporine (safety analysis set). Abbreviations: C0, trough level; CsA, cyclosporine; EVR, everolimus; M, month; MPA, mycophenolic acid; rCNI, reduced‐exposure calcineurin inhibitors; sCNI, standard‐exposure CNI; TAC, tacrolimus; Tx, transplant; W, week. Shaded area represents target trough levels
FIGURE 3
FIGURE 3
Estimated GFR during the study (on‐treatment analysis). Abbreviations: BL, baseline; eGFR, estimated glomerular filtration rate; EVR, everolimus; M, month; MDRD4, 4‐Modification of Diet in Renal Disease; MPA, mycophenolic acid; rCNI, reduced‐exposure calcineurin inhibitors; sCNI, standard‐exposure CNI; Tx, transplant; W, week
FIGURE 4
FIGURE 4
Multivariate analysis for patients with eGFR below or above 50 ml/min/1.73 m2 at month 24. Abbreviations: AR, acute rejection; ECD, expanded criterial donor; eGFR, estimated glomerular filtration rate; LD, living donor; M, month; SCD, standard criteria donor

References

    1. Liyanage T, Ninomiya T, Perkovic V, et al. Chronic kidney disease in Asia: protocol for a collaborative overview. Nephrology (Carlton). 2017;22(6):456‐462.
    1. Jha V, Garcia‐Garcia G, Iseki K, et al. Chronic kidney disease: global dimension and perspectives. Lancet. 2013;382(9888):260‐272.
    1. Kataoka‐Yahiro M, Davis J, Gandhi K, et al. Asian Americans & chronic kidney disease in a nationally representative cohort. BMC Nephrol. 2019;20(1):10.
    1. Kamal AI, Harraz AM, Shokeir AA. Controversies related to living kidney donors. Arab J Urol. 2011;9(4):225‐233.
    1. Hart A, Smith JM, Skeans MA, et al. OPTN/SRTR 2017 annual data report: kidney. Am J Transplant. 2019;19(2):19‐123.
    1. Chapman JR. Chronic calcineurin inhibitor nephrotoxicity‐lest we forget. Am J Transplant. 2011;11(4):693‐697.
    1. Sprangers B, Nair V, Launay‐Vacher V, et al. Risk factors associated with post‐kidney transplant malignancies: an article from the Cancer‐Kidney International Network. Clin Kidney J. 2018;11(3):315‐329.
    1. Singh N. Infectious complications in organ transplant recipients with the use of calcineurin‐inhibitor agent‐based immunosuppressive regimens. Curr Opin Infect Dis. 2005;18(4):342‐345.
    1. Hojo M, Morimoto T, Maluccio M, et al. Cyclosporine induces cancer progression by a cell‐autonomous mechanism. Nature. 1999;397(6719):530‐534.
    1. Maluccio M, Sharma V, Lagman M, et al. Tacrolimus enhances transforming growth factor‐beta1 expression and promotes tumor progression. Transplantation. 2003;76(3):597‐602.
    1. Awan AA, Niu J, Pan JS, et al. Trends in the causes of death among kidney transplant recipients in the United States (1996‐2014). Am J Nephrol. 2018;48(6):472‐481.
    1. Kasiske BL, Israni AK, Snyder JJ, et al. The relationship between kidney function and long‐term graft survival after kidney transplant. Am J Kidney Dis. 2011;57(3):466‐475.
    1. Park WD, Larson TS, Griffin MD, et al. Identification and characterization of kidney transplants with good glomerular filtration rate at 1 year but subsequent progressive loss of renal function. Transplantation. 2012;94(9):931‐939.
    1. Smith‐Palmer J, Kalsekar A, Valentine W. Influence of renal function on long‐term graft survival and patient survival in renal transplant recipients. Curr Med Res Opin. 2014;30(2):235‐242.
    1. Schuurman HJ, Cottens S, Fuchs S, et al. SDZ RAD, a new rapamycin derivative: synergism with cyclosporine. Transplantation. 1997;64(1):32‐35.
    1. Zeier M, Van Der Giet M. Calcineurin inhibitor sparing regimens using m‐target of rapamycin inhibitors: an opportunity to improve cardiovascular risk following kidney transplantation? Transpl Int. 2011;24(1):30‐42.
    1. Paoletti E, Marsano L, Bellino D, et al. Effect of everolimus on left ventricular hypertrophy of de novo kidney transplant recipients: a 1 year, randomized, controlled trial. Transplantation. 2012;93(5):503‐508.
    1. Eisen HJ, Tuzcu EM, Dorent R, et al. Everolimus for the prevention of allograft rejection and vasculopathy in cardiac‐transplant recipients. N Engl J Med. 2003;349(9):847‐858.
    1. Merli M, Ferrario A, Maffioli M, et al. Everolimus in diffuse large B‐cell lymphomas. Future Oncol. 2015;11(3):373‐383.
    1. Baselga J, Campone M, Piccart M, et al. Everolimus in postmenopausal hormone‐receptor‐positive advanced breast cancer. N Engl J Med. 2012;366(6):520‐529.
    1. Brennan DC, Legendre C, Patel D, et al. Cytomegalovirus incidence between everolimus versus mycophenolate in de novo renal transplants: pooled analysis of three clinical trials. Am J Transplant. 2011;11(11):2453‐2462.
    1. Tedesco‐Silva H, Felipe C, Ferreira A, et al. Reduced incidence of cytomegalovirus infection in kidney transplant recipients receiving everolimus and reduced tacrolimus doses. Am J Transplant. 2015;15(10):2655‐2664.
    1. Tedesco Silva H Jr, Cibrik D, Johnston T, et al. Everolimus plus reduced‐exposure CsA versus mycophenolic acid plus standard‐exposure CsA in renal‐transplant recipients. Am J Transplant. 2010;10(6):1401‐1413.
    1. Cibrik D, Silva HT Jr, Vathsala A, et al. Randomized trial of everolimus‐facilitated calcineurin inhibitor minimization over 24 months in renal transplantation. Transplantation. 2013;95(7):933‐942.
    1. Qazi Y, Shaffer D, Kaplan B, et al. Efficacy and safety of everolimus plus low‐dose tacrolimus versus mycophenolate mofetil plus standard‐dose tacrolimus in de novo renal transplant recipients: 12‐month data. Am J Transplant. 2017;17(5):1358‐1369.
    1. Takahashi K, Uchida K, Yoshimura N, et al. Efficacy and safety of concentration‐controlled everolimus with reduced‐dose cyclosporine in Japanese de novo renal transplant patients: 12‐month results. Transplant Res. 2013;2(1):14.
    1. Pascual J, Srinivas TR, Chadban S, et al. TRANSFORM: a novel study design to evaluate the effect of everolimus on long‐term outcomes after kidney transplantation. Open Access J Clin Trials. 2014;6:45‐54.
    1. Pascual J, Berger SP, Witzke O, et al. Everolimus with reduced calcineurin inhibitor exposure in renal transplantation. J Am Soc Nephrol. 2018;29(7):1979‐1991.
    1. Berger SP, Sommerer C, Witzke O, et al. Two‐year outcomes in de novo renal transplant recipients receiving everolimus‐facilitated calcineurin inhibitor reduction regimen from the TRANSFORM study. Am J Transplant. 2019;19(11):3018‐3034.
    1. Davis CL, Delmonico FL. Living‐donor kidney transplantation: a review of the current practices for the live donor. J Am Soc Nephrol. 2005;16(7):2098‐2110.
    1. Hiramitsu T, Okada M, Futamura K, et al. 5‐year follow‐up of a randomized clinical study comparing everolimus plus reduced‐dose cyclosporine with mycophenolate mofetil plus standard‐dose cyclosporine in de novo kidney transplantation: retrospective single center assessment. Int Immunopharmacol. 2016;39:192‐198.
    1. Liefeldt L, Brakemeier S, Glander P, et al. Donor‐specific HLA antibodies in a cohort comparing everolimus with cyclosporine after kidney transplantation. Am J Transplant. 2012;12(5):1192‐1198.
    1. Kamar N, Del Bello A, Congy‐Jolivet N, et al. Incidence of donor‐specific antibodies in kidney transplant patients following conversion to an everolimus‐based calcineurin inhibitor‐free regimen. Clin Transplant. 2013;27(3):455‐462.
    1. de Fijter JW, Holdaas H, Oyen O, et al. Early conversion from calcineurin inhibitor‐ to everolimus‐based therapy following kidney transplantation: results of the randomized ELEVATE trial. Am J Transplant. 2017;17(7):1853‐1867.
    1. Perbos E, Juinier E, Guidicelli G, et al. Evolution of donor‐specific antibodies (DSA) and incidence of de novo DSA in solid organ transplant recipients after switch to everolimus alone or associated with low dose of calcineurin inhibitors. Clin Transplant. 2014;28(9):1054‐1060.
    1. Rodríguez‐Ferrero ML, Hurtado E, Alenda R, et al. Donor specific antibodies after conversion from mycophenolate mofetil with standard exposure tacrolimus to everolimus with tacrolimus minimization in stable kidney transplanted recipients. Transplantation. 2018;102:586.
    1. Narumi S, Watarai Y, Goto N, et al. Everolimus‐based immunosuppression possibly suppresses mean fluorescence intensity values of de novo donor‐specific antibodies after primary kidney transplantation. Transplant Proc. 2019;51(5):1378‐1381.
    1. CERTICAN/ZORTRESS [Prescribing Information]. East Hannover, New Jersey: Novartis Pharmaceuticals Corporation; 2018.

Source: PubMed

3
Abonnieren