Heart failure: a story of damage, fatigue and injury?

Prithwish Banerjee, Prithwish Banerjee

Abstract

Heart failure has been recognised for years but the complete picture has been difficult to clearly understand. This article aims to try and put forward a proposed mechanistic explanation to encompass all that we see within the clinical heart failure syndrome using supporting published evidence. The aim of the article is to link, using published evidence, all the known varieties of heart failure into a spectrum that is explained by simple interlinked processes. In addition, the concept of routinely looking for reversibility of left ventricular dysfunction is introduced.

Keywords: damage; fatigue; heart failure; hfpef; hfref.

Conflict of interest statement

Competing interests: None declared.

Figures

Figure 1
Figure 1
Suggested plan of assessment of reversibility of LV dysfunction in a patient with heart failure. Although not perfect by any means, this is a starting point. BNP, brain natriuretic peptide; CMR, cardiac MRI scan; LV, left ventricle.

References

    1. Cleland JG, McGowan J. Heart failure due to ischaemic heart disease: epidemiology, pathophysiology and progression. J Cardiovasc Pharmacol 1999;33(suppl 3):S17–29.
    1. Ghuran A, Nolan J. Recreational drug misuse: issues for the cardiologist. Heart 2000;83:627–33. 10.1136/heart.83.6.627
    1. Huffman C, Wagman G, Fudim M, et al. . Reversible cardiomyopathies—a review. Transplant Proc 2010;42:3673–8. 10.1016/j.transproceed.2010.08.034
    1. Balmain S, Padmanabhan N, Ferrell WR, et al. . Differences in arterial compliance, microvascular function and venous capacitance between patients with heart failure and either preserved or reduced left ventricular systolic function. Eur J Heart Fail 2007;9:865–71. 10.1016/j.ejheart.2007.06.003
    1. Maréchaux S, Samson R, van Belle E, et al. . Vascular and microvascular endothelial function in heart failure with preserved ejection fraction. J Card Fail 2016;22:3–11. 10.1016/j.cardfail.2015.09.003
    1. Lee JF, Barrett-O’Keefe Z, Garten RS, et al. . Evidence of microvascular dysfunction in heart failure with preserved ejection fraction. Heart 2016;102:278–84. 10.1136/heartjnl-2015-308403
    1. Giamouzis G, Schelbert EB, Butler J. Growing evidence linking microvascular dysfunction with heart failure with preserved ejection fraction. J Am Heart Assoc 2016;5:e003259 10.1161/JAHA.116.003259
    1. Banerjee P, Motiwala A, Mustafa HM, et al. . Does left ventricular diastolic dysfunction progress through stages? insights from a community heart failure study. Int J Cardiol 2016;221:850–4. 10.1016/j.ijcard.2016.07.091
    1. Izzo JL, Shykoff BE. Arterial stiffness: clinical relevance, measurement, and treatment. Rev Cardiovasc Med 2001;2:297–3440.
    1. Taddei S, Virdis A, Ghiadoni L, et al. . Age-related reduction of NO availability and oxidative stress in humans. Hypertension 2001;38:274–9. 10.1161/01.HYP.38.2.274
    1. Csiszar A, Wang M, Lakatta EG, et al. . Inflammation and endothelial dysfunction during aging: role of NF-kappaB. J Appl Physiol 2008;105:1333–41. 10.1152/japplphysiol.90470.2008
    1. Paulus WJ, Tschöpe C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol 2013;62 10.1016/j.jacc.2013.02.092
    1. Melenovsky V, Borlaug BA, Rosen B, et al. . Cardiovascular features of heart failure with preserved ejection fraction versus nonfailing hypertensive left ventricular hypertrophy in the urban Baltimore community: the role of atrial remodeling/dysfunction. J Am Coll Cardiol 2007;49:198–207. 10.1016/j.jacc.2006.08.050
    1. Schram MT, Henry RM, van Dijk RA, et al. . Increased central artery stiffness in impaired glucose metabolism and type 2 diabetes: the Hoorn Study. Hypertension 2004;43:176–81. 10.1161/01.HYP.0000111829.46090.92
    1. Owan TE, Hodge DO, Herges RM, et al. . Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med 2006;355:251–9. 10.1056/NEJMoa052256
    1. Wang MC, Tsai WC, Chen JY, et al. . Arterial stiffness correlated with cardiac remodelling in patients with chronic kidney disease. Nephrology 2007;12:591–7. 10.1111/j.1440-1797.2007.00826.x
    1. Edwards NC, Steeds RP, Stewart PM, et al. . Effect of spironolactone on left ventricular mass and aortic stiffness in early-stage chronic kidney disease: a randomized controlled trial. J Am Coll Cardiol 2009;54:505–12. 10.1016/j.jacc.2009.03.066
    1. Schwartzkopff B, Brehm M, Mundhenke M, et al. . Repair of coronary arterioles after treatment with perindopril in hypertensive heart disease. Hypertension 2000;36:220–5. 10.1161/01.HYP.36.2.220
    1. Douglas PS, O’Toole ML, Hiller WD, et al. . Cardiac fatigue after prolonged exercise. Circulation 1987;76:1206–13. 10.1161/01.CIR.76.6.1206
    1. Oxborough D, Birch K, Shave R, et al. . “Exercise-induced cardiac fatigue”—a review of the echocardiographic literature. Echocardiography 2010;27:1130–40. 10.1111/j.1540-8175.2010.01251.x
    1. Kasikcioglu E. Diastolic performance after prolonged exercise. Med Sci Sports Exerc 2005;37:164 10.1249/01.MSS.0000149775.97071.F0
    1. Cioffi G, Stefenelli C, Tarantini L, et al. . Chronic left ventricular failure in the community: prevalence, prognosis, and predictors of the complete clinical recovery with return of cardiac size and function to normal in patients undergoing optimal therapy. J Card Fail 2004;10:250–7. 10.1016/j.cardfail.2003.10.002
    1. Sanderson JE, Gibson DG, Brown DJ, et al. . Left ventricular filling in hypertrophic cardiomyopathy. an angiographic study. Br Heart J 1977;39:661–70. 10.1136/hrt.39.6.661
    1. Villari B, Vassalli G, Monrad ES, et al. . Normalization of diastolic dysfunction in aortic stenosis late after valve replacement. Circulation 1995;91:2353–8. 10.1161/01.CIR.91.9.2353
    1. Barone-Rochette G, Piérard S, De Meester de Ravenstein C, et al. . Prognostic significance of LGE by CMR in aortic stenosis patients undergoing valve replacement. J Am Coll Cardiol 2014;64:144–54. 10.1016/j.jacc.2014.02.612
    1. Milano AD, Faggian G, Dodonov M, et al. . Prognostic value of myocardial fibrosis in patients with severe aortic valve stenosis. J Thorac Cardiovasc Surg 2012;144:830–7. 10.1016/j.jtcvs.2011.11.024
    1. Dweck MR, Joshi S, Murigu T, et al. . Midwall fibrosis is an independent predictor of mortality in patients with aortic stenosis. J Am Coll Cardiol 2011;58:1271–9. 10.1016/j.jacc.2011.03.064
    1. Galati G, Leone O, Pasquale F, et al. . Histological and histometric characterization of myocardial fibrosis in end-stage hypertrophic cardiomyopathy: a clinical-pathological study of 30 explanted hearts. Circ Heart Fail 2016;9:e003090 10.1161/CIRCHEARTFAILURE.116.003090
    1. Anand IS, Florea VG. High output cardiac failure. Curr Treat Options Cardiovasc Med 2001;3:151–9. 10.1007/s11936-001-0070-1
    1. Ponikowski P, Voors AA, Anker SD, et al. . 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2016;37:2129–200. 10.1093/eurheartj/ehw128
    1. Pascual-Figal DA, Ferrero-Gregori A, Gomez-Otero I, et al. . Mid-range left ventricular ejection fraction: clinical profile and cause of death in ambulatory patients with chronic heart failure. Int J Cardiol 2017;240:265–70. 10.1016/j.ijcard.2017.03.032
    1. Rastogi A, Novak E, Platts AE, et al. . Epidemiology, pathophysiology and clinical outcomes for heart failure patients with a mid-range ejection fraction. Eur J Heart Fail 2017;17 10.1002/ejhf.879
    1. Tomiyama H, Yamashina A. Non-invasive vascular function tests: their pathophysiological background and clinical application. Circ J 2010;74:24–33.
    1. Mancia G, De Backer G, Dominiczak A, et al. . 2007 guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens 2007;25:1105–87. 10.1097/HJH.0b013e3281fc975a
    1. Yamashina A, Tomiyama H, Takeda K, et al. . Validity, reproducibility, and clinical significance of noninvasive brachial-ankle pulse wave velocity measurement. Hypertens Res 2002;25:359–64. 10.1291/hypres.25.359
    1. Kubozono T, Miyata M, Ueyama K, et al. . Clinical significance and reproducibility of new arterial distensibility index. Circ J 2007;71:89–94. 10.1253/circj.71.89
    1. Meaume S, Benetos A, Henry OF, et al. . Aortic pulse wave velocity predicts cardiovascular mortality in subjects >70 years of age. Arterioscler Thromb Vasc Biol 2001;21:2046–50. 10.1161/hq1201.100226
    1. Mattace-Raso FU, van der Cammen TJ, Hofman A, et al. . Arterial stiffness and risk of coronary heart disease and stroke: the Rotterdam Study. Circulation 2006;113:657–63. 10.1161/CIRCULATIONAHA.105.555235
    1. Matsuoka O, Otsuka K, Murakami S, et al. . Arterial stiffness independently predicts cardiovascular events in an elderly community—Longitudinal Investigation for the Longevity and Aging in Hokkaido County (LILAC) study. Biomed Pharmacother 2005;59(Suppl 1):S40–4. 10.1016/S0753-3322(05)80008-3
    1. Nichols WW. Clinical measurement of arterial stiffness obtained from noninvasive pressure waveforms. Am J Hypertens 2005;18:3–10. 10.1016/j.amjhyper.2004.10.009
    1. Wilkinson IB, MacCallum H, Hupperetz PC, et al. . Changes in the derived central pressure waveform and pulse pressure in response to angiotensin II and noradrenaline in man. J Physiol 2001;530:541–50. 10.1111/j.1469-7793.2001.0541k.x
    1. Williams B, Lacy PS. CAFE and the ASCOT (Anglo-Scandinavian Cardiac Outcomes Trial) Investigators. Impact of heart rate on central aortic pressures and hemodynamics: analysis from the CAFE (Conduit Artery Function Evaluation) study: CAFE-Heart Rate. J Am Coll Cardiol 2009;54:705–13. 10.1016/j.jacc.2009.02.088
    1. McEniery CM, Yasmin HIR, Qasem A, et al. . Normal vascular aging: differential effects on wave reflection and aortic pulse wave velocity: the Anglo-Cardiff Collaborative Trial (ACCT). J Am Coll Cardiol 1760;2005:1753–60. 10.1016/j.jacc.2005.07.037
    1. Kim JY, Park JB, Kim DS, et al. . Gender difference in arterial stiffness in a multicenter cross-sectional study: the Korean Arterial Aging Study (KAAS). Pulse 2014;2:11–7. 10.1159/000365267
    1. Vermeersch SJ, Rietzschel ER, De Buyzere ML, et al. . Age and gender related patterns in carotid-femoral PWV and carotid and femoral stiffness in a large healthy, middle-aged population. J Hypertens 2008;26:1411–9. 10.1097/HJH.0b013e3282ffac00
    1. Lee HY, Oh BH. Aging and arterial stiffness. Circ J 2010;74:2257–62. 10.1253/circj.CJ-10-0910
    1. Amar J, Ruidavets JB, Chamontin B, et al. . Arterial stiffness and cardiovascular risk factors in a population-based study. J Hypertens 2001;19:381–7. 10.1097/00004872-200103000-00005
    1. Scuteri A, Najjar SS, Muller DC, et al. . Metabolic syndrome amplifies the age-associated increases in vascular thickness and stiffness. J Am Coll Cardiol 2004;43:1388–95. 10.1016/j.jacc.2003.10.061
    1. Balmain S, Padmanabhan N, Ferrell WR, et al. . Differences in arterial compliance, microvascular function and venous capacitance between patients with heart failure and either preserved or reduced left ventricular systolic function. Eur J Heart Fail 2007;9:865–71. 10.1016/j.ejheart.2007.06.003
    1. Mewton N, Liu CY, Croisille P, et al. . Assessment of myocardial fibrosis with cardiovascular magnetic resonance. J Am Coll Cardiol 2011;57:891–903. 10.1016/j.jacc.2010.11.013
    1. McCrohon JA, Moon JC, Prasad SK, et al. . Differentiation of heart failure related to dilated cardiomyopathy and coronary artery disease using gadolinium-enhanced cardiovascular magnetic resonance. Circulation 2003;108:54–9. 10.1161/01.CIR.0000078641.19365.4C
    1. Pattanayak P, Bluemke DA. Cardiac MR imaging to probe tissue composition of the heart by using T1 mapping. Radiology 2014;271:320–2. 10.1148/radiol.14140287
    1. Tham EB, Haykowsky MJ, Chow K, et al. . Diffuse myocardial fibrosis by T1-mapping in children with subclinical anthracycline cardiotoxicity: relationship to exercise capacity, cumulative dose and remodeling. J Cardiovasc Magn Reson 2013;15:48 10.1186/1532-429X-15-48
    1. Stuckey DJ, McSweeney SJ, Thin MZ, et al. . T₁ mapping detects pharmacological retardation of diffuse cardiac fibrosis in mouse pressure-overload hypertrophy. Circ Cardiovasc Imaging 2014;7:240–9. 10.1161/CIRCIMAGING.113.000993
    1. Moon JC, Treibel TA, Schelbert EB. T1 mapping for diffuse myocardial fibrosis. J Am Coll Cardiol 2013;62:1288–9. 10.1016/j.jacc.2013.05.077
    1. Patel H, Madanieh R, Kosmas CE, et al. . Reversible Cardiomyopathies. Clin Med Insights Cardiol 2015;9(Suppl 2):7–14. 10.4137/CMC.S19703

Source: PubMed

3
Abonnieren