The causes and consequences of seasonal variation in COPD exacerbations

Gavin C Donaldson, Jadwiga A Wedzicha, Gavin C Donaldson, Jadwiga A Wedzicha

Abstract

The time of year when patients experience exacerbations of chronic obstructive pulmonary disease is a much-overlooked feature of the disease. The higher incidence of exacerbations in winter has important consequences for patients in terms of increased morbidity and mortality. The seasonality also imposes a considerable burden on already-overloaded health care services, with both primary care consultations and hospital admissions increasing in number. The seasonality of exacerbations varies with latitude, and is greater in more temperate climates, where there may be less protection from outdoor and indoor cold exposure. The precise causes of the seasonality are unknown, but thought to be partly due to the increased prevalence of respiratory viral infections circulating in cold, damp conditions. Increased susceptibility to viral infection may also be a mechanism mediated through increased airway inflammation or possibly reduced vitamin D levels. The seasonality of exacerbations informs us about the triggers of exacerbations and suggests possible strategies to reduce their number.

Keywords: exacerbations of COPD; seasonality; winter morbidity; winter mortality.

Figures

Figure 1
Figure 1
Proportion of patients reporting an exacerbation in the (A) northern or southern regions, and in (B) the tropics, averaged over 1 calendar year. Notes: Reproduced with permission of the European Respiratory Society. Eur Respir J January 2012; 39:38–45; published ahead of print July 7, 2011, doi:10.1183/09031936.00194610 © European Respiratory Society.
Figure 2
Figure 2
Diary-card data collected from the London COPD cohort between November 1995 and November 2012. Notes: Points are the percentage of patient-reporting activity, worsening of respiratory symptoms or onset of exacerbation on days within 1°C, or average peak expiratory flow rate on those days. Abbreviations: COPD, chronic obstructive pulmonary disease; PEFR, peak expiratory flow rate.
Figure 3
Figure 3
Seasonality of COPD mortality, by age. Notes: Mean daily deaths per million population (mortality) for men and women aged 65–74, 75–84, and 85+ years for each month between 1976 and 2012 in England and Wales from COPD (coded with the ninth and tenth International Classification of Diseases [ICD] as ICD-9 490–492, 496 for years before 2001, and ICD-10 J40–J44 thereafter) were extracted from death-registration data supplied by the Office of National Statistics (ONS). To be compatible with deaths before 1983 and after 1993, daily deaths from COPD were divided by 0.940 to adjust for differences in mortality-coding instructions in the intervening years. Deaths classified using the ICD-10 (2001–2012) were divided by 0.966 to allow for differences between the ICD-9 and ICD-10. Deaths per day per million population were obtained after dividing daily deaths by daily population estimates obtained by fitting a fifth-order polynomial to yearly estimates of the populations from the ONS from census data. Abbreviation: COPD, chronic obstructive pulmonary disease.
Figure 4
Figure 4
Time-series analysis showing the time courses of respiratory mortality following a cold day. Notes: M RES describes the increase in mortality per 1°C fall in temperature. The y-axis is the regression coefficients of mortality on temperature on days before and after day 0. The horizontal line is the means of values at lag −30 to −16 days. *Peak value and significantly different from zero, P<0.001. Reproduced from J Epidemiol Community Health, Early increases in ischaemic heart disease mortality dissociated from and later changes associated with respira tory mortality after cold weather in south east England, Donaldson GC, Keatinge WR, 51(6),643–648, copyright 1997, with permission from BMJ Publishing Group Ltd. Abbreviation: M RES, respiratory disease mortality.
Figure 5
Figure 5
Weekly data on laboratory reports of respiratory virus isolation by the Health Protection Agency/Public Health England and National Health Service hospital laboratories in England and Wales. Notes: Data points are the average for that week over years 1980–2013. The y-axes show the number of viruses isolated per week. Adapted from Respiratory infections: laboratory reports 2014 [homepage on the internet]. Public Health England; 2014 [updated September 5, 2014]. Available from: https://www.gov.uk/government/publications/respiratory-infections-laboratory-reports-2014. Accessed September 24, 2014. Contains public sector information licensed under the Open Government Licence v2.0.
Figure 6
Figure 6
Percentage of patients going outside the home against the daily mean temperature throughout the year. Notes: Points are at the center of each 1°C interval; vertical lines are at 2.5°C and 20.5°C. Reproduced with permission from the American College of Chest Physicians from Donaldson et al.

References

    1. Aaron SD, Donaldson GC, Whitmore GA, Hurst JR, Ramsay T, Wedzicha JA. Time course and pattern of COPD exacerbation onset. Thorax. 2012;67(3):238–243.
    1. Donaldson GC, Wedzicha JA. COPD exacerbations. 1: Epidemiology. Thorax. 2006;61(2):164–168.
    1. Anthonisen NR, Manfreda J, Warren CP, Hershfield ES, Harding GK, Nelson NA. Antibiotic therapy in exacerbations of chronic obstructive pulmonary disease. Ann Intern Med. 1987;106(2):196–204.
    1. National Clinical Guideline Centre Chronic Obstructive Pulmonary Disease: Management of Chronic Obstructive Pulmonary Disease in Adults in Primary and Secondary Care. London: National Clinical Guideline Centre; 2010. [Accessed August 4, 2014]. .
    1. Wedzicha JA, Seemungal TA, MacCallum PK, et al. Acute exacerbations of chronic obstructive pulmonary disease are accompanied by elevations of plasma fibrinogen and serum IL-6 levels. Thromb Haemost. 2000;84(2):210–215.
    1. Hurst J, Donaldson GC, Perera WR, et al. Use of plasma biomarkers at exacerbation of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2006;174(8):867–874.
    1. Bhowmik A, Seemungal TA, Sapsford RJ, Wedzicha JA. Relation of sputum inflammatory markers to symptoms and lung function changes in COPD exacerbations. Thorax. 2000;55(2):114–120.
    1. Garcia-Gutierrez S, Quintana JM, Barrio I, et al. Application of appropriateness criteria for hospitalization in COPD exacerbation. Intern Emerg Med. 2013;8(4):349–357.
    1. Calderon-Larranaga A, Carney L, Soljak M, et al. Association of population and primary healthcare factors with hospital admission rates for chronic obstructive pulmonary disease in England: national cross-sectional study. Thorax. 2011;66(3):191–196.
    1. Organisation for Economic Co-operation and Development . Health at a Glance 2011: OECD Indicators. Paris: OECD; 2011. [Accessed August 4, 2014]. Available from: .
    1. Jenkins CR, Celli B, Anderson JA, et al. Seasonality and determinants of moderate and severe COPD exacerbations in the TORCH study. Eur Respir J. 2012;39(1):38–45.
    1. Rabe KF, Fabbri LM, Vogelmeier C, et al. Seasonal distribution of COPD exacerbations in the Prevention of Exacerbations with Tiotropium in COPD trial. Chest. 2013;143(3):711–719.
    1. Donaldson GC, Seemungal T, Jeffries DJ, Wedzicha JA. Effect of temperature on lung function and symptoms in chronic obstructive pulmonary disease. Eur Respir J. 1999;13(4):844–849.
    1. Donaldson GC, Goldring JJ, Wedzicha JA. Influence of season on exacerbation characteristics in patients with COPD. Chest. 2012;141(1):94–100.
    1. Johnston NW, McIvor A, Lambert K, et al. The Christmas season as a risk factor for chronic obstructive pulmonary disease exacerbations. Can Respir J. 2010;17(6):275–281.
    1. Seemungal TA, Donaldson GC, Paul EA, Bestall JC, Jeffries DJ, Wedzicha JA. Effect of exacerbation on quality of life in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1998;157(5 Pt 1):1418–1422.
    1. Miravitlles M, Ferrer M, Pont A, et al. Effect of exacerbations on quality of life in patients with chronic obstructive pulmonary disease: a 2 year follow up study. Thorax. 2004;59(5):387–395.
    1. Quint JK, Baghai-Ravary R, Donaldson GC, Wedzicha JA. Relationship between depression and exacerbations in COPD. Eur Respir J. 2008;32(1):53–60.
    1. Singh SJ, Sewell L, Williams JE, Morgan MD. Seasonal variations in exercise tolerance, activity and quality of life in patients with chronic obstructive pulmonary disease (COPD); Poster presented at: 15th Annual Congress of the European Respiratory Society; September 17–21, 2005; Copenhagen, Denmark.
    1. Public Health England . Cold Weather Plan for England 2013: Protecting Health and Reducing Harm from Cold Weather. London: Public Health England; 2013. [Accessed August 4, 2014]. Available from: .
    1. Anderson HR, Spix C, Medina S, et al. Air pollution and daily admissions for chronic obstructive pulmonary disease in 6 European cities: results from the APHEA project. Eur Respir J. 1997;10(5):1064–1071.
    1. Ballester F, Pérez-Hoyos S, Rivera ML, et al. The patterns of use and factors associated with the patient admission of hospital emergencies for asthma and chronic obstructive pulmonary disease. Arch Bronconeumol. 1999;35(1):20–26. Spanish.
    1. Vilkman S, Keistinen T, Tuuponen T, Kivelä SL. Seasonal variation in hospital admissions for chronic obstructive pulmonary disease in Finland. Arctic Med Res. 1996;55(4):182–186.
    1. Monteiro A, Carvalho V, Góis J, Sousa C. Use of “Cold Spell” indices to quantify excess chronic obstructive pulmonary disease (COPD) morbidity during winter (November to March 2000–2007): case study in Porto. Int J Biometeorol. 2013;57(6):857–870.
    1. Brims FJ, Asiimwe A, Andrews NP, et al. Weekend admission and mortality from acute exacerbations of chronic obstructive pulmonary disease in winter. Clin Med. 2011;11(4):334–339.
    1. Mapel DW, Dedrick D, Davis K. Trends and cardiovascular co-morbidities of COPD patients in the Veterans Administration Medical System, 1991–1999. COPD. 2005;2(1):35–41.
    1. Lim YH, Hong YC, Kim H. Effects of diurnal temperature range on cardiovascular and respiratory hospital admissions in Korea. Sci Total Environ. 2012:417–418. 55–60.
    1. Ko FW, Tam W, Wong TW, et al. Temporal relationship between air pollutants and hospital admissions for chronic obstructive pulmonary disease in Hong Kong. Thorax. 2007;62(9):780–785.
    1. Upshur RE, Moineddin R, Crighton E, Kiefer L, Mamdani M. Simplicity within complexity: seasonality and predictability of hospital admissions in the province of Ontario 1988–2001, a population-based analysis. BMC Health Serv Res. 2005;5(1):13.
    1. Marno P, Chalder M, Laing-Morton T, Levy M, Sachon P, Halpin D. Can a health forecasting service offer COPD patients a novel way to manage their condition? J Health Serv Res Policy. 2010;15(3):150–155.
    1. Bryden C, Bird W, Titley HA, Halpin DM, Levy ML. Stratification of COPD patients by previous admission for targeting of preventative care. Respir Med. 2009;103(4):558–565.
    1. Jordan RE, Hawker JI, Ayres JG, et al. Effect of social factors on winter hospital admission for respiratory disease: a case-control study of older people in the UK. Br J Gen Pract. 2008;58(551):400–402.
    1. McAllister DA, Morling JR, Fischbacher CM, MacNee W, Wild SH. Socioeconomic deprivation increases the effect of winter on admissions to hospital with COPD: retrospective analysis of 10 years of national hospitalisation data. Prim Care Respir J. 2013;22(3):296–299.
    1. Kinnunen T, Säynäjäkangs O, Tuuponen T, Keistinen T. Regional and seasonal variation in the length of hospital stay for chronic obstructive pulmonary disease in Finland. Int J Circumpolar Health. 2002;61(2):131–135.
    1. Walker GE, Lee C, Elkin SL. Seasonality and attendance at a pulmonary rehabilitation programme. Thorax. 2011;66(7):634–635.
    1. Moineddin R, Nie JX, Domb G, Leong AM, Upshur RE. Seasonality of primary care utilization for respiratory diseases in Ontario: a time-series analysis. BMC Health Serv Res. 2008;8:160.
    1. Mannino DM, Homa DM, Akinbami LJ, Ford ES, Redd SC. Chronic obstructive pulmonary disease surveillance--United States, 1971–2000. Respir Care. 2002;47(10):1184–1199.
    1. Wilkinson P, Pattenden S, Armstrong B, et al. Vulnerability to winter mortality in elderly people in Britain: population based study. BMJ. 2004;329(7467):647.
    1. Wordley J, Walters S, Ayres JG. Short term variations in hospital admissions and mortality and particulate air pollution. Occup Environ Med. 1997;54(2):108–116.
    1. Kelsall JE, Samet JM, Zeger SL, Xu J. Air pollution and mortality in Philadelphia, 1974–1988. Am J Epidemiol. 1997;146(9):750–762.
    1. Donaldson GC, Keatinge WR. Early increases in ischaemic heart disease mortality dissociated from and later changes associated with respiratory mortality after cold weather in south east England. J Epidemiol Community Health. 1997;51(6):643–648.
    1. Group TE. Cold exposure and winter mortality from ischaemic heart disease, cerebrovascular disease, respiratory disease, and all causes in warm and cold regions of Europe. The Eurowinter Group. Lancet. 1997;349(9062):1341–1346.
    1. Donaldson GC, Tchernjavskii VE, Ermakov SP, Bucher K, Keatinge WR. Winter mortality and cold stress in Yekaterinburg, Russia: interview survey. BMJ. 1998;316(7130):514–518.
    1. Donaldson GC, Ermakov SP, Komarov YM, McDonald CP, Keatinge WR. Cold related mortalities and protection against cold in Yakutsk, eastern Siberia: observation and interview study. BMJ. 1998;317(7164):978–982.
    1. Thomson H, Petticrew M, Morrison D. Health effects of housing improvement: systematic review of intervention studies. BMJ. 2001;323(7306):187–190.
    1. Howden-Chapman P, Pierse N, Nicholls S, et al. Effects of improved home heating on asthma in community dwelling children: randomised controlled trial. BMJ. 2008;337:a1411.
    1. Howden-Chapman P, Matheson A, Crane J, et al. Effect of insulating existing houses on health inequality: cluster randomised study in the community. BMJ. 2007;334(7591):460.
    1. Keatinge W, Donaldson G. Winter deaths: warm housing is not enough. BMJ. 2001;323(7305):166–167.
    1. Keatinge WR. Seasonal mortality among elderly people with unrestricted home heating. Br Med J (Clin Res Ed) 1986;293(6549):732–733.
    1. Osman LM, Ayres JG, Garden C, Reglitz K, Lyon J, Douglas JG. Home warmth and health status of COPD patients. Eur J Public Health. 2008;18(4):399–405.
    1. Ko FW, Ip M, Chan PK, et al. Viral etiology of acute exacerbations of COPD in Hong Kong. Chest. 2007;132(3):900–908.
    1. McManus TE, Marley AM, Baxter N, et al. Respiratory viral infection in exacerbations of COPD. Respir Med. 2008;102(11):1575–1580.
    1. Seemungal T, Harper-Owen R, Bhowmik A, et al. Respiratory viruses, symptoms, and inflammatory markers in acute exacerbations and stable chronic obstructive pulmonary disease. Am J Respir Crit care Med. 2001;164(9):1618–1623.
    1. Beckham JD, Cadena A, Lin J, et al. Respiratory viral infections in patients with chronic, obstructive pulmonary disease. J Infect. 2005;50(4):322–330.
    1. Rohde G, Wiethege A, Borg I, et al. Respiratory viruses in exacerbations of chronic obstructive pulmonary disease requiring hospitalisation: a case-control study. Thorax. 2003;58(1):37–42.
    1. Monto AS. Epidemiology of viral respiratory infections. Am J Med. 2002;112(Suppl 6A):4S–12S.
    1. Monto AS. The seasonality of rhinovirus infections and its implications for clinical recognition. Clin Ther. 2002;24(12):1987–1997.
    1. Mäkinen TM, Juvonen R, Jokelainen J, et al. Cold temperature and low humidity are associated with increased occurrence of respiratory tract infections. Respir Med. 2009;103(3):456–462.
    1. Johnson C, Eccles R. Acute cooling of the feet and the onset of common cold symptoms. Fam Pract. 2005;22(6):608–613.
    1. Dowling HF, Jackson GG, Spiesman IG, Inouye T. Transmission of the common cold to volunteers under controlled conditions. III. The effect of chilling of the subjects upon susceptibility. Am J Hyg. 1958;68(1):59–65.
    1. Eccles R. An explanation for the seasonality of acute upper respiratory tract viral infections. Acta Otolaryngol. 2002;122(2):183–191.
    1. Tang JW. The effect of environmental parameters on the survival of airborne infectious agents. J R Soc Interface. 2009;6(Suppl 6):S737–S746.
    1. Yang W, Elankumaran S, Marr LC. Relationship between humidity and influenza a viability in droplets and implications for influenza’s seasonality. PloS One. 2012;7(10):e46789.
    1. Shaman J, Kohn M. Absolute humidity modulates influenza survival, transmission, and seasonality. Proc Natl Acad Sci U S A. 2009;106(9):3243–3248.
    1. Hutchinson AF, Thompson MA, Clark L, Irving LB. Communicating information regarding human H1N1-09 virus to high-risk consumers: knowledge and understanding of COPD patients in Melbourne, Australia. Collegian. 2010;17(4):199–205.
    1. Simonsen L, Taylor RJ, Viboud C, Miller MA, Jackson LA. Mortality benefits of influenza vaccination in elderly people: an ongoing controversy. Lancet Infect Dis. 2007;7(10):658–666.
    1. Thijs C, Beyer WE, Govaert PM, Sprenger MJ, Dinant GJ, Knottnerus A. Mortality benefits of influenza vaccination in elderly people. Lancet Infect Dis. 2008;8(8):460–461. author reply 463–465.
    1. Kelly H, Newall AT. Mortality benefits of influenza vaccination in elderly people. Lancet Infect Dis. 2008;8(8):462–463. author reply 463–465.
    1. Voordouw BC, Sturkenboom MC, Dieleman JP, Stricker BH. Mortality benefits of influenza vaccination in elderly people. Lancet Infect Dis. 2008;8(8):461–462. author reply 463–465.
    1. Simonsen L, Taylor RJ, Viboud C, Miller MA, Jackson LA. Mortality benefits of influenza vaccination in elderly people – authors’ reply. Lancet Infect Dis. 2008;8(8):463–465.
    1. Wedzicha JA, Seemungal TA, MacCallum PK, et al. Acute exacerbations of chronic obstructive pulmonary disease are accompanied by elevations of plasma fibrinogen and serum IL-6 levels. Thromb Haemost. 2000;84(2):210–215.
    1. Turner RB, Fuls JL, Rodgers ND, Goldfarb HB, Lockhart LK, Aust LB. A randomized trial of the efficacy of hand disinfection for prevention of rhinovirus infection. Clin Infect Dis. 2012;54(10):1422–1426.
    1. Quint JK, Donaldson GC, Wassef N, Hurst JR, Thomas M, Wedzicha JA. 25-hydroxyvitamin D deficiency, exacerbation frequency and human rhinovirus exacerbations in chronic obstructive pulmonary disease. BMC Pulm Med. 2012;12:28.
    1. Puhan MA, Siebeling L, Frei A, Zoller M, Bischoff-Ferrari H, ter Riet G. NO association of 25-hydroxyvitamin D with exacerbations in primary care patients with COPD. Chest. 2014;145(1):37–43.
    1. Donaldson GC, Keatinge WR. Mortality related to cold weather in elderly people in southeast England, 1979–1994. BMJ. 1997;315(7115):1055–1056.
    1. Christidis N, Donaldson G, Stott PA. Causes for the recent changes in cold- and heat-related mortality in England and Wales. Clim Change. 2010;102(3–4):539–553.
    1. Respiratory infections: laboratory reports 2014 [homepage on the internet] Public Health England; 2014. [Accessed September 24, 2014]. [updated September 5, 2014]. Available from: . Contains public sector information licensed under the Open Government Licence v2.0.

Source: PubMed

3
Abonnieren