General Pathways of Pain Sensation and the Major Neurotransmitters Involved in Pain Regulation

Mun Fei Yam, Yean Chun Loh, Chu Shan Tan, Siti Khadijah Adam, Nizar Abdul Manan, Rusliza Basir, Mun Fei Yam, Yean Chun Loh, Chu Shan Tan, Siti Khadijah Adam, Nizar Abdul Manan, Rusliza Basir

Abstract

Pain has been considered as a concept of sensation that we feel as a reaction to the stimulus of our surrounding, putting us in harm's way and acting as a form of defense mechanism that our body has permanently installed into its system. However, pain leads to a huge chunk of finances within the healthcare system with continuous rehabilitation of patients with adverse pain sensations, which might reduce not only their quality of life but also their productivity at work setting back the pace of our economy. It may not look like a huge deal but factor in pain as an issue for majority of us, it becomes an economical burden. Although pain has been researched into and understood by numerous researches, from its definition, mechanism of action to its inhibition in hopes of finding an absolute solution for victims of pain, the pathways of pain sensation, neurotransmitters involved in producing such a sensation are not comprehensively reviewed. Therefore, this review article aims to put in place a thorough understanding of major pain conditions that we experience-nociceptive, inflammatory and physiologically dysfunction, such as neuropathic pain and its modulation and feedback systems. Moreover, the complete mechanism of conduction is compiled within this article, elucidating understandings from various researches and breakthroughs.

Keywords: inflammatory; neurons; neuropathic; neurotransmitters; nociceptive; pain sensitization; pain transmission; presynaptic and postsynaptic; synaptic transmission.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
The basic route of pain transmission upon noxious stimuli in ascending and descending order, and the illustration of synaptic transmission in synaptic cleft.
Figure 2
Figure 2
The action potential in neurons.
Figure 3
Figure 3
The signaling mechanism pathways of pain-associated neurotransmitters and their cognate receptors involved in pre- and post-synaptic locations for pain transmission. : Activate/Enhance production; : Inhibit/Reduce production; : Generate/Lead to.

References

    1. Woolf C.J., Bennett G.J., Doherty M., Dubner R., Kidd B., Koltzenburg M., Lipton R., Loeser J.D., Payne R., Torebjork E. Towards a mechanism-based classification of pain? Pain. 1998;77:227–229. doi: 10.1016/S0304-3959(98)00099-2.
    1. Hall J.E. Guyton and Hall Textbook of Medical Physiology e-Book. Elsevier Health Sciences; Philadelphia, PA, USA: 2010.
    1. Dubin A.E., Patapoutian A. Nociceptors: The sensors of the pain pathway. J. Clin. Investig. 2010;120:3760–3772. doi: 10.1172/JCI42843.
    1. Basbaum A.I., Bautista D.M., Scherrer G., Julius D. Cellular and molecular mechanisms of pain. Cell. 2009;139:267–284. doi: 10.1016/j.cell.2009.09.028.
    1. Purves D., Augustine G., Fitzpatrick D., Hall W.C., LaMantia A., Mooney R., White L.E. Neuroscience. Sinauer; Sunderland, MA, USA: 2018.
    1. Schmidt-Nielsen K. Animal Physiology: Adaptation and Environment. Cambridge University Press; Cambridge, UK: 1997.
    1. Ma C., Zhang J.M. Animal Models of Pain. Humana Press; New York City, NY, USA: 2010.
    1. Waxman S.G. The molecular pathophysiology of pain: Abnormal expression of sodium channel genes and its contributions to hyperexcitability of primary sensory neurons. Pain. 1999;82(Suppl. 6):S133. doi: 10.1016/S0304-3959(99)00147-5.
    1. Narahashi T., Moore J.W., Scott W.R. Tetrodotoxin blockage of sodium conductance increase in lobster giant axons. J. Gen. Physiol. 1964;47:965–974. doi: 10.1085/jgp.47.5.965.
    1. Yoo S.K., Starnes T.W., Deng Q., Huttenlocher A. Lyn is a redox sensor that mediates leukocyte wound attraction in vivo. Nature. 2011;480:109. doi: 10.1038/nature10632.
    1. Franklin K.B., Abbott F.V. Psychopharmacology. Springer; Berlin, Germany: 1989. Techniques for assessing the effects of drugs on nociceptive responses; pp. 145–216.
    1. Lu R., Bausch A.E., Kallenborn-Gerhardt W., Stoetzer C., Debruin N., Ruth P., Geisslinger G., Leffler A., Lukowski R., Schmidtko A. Slack channels expressed in sensory neurons control neuropathic pain in mice. J. Neurosci. 2015;35:1125–1135. doi: 10.1523/JNEUROSCI.2423-14.2015.
    1. Merskey H.E. Classification of chronic pain: Descriptions of chronic pain syndromes and definitions of pain terms. Pain. 1986;3:S1.
    1. Boyce-Rustay J.M., Honore P., Jarvis M.F. Animal models of acute and chronic inflammatory and nociceptive pain. Methods Mol. Biol. 2010;617:41–55.
    1. Claar D., Hartert T.V., Peebles R.S., Jr. The role of prostaglandins in allergic lung inflammation and asthma. Expert Rev. Respir. Med. 2015;9:55–72. doi: 10.1586/17476348.2015.992783.
    1. Ricciotti E., FitzGerald G.A. Prostaglandins and inflammation. Arterioscler. Thromb. Vasc. Biol. 2011;31:986–1000. doi: 10.1161/ATVBAHA.110.207449.
    1. Woodward D.F., Jones R.L., Narumiya S. International union of basic and clinical pharmacology. Lxxxiii: Classification of prostanoid receptors, updating 15 years of progress. Pharmacol. Rev. 2011;63:471–538. doi: 10.1124/pr.110.003517.
    1. Back M., Powell W.S., Dahlen S.E., Drazen J.M., Evans J.F., Serhan C.N., Shimizu T., Yokomizo T., Rovati G.E. Update on leukotriene, lipoxin and oxoeicosanoid receptors: Iuphar review 7. Br. J. Pharmacol. 2014;171:3551–3574. doi: 10.1111/bph.12665.
    1. Levine J.D., Lam D., Taiwo Y.O., Donatoni P., Goetzl E.J. Hyperalgesic properties of 15-lipoxygenase products of arachidonic acid. Proc. Natl. Acad. Sci. USA. 1986;83:5331–5334. doi: 10.1073/pnas.83.14.5331.
    1. Freeman R.S., Burch R.L., Crowder R.J., Lomb D.J., Schoell M.C., Straub J.A., Xie L. Ngf deprivation-induced gene expression: After ten years, where do we stand? Prog. Brain Res. 2004;146:111–126.
    1. Riikonen R., Vanhala R. Levels of cerebrospinal fluid nerve-growth factor differ in infantile autism and rett syndrome. Dev. Med. Child Neurol. 1999;41:148–152. doi: 10.1017/S0012162299000328.
    1. Cui M., Honore P., Zhong C., Gauvin D., Mikusa J., Hernandez G., Chandran P., Gomtsyan A., Brown B., Bayburt E.K., et al. Trpv1 receptors in the cns play a key role in broad-spectrum analgesia of trpv1 antagonists. J. Neurosci. 2006;26:9385–9393. doi: 10.1523/JNEUROSCI.1246-06.2006.
    1. Huang S.M., Bisogno T., Trevisani M., Al-Hayani A., De Petrocellis L., Fezza F., Tognetto M., Petros T.J., Krey J.F., Chu C.J. An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid vr1 receptors. Proc. Natl. Acad. Sci. USA. 2002;99:8400–8405. doi: 10.1073/pnas.122196999.
    1. Osmakov D., Andreev Y.A., Kozlov S. Acid-sensing ion channels and their modulators. Biochemistry. 2014;79:1528–1545. doi: 10.1134/S0006297914130069.
    1. Sluka K.A., Winter O.C., Wemmie J.A. Acid-sensing ion channels: A new target for pain and cns diseases. Curr. Opin. Drug Discov. Dev. 2009;12:693–704.
    1. Gironacci M.M., Carbajosa N.A.L., Goldstein J., Cerrato B.D. Neuromodulatory role of angiotensin-(1–7) in the central nervous system. Clin. Sci. 2013;125:57–65. doi: 10.1042/CS20120652.
    1. Llona I., Vavrek R., Stewart J., Huidobro-Toro J.P. Identification of pre- and postsynaptic bradykinin receptor sites in the vas deferens: Evidence for different structural prerequisites. J. Pharmacol. Exp. Ther. 1987;241:608–614.
    1. McLean P.G., Ahluwalia A., Perretti M. Association between kinin b1 receptor expression and leukocyte trafficking across mouse mesenteric postcapillary venules. J. Exp. Med. 2000;192:367–380. doi: 10.1084/jem.192.3.367.
    1. Walker K., Perkins M., Dray A. Kinins and kinin receptors in the nervous system. Neurochem. Int. 1995;26:1–16. doi: 10.1016/0197-0186(94)00114-A.
    1. Burnstock G. P2X receptors in sensory neurones. Br. J. Anaesth. 2000;84:476–488. doi: 10.1093/oxfordjournals.bja.a013473.
    1. Elmenhorst D., Meyer P.T., Winz O.H., Matusch A., Ermert J., Coenen H.H., Basheer R., Haas H.L., Zilles K., Bauer A. Sleep deprivation increases a1 adenosine receptor binding in the human brain: A positron emission tomography study. J. Neurosci. 2007;27:2410–2415. doi: 10.1523/JNEUROSCI.5066-06.2007.
    1. North R.A. Molecular physiology of p2x receptors. Physiol. Rev. 2002;82:1013–1067. doi: 10.1152/physrev.00015.2002.
    1. Tawfik H.E., Schnermann J., Oldenburg P.J., Mustafa S.J. Role of a1 adenosine receptors in regulation of vascular tone. Am. J. Physiol. Heart Circ. Physiol. 2005;288:H1411–1416. doi: 10.1152/ajpheart.00684.2004.
    1. Donkin J.J., Turner R.J., Hassan I., Vink R. Substance p in traumatic brain injury. Prog. Brain Res. 2007;161:97–109.
    1. Gerard N.P., Eddy R.L., Jr., Shows T.B., Gerard C. The human neurokinin a (substance k) receptor. Molecular cloning of the gene, chromosome localization, and isolation of cdna from tracheal and gastric tissues. J. Biol. Chem. 1990;265:20455–20462.
    1. Nagano M., Oishi T., Suzuki H. Distribution and pharmacological characterization of primate nk-2 tachykinin receptor in the central nervous system of the rhesus monkey. Neurosci. Lett. 2011;503:23–26. doi: 10.1016/j.neulet.2011.07.057.
    1. Saria A. The tachykinin nk1 receptor in the brain: Pharmacology and putative functions. Eur. J. Pharmacol. 1999;375:51–60. doi: 10.1016/S0014-2999(99)00259-9.
    1. Takeda Y., Chou K.B., Takeda J., Sachais B.S., Krause J.E. Molecular cloning, structural characterization and functional expression of the human substance p receptor. Biochem. Biophys. Res. Commun. 1991;179:1232–1240. doi: 10.1016/0006-291X(91)91704-G.
    1. Yip J., Chahl L.A. Localization of nk1 and nk3 receptors in guinea-pig brain. Regul. Pept. 2001;98:55–62. doi: 10.1016/S0167-0115(00)00228-7.
    1. Aghajanian G.K., Marek G.J. Serotonin, via 5-ht 2a receptors, increases epscs in layer v pyramidal cells of prefrontal cortex by an asynchronous mode of glutamate release. Brain Res. 1999;825:161–171. doi: 10.1016/S0006-8993(99)01224-X.
    1. Bortolozzi A., Díaz-Mataix L., Scorza M.C., Celada P., Artigas F. The activation of 5-ht2a receptors in prefrontal cortex enhances dopaminergic activity. J. Neurochem. 2005;95:1597–1607. doi: 10.1111/j.1471-4159.2005.03485.x.
    1. Férézou I., Cauli B., Hill E.L., Rossier J., Hamel E., Lambolez B. 5-ht3 receptors mediate serotonergic fast synaptic excitation of neocortical vasoactive intestinal peptide/cholecystokinin interneurons. J. Neurosci. 2002;22:7389–7397. doi: 10.1523/JNEUROSCI.22-17-07389.2002.
    1. Marek G.J., Wright R.A., Gewirtz J.C., Schoepp D.D. A major role for thalamocortical afferents in serotonergic hallucinogen receptor function in the rat neocortex. Neuroscience. 2001;105:379–392. doi: 10.1016/S0306-4522(01)00199-3.
    1. Martin P., Waters N., Schmidt C., Carlsson A., Carlsson M. Rodent data and general hypothesis: Antipsychotic action exerted through 5-ht2a receptor antagonism is dependent on increased serotonergic tone. J. Neural Transm. 1998;105:365–396. doi: 10.1007/s007020050064.
    1. Shimamura T., Shiroishi M., Weyand S., Tsujimoto H., Winter G., Katritch V., Abagyan R., Cherezov V., Liu W., Han G.W., et al. Structure of the human histamine h1 receptor complex with doxepin. Nature. 2011;475:65–70. doi: 10.1038/nature10236.
    1. West R.E., Jr., Zweig A., Shih N.Y., Siegel M.I., Egan R.W., Clark M.A. Identification of two h3-histamine receptor subtypes. Mol. Pharmacol. 1990;38:610–613.
    1. Kleckner N.W., Dingledine R. Requirement for glycine in activation of nmda-receptors expressed in xenopus oocytes. Science. 1988;241:835–837. doi: 10.1126/science.2841759.
    1. Dingledine R., Borges K., Bowie D., Traynelis S.F. The glutamate receptor ion channels. Pharmacol. Rev. 1999;51:7–61.
    1. Furukawa H., Singh S.K., Mancusso R., Gouaux E. Subunit arrangement and function in nmda receptors. Nature. 2005;438:185–192. doi: 10.1038/nature04089.
    1. Moriyoshi K., Masu M., Ishii T., Shigemoto R., Mizuno N., Nakanishi S. Molecular cloning and characterization of the rat nmda receptor. Nature. 1991;354:31–37. doi: 10.1038/354031a0.
    1. Platt S.R. The role of glutamate in central nervous system health and disease—A review. Vet. J. 2007;173:278–286. doi: 10.1016/j.tvjl.2005.11.007.
    1. Rang H.P., Dale M.M., Ritter J.M., Flower R.J., Henderson G. Rang & Dale’s Pharmacology. Elsevier Health Sciences; London, UK: 2011.
    1. Saunders C., Limbird L.E. Localization and trafficking of α2-adrenergic receptor subtypes in cells and tissues. Pharmacol. Ther. 1999;84:193–205. doi: 10.1016/S0163-7258(99)00032-7.
    1. Forstermann U., Sessa W.C. Nitric oxide synthases: Regulation and function. Eur. Heart J. 2012;33:829–837. doi: 10.1093/eurheartj/ehr304.
    1. Arulmani U., Maassenvandenbrink A., Villalon C.M., Saxena P.R. Calcitonin gene-related peptide and its role in migraine pathophysiology. Eur. J. Pharmacol. 2004;500:315–330. doi: 10.1016/j.ejphar.2004.07.035.
    1. Brain S., MacIntyre I., Morris H., Tippins J., Williams T. Could the potent vasodilator calcitonin gene-related peptide be the mediator of the flare response in human skin? Regul. Pept. 1985;13:92. doi: 10.1016/0167-0115(85)90141-7.
    1. Chen L.J., Zhang F.G., Li J., Song H.X., Zhou L.B., Yao B.C., Li F., Li W.C. Expression of calcitonin gene-related peptide in anterior and posterior horns of the spinal cord after brachial plexus injury. J. Clin. Neurosci. 2010;17:87–91. doi: 10.1016/j.jocn.2009.03.042.
    1. McCulloch J., Uddman R., Kingman T.A., Edvinsson L. Calcitonin gene-related peptide: Functional role in cerebrovascular regulation. Proc. Natl. Acad. Sci. USA. 1986;83:5731–5735. doi: 10.1073/pnas.83.15.5731.
    1. Rosenfeld M.G., Mermod J.J., Amara S.G., Swanson L.W., Sawchenko P.E., Rivier J., Vale W.W., Evans R.M. Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing. Nature. 1983;304:129–135. doi: 10.1038/304129a0.
    1. Hyland N.P., Cryan J.F. A gut feeling about GABA: Focus on GABAB receptors. Front. Pharmacol. 2010;1:124. doi: 10.3389/fphar.2010.00124.
    1. Lorenzo L.E., Russier M., Barbe A., Fritschy J.M., Bras H. Differential organization of γ-aminobutyric acid type a and glycine receptors in the somatic and dendritic compartments of rat abducens motoneurons. J. Comp. Neurol. 2007;504:112–126. doi: 10.1002/cne.21442.
    1. Gramsch C., Hollt V., Pasi A., Mehraein P., Herz A. Immunoreactive dynorphin in human brain and pituitary. Brain Res. 1982;233:65–74. doi: 10.1016/0006-8993(82)90930-1.
    1. James I.F., Chavkin C., Goldstein A. Selectivity of dynorphin for κ opioid receptors. Life Sci. 1982;31:1331–1334. doi: 10.1016/0024-3205(82)90374-5.
    1. Quock R.M., Burkey T.H., Varga E., Hosohata Y., Hosohata K., Cowell S.M., Slate C.A., Ehlert F.J., Roeske W.R., Yamamura H.I. The δ-opioid receptor: Molecular pharmacology, signal transduction, and the determination of drug efficacy. Pharmacol. Rev. 1999;51:503–532.
    1. Baer K., Waldvogel H.J., Faull R.L., Rees M.I. Localisation of glycine receptors in the human forebrain, brainstem, and cervical spinal cord: An immunohistochemical review. Front. Mol. Neurosci. 2009;2:25. doi: 10.3389/neuro.02.025.2009.
    1. Naas E., Zilles K., Gnahn H., Betz H., Becker C.M., Schroder H. Glycine receptor immunoreactivity in rat and human cerebral cortex. Brain Res. 1991;561:139–146. doi: 10.1016/0006-8993(91)90758-N.
    1. Gong J.-P., Onaivi E.S., Ishiguro H., Liu Q.-R., Tagliaferro P.A., Brusco A., Uhl G.R. Cannabinoid cb2 receptors: Immunohistochemical localization in rat brain. Brain Res. 2006;1071:10–23. doi: 10.1016/j.brainres.2005.11.035.
    1. Núñez E., Benito C., Pazos M.R., Barbachano A., Fajardo O., González S., Tolón R.M., Romero J. Cannabinoid cb2 receptors are expressed by perivascular microglial cells in the human brain: An immunohistochemical study. Synapse. 2004;53:208–213. doi: 10.1002/syn.20050.
    1. Pacher P., Mechoulam R. Is lipid signaling through cannabinoid 2 receptors part of a protective system? Prog. Lipid Res. 2011;50:193–211. doi: 10.1016/j.plipres.2011.01.001.
    1. Rogers N. Cannabinoid Receptor with an ’Identity Crisis’ Gets a Second Look. Nature Publishing Group; London, UK: 2015.
    1. Van Sickle M.D., Duncan M., Kingsley P.J., Mouihate A., Urbani P., Mackie K., Stella N., Makriyannis A., Piomelli D., Davison J.S., et al. Identification and functional characterization of brainstem cannabinoid cb2 receptors. Science. 2005;310:329–332. doi: 10.1126/science.1115740.
    1. Poyner D.R., Sexton P.M., Marshall I., Smith D.M., Quirion R., Born W., Muff R., Fischer J.A., Foord S.M. International union of pharmacology. XXXII. The mammalian calcitonin gene-related peptides, adrenomedullin, amylin, and calcitonin receptors. Pharmacol. Rev. 2002;54:233–246. doi: 10.1124/pr.54.2.233.
    1. Loh Y.C., Tan C.S., Ch’ng Y.S., Ahmad M., Asmawi M.Z., Yam M.F. Overview of antagonists used for determining the mechanisms of action employed by potential vasodilators with their suggested signaling pathways. Molecules. 2016;21:495. doi: 10.3390/molecules21040495.
    1. Loh Y.C., Tan C.S., Ch’ng Y.S., Yeap Z.Q., Ng C.H., Yam M.F. Overview of the microenvironment of vasculature in vascular tone regulation. Int. J. Mol. Sci. 2018;19:120.
    1. Okamoto K., Imbe H., Morikawa Y., Itoh M., Sekimoto M., Nemoto K., Senba E. 5-ht2a receptor subtype in the peripheral branch of sensory fibers is involved in the potentiation of inflammatory pain in rats. Pain. 2002;99:133–143. doi: 10.1016/S0304-3959(02)00070-2.
    1. Loick H., Theissen J. Die eicosanoide als mediatoren beim ards. Anästhesiologie Intensivmedizin·Notfallmedizin Schmerztherapie. 1994;29:3–9. doi: 10.1055/s-2007-996677.
    1. Crooks S.W., Stockley R.A. Leukotriene b4. Int. J. Biochem. Cell Biol. 1998;30:173–178. doi: 10.1016/S1357-2725(97)00123-4.
    1. Price M.P., McIlwrath S.L., Xie J., Cheng C., Qiao J., Tarr D.E., Sluka K.A., Brennan T.J., Lewin G.R., Welsh M.J. The drasic cation channel contributes to the detection of cutaneous touch and acid stimuli in mice. Neuron. 2001;32:1071–1083. doi: 10.1016/S0896-6273(01)00547-5.
    1. Gould III H.J. Complete freund’s adjuvant-induced hyperalgesia: A human perception. Pain. 2000;85:301–303. doi: 10.1016/S0304-3959(99)00289-4.
    1. Montell C., Birnbaumer L., Flockerzi V., Bindels R.J., Bruford E.A., Caterina M.J., Clapham D.E., Harteneck C., Heller S., Julius D., et al. A unified nomenclature for the superfamily of trp cation channels. Mol. Cell. 2002;9:229–231. doi: 10.1016/S1097-2765(02)00448-3.
    1. Caterina M.J., Leffler A., Malmberg A.B., Martin W.J., Trafton J., Petersen-Zeitz K.R., Koltzenburg M., Basbaum A.I., Julius D. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science. 2000;288:306–313. doi: 10.1126/science.288.5464.306.
    1. Davis J.B., Gray J., Gunthorpe M.J., Hatcher J.P., Davey P.T., Overend P., Harries M.H., Latcham J., Clapham C., Atkinson K. Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature. 2000;405:183. doi: 10.1038/35012076.
    1. Meldrum B.S. Glutamate as a neurotransmitter in the brain: Review of physiology and pathology. J. Nutr. 2000;130(Suppl. 4S) doi: 10.1093/jn/130.4.1007S.
    1. Malmberg A.B., Brandon E.P., Idzerda R.L., Liu H., McKnight G.S., Basbaum A.I. Diminished inflammation and nociceptive pain with preservation of neuropathic pain in mice with a targeted mutation of the type i regulatory subunit of camp-dependent protein kinase. J. Neurosci. 1997;17:7462–7470. doi: 10.1523/JNEUROSCI.17-19-07462.1997.
    1. Watanabe M., Maemura K., Kanbara K., Tamayama T., Hayasaki H. Gaba and gaba receptors in the central nervous system and other organs. Int. Rev. Cytol. 2002;213:1–47.
    1. Pacher P., Bátkai S., Kunos G. The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol. Rev. 2006;58:389–462. doi: 10.1124/pr.58.3.2.
    1. Walker J.M., Hohmann A.G., Martin W.J., Strangman N.M., Huang S.M., Tsou K. The neurobiology of cannabinoid analgesia. Life Sci. 1999;65:665–673. doi: 10.1016/S0024-3205(99)00289-1.
    1. Demuth D.G., Molleman A. Cannabinoid signalling. Life Sci. 2006;78:549–563. doi: 10.1016/j.lfs.2005.05.055.
    1. Shoemaker J.L., Ruckle M.B., Mayeux P.R., Prather P.L. Agonist-directed trafficking of response by endocannabinoids acting at cb2 receptors. J. Pharmacol. Exp. Ther. 2005;315:828–838. doi: 10.1124/jpet.105.089474.

Source: PubMed

3
Abonnieren