CYP46A1 activation by low-dose efavirenz enhances brain cholesterol metabolism in subjects with early Alzheimer's disease

Alan J Lerner, Steven E Arnold, Erin Maxfield, Aaron Koenig, Maria E Toth, Brooke Fortin, Natalia Mast, Bianca A Trombetta, John Denker, Andrew A Pieper, Curtis Tatsuoka, Sangeetha Raghupathy, Irina A Pikuleva, Alan J Lerner, Steven E Arnold, Erin Maxfield, Aaron Koenig, Maria E Toth, Brooke Fortin, Natalia Mast, Bianca A Trombetta, John Denker, Andrew A Pieper, Curtis Tatsuoka, Sangeetha Raghupathy, Irina A Pikuleva

Abstract

Background: Efavirenz is an anti-HIV drug, and cytochrome P450 46A1 (CYP46A1) is a CNS-specific enzyme that metabolizes cholesterol to 24-hydroxycholesterol (24HC). We have previously shown that allosteric CYP46A1 activation by low-dose efavirenz in a transgenic mouse model of Alzheimer's disease (AD) enhanced both cholesterol elimination and turnover in the brain and improved animal performance in memory tests. Here, we sought to determine whether CYP46A1 could be similarly activated by a low-dose efavirenz in human subjects. METHODS: This pilot study enrolled 5 subjects with early AD. Participants were randomized to placebo (n = 1) or two daily efavirenz doses (50 mg and 200 mg, n = 2 for each) for 20 weeks and evaluated for safety and CYP46A1 target engagement (plasma 24HC levels). A longitudinal mixed model was used to ascertain the statistical significance of target engagement. We also measured 24HC in CSF and conducted a unique stable isotope labeling kinetics (SILK) study with deuterated water to directly measure CYP46A1 activity changes in the brain.

Results: In subjects receiving efavirenz, there was a statistically significant within-group increase (P ≤ 0.001) in the levels of plasma 24HC from baseline. The levels of 24HC in the CSF of subjects on the 200-mg dose of efavirenz were also increased. Target engagement was further supported by the labeling kinetics of 24HC by deuterated water in the SILK study. There were no serious adverse effects in any subjects.

Conclusions: Our findings suggest efavirenz target engagement in human subjects with early AD. This supports the pursuit of a larger trial for further determination and confirmation of the efavirenz dose that exerts maximal enzyme activation, as well as evaluation of this drug's effects on AD biomarkers and clinical symptomatology.

Trial registration: ClinicalTrials.gov, NCT03706885.

Keywords: 24-Hydroxycholesterol; Alzheimer’s disease; CYP46A1; Efavirenz; Stable isotope labeling kinetics.

Conflict of interest statement

The authors declare that they have no competing interests.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
A summary of major study measures in trial participants. 24HC, 24-hydroxycholesterol; Baseline, baseline visit; Chol, cholesterol; Aβ40 and Aβ42, amyloid β peptides 40 and 42; pTau, phosphorylated tau; tTau, total tau; MoCA, the Montreal Cognitive Assessment; week 8, week 20, and week 22 in-clinic visits
Fig. 2
Fig. 2
A summary of the SILK experiment. This experiment was conducted in one subject (501–110) on a daily 200-mg EFV dose. A Ion abundance at m/z corresponding to the incorporation of one (504), two (505), and three (506) 2H into plasma 24-hydroxycholesterol (24HC). The peak at m/z 503 represents the sterol molecular ion. The data for week 0 show the background natural abundance of the 24HC mass isotopomers. B Plasma 24HC and body water (inset) enrichment with 2H. The dashed line indicates the areas under the curve (AUC), which were used for the estimation of the EFV effect on CYP46A1 activity. W, week of the clinic visit. EFV treatment stopped at W 20

References

    1. Winblad B, Amouyel P, Andrieu S, Ballard C, Brayne C, Brodaty H, et al. Defeating Alzheimer’s disease and other dementias: a priority for European science and society. Lancet Neurol. 2016;15(5):455–532. doi: 10.1016/S1474-4422(16)00062-4.
    1. Mahley RW, Rall SC., Jr Apolipoprotein E: far more than a lipid transport protein. Annu Rev Genomics Hum Genet. 2000;1:507–537. doi: 10.1146/annurev.genom.1.1.507.
    1. Simons M, Keller P, De Strooper B, Beyreuther K, Dotti CG, Simons K. Cholesterol depletion inhibits the generation of beta-amyloid in hippocampal neurons. Proc Natl Acad Sci U S A. 1998;95(11):6460–6464. doi: 10.1073/pnas.95.11.6460.
    1. Barrett PJ, Song Y, Van Horn WD, Hustedt EJ, Schafer JM, Hadziselimovic A, et al. The amyloid precursor protein has a flexible transmembrane domain and binds cholesterol. Science. 2012;336(6085):1168–1171. doi: 10.1126/science.1219988.
    1. Wang H, Kulas JA, Wang C, Holtzman DM, Ferris HA, Hansen SB. Regulation of beta-amyloid production in neurons by astrocyte-derived cholesterol. Proc Natl Acad Sci U S A. 2021;118(33):e2102191118. doi: 10.1073/pnas.2102191118.
    1. Solomon A, Kivipelto M, Wolozin B, Zhou J, Whitmer RA. Midlife serum cholesterol and increased risk of Alzheimer’s and vascular dementia three decades later. Dement Geriatr Cogn Disord. 2009;28(1):75–80. doi: 10.1159/000231980.
    1. Reitz C. Dyslipidemia and the risk of Alzheimer’s disease. Curr Atheroscler Rep. 2013;15(3):307. doi: 10.1007/s11883-012-0307-3.
    1. Dietschy JM, Turley SD. Cholesterol metabolism in the brain. Curr Opin Lipidol. 2001;12(2):105–112. doi: 10.1097/00041433-200104000-00003.
    1. Lutjohann D, Breuer O, Ahlborg G, Nennesmo I, Siden A, Diczfalusy U, et al. Cholesterol homeostasis in human brain: evidence for an age-dependent flux of 24S-hydroxycholesterol from the brain into the circulation. Proc Natl Acad Sci U S A. 1996;93(18):9799–9804. doi: 10.1073/pnas.93.18.9799.
    1. Bjorkhem I, Lutjohann D, Diczfalusy U, Stahle L, Ahlborg G, Wahren J. Cholesterol homeostasis in human brain: turnover of 24S-hydroxycholesterol and evidence for a cerebral origin of most of this oxysterol in the circulation. J Lipid Res. 1998;39(8):1594–1600. doi: 10.1016/S0022-2275(20)32188-X.
    1. Lund EG, Guileyardo JM, Russell DW. cDNA cloning of cholesterol 24-hydroxylase, a mediator of cholesterol homeostasis in the brain. Proc Natl Acad Sci U S A. 1999;96(13):7238–7243. doi: 10.1073/pnas.96.13.7238.
    1. Brown J, 3rd, Theisler C, Silberman S, Magnuson D, Gottardi-Littell N, Lee JM, et al. Differential expression of cholesterol hydroxylases in Alzheimer’s disease. J Biol Chem. 2004;279(33):34674–34681. doi: 10.1074/jbc.M402324200.
    1. Bogdanovic N, Bretillon L, Lund EG, Diczfalusy U, Lannfelt L, Winblad B, et al. On the turnover of brain cholesterol in patients with Alzheimer’s disease. Abnormal induction of the cholesterol-catabolic enzyme CYP46 in glial cells. Neurosci Lett. 2001;314(1-2):45–8. doi: 10.1016/S0304-3940(01)02277-7.
    1. Lund EG, Xie C, Kotti T, Turley SD, Dietschy JM, Russell DW. Knockout of the cholesterol 24-hydroxylase gene in mice reveals a brain-specific mechanism of cholesterol turnover. J Biol Chem. 2003;278(25):22980–22988. doi: 10.1074/jbc.M303415200.
    1. Varma VR, Büşra Lüleci H, Oommen AM, Varma S, Blackshear CT, Griswold ME, et al. Abnormal brain cholesterol homeostasis in Alzheimer’s disease-a targeted metabolomic and transcriptomic study. NPJ Aging Mech Dis. 2021;7(1):11. doi: 10.1038/s41514-021-00064-9.
    1. Testa G, Staurenghi E, Zerbinati C, Gargiulo S, Iuliano L, Giaccone G, et al. Changes in brain oxysterols at different stages of Alzheimer’s disease: their involvement in neuroinflammation. Redox Biol. 2016;10:24–33. doi: 10.1016/j.redox.2016.09.001.
    1. Bjorkhem I, Andersson U, Ellis E, Alvelius G, Ellegard L, Diczfalusy U, et al. From brain to bile. Evidence that conjugation and omega-hydroxylation are important for elimination of 24S-hydroxycholesterol (cerebrosterol) in humans. J Biol Chem. 2001;276(40):37004–10.
    1. Leoni V, Masterman T, Mousavi FS, Wretlind B, Wahlund LO, Diczfalusy U, et al. Diagnostic use of cerebral and extracerebral oxysterols. Clin Chem Lab Med. 2004;42(2):186–191. doi: 10.1515/CCLM.2004.034.
    1. Bretillon L, Lutjohann D, Stahle L, Widhe T, Bindl L, Eggertsen G, et al. Plasma levels of 24S-hydroxycholesterol reflect the balance between cerebral production and hepatic metabolism and are inversely related to body surface. J Lipid Res. 2000;41(5):840–845. doi: 10.1016/S0022-2275(20)32393-2.
    1. Leoni V, Caccia C. 24S-hydroxycholesterol in plasma: a marker of cholesterol turnover in neurodegenerative diseases. Biochimie. 2013;95(3):595–612. doi: 10.1016/j.biochi.2012.09.025.
    1. Mast N, Li Y, Linger M, Clark M, Wiseman J, Pikuleva IA. Pharmacologic stimulation of cytochrome P450 46A1 and cerebral cholesterol turnover in mice. J Biol Chem. 2014;289(6):3529–3538. doi: 10.1074/jbc.M113.532846.
    1. Oakley H, Cole SL, Logan S, Maus E, Shao P, Craft J, et al. Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J Neurosci. 2006;26(40):10129–10140. doi: 10.1523/JNEUROSCI.1202-06.2006.
    1. Mast N, Saadane A, Valencia-Olvera A, Constans J, Maxfield E, Arakawa H, et al. Cholesterol-metabolizing enzyme cytochrome P450 46A1 as a pharmacologic target for Alzheimer’s disease. Neuropharmacology. 2017;123:465–476. doi: 10.1016/j.neuropharm.2017.06.026.
    1. Petrov AM, Lam M, Mast N, Moon J, Li Y, Maxfield E, et al. CYP46A1 Activation by efavirenz leads to behavioral improvement without significant changes in amyloid plaque load in the brain of 5XFAD mice. Neurotherapeutics. 2019;16(3):710–724. doi: 10.1007/s13311-019-00737-0.
    1. Petrov AM, Mast N, Li Y, Pikuleva IA. The key genes, phosphoproteins, processes, and pathways affected by efavirenz-activated CYP46A1 in the amyloid-decreasing paradigm of efavirenz treatment. FASEB J. 2019;33(8):8782–8798. doi: 10.1096/fj.201900092R.
    1. Petrov AM, Mast N, Li Y, Denker J, Pikuleva IA. Brain sterol flux mediated by cytochrome P450 46A1 affects membrane properties and membrane-dependent processes. Brain Commun. 2020;2(1):fcaa043. doi: 10.1093/braincomms/fcaa043.
    1. Mast N, Petrov AM, Prendergast E, Bederman I, Pikuleva IA. Brain acetyl-CoA production and phosphorylation of cytoskeletal proteins are targets of CYP46A1 activity modulation and altered sterol flux. Neurotherapeutics. 2021;18(3):2040–2060. doi: 10.1007/s13311-021-01079-6.
    1. Mast N, Li Y, Pikuleva IA. Increased acetylcholine levels and other brain effects in 5XFAD mice after treatment with 8,14-dihydroxy metabolite of efavirenz. Int J Mol Sci. 2022;23(14):7669. doi: 10.3390/ijms23147669.
    1. Pikuleva IA. Targeting cytochrome P450 46A1 and brain cholesterol 24-hydroxylation to treat neurodegenerative diseases. Explor Neuroprotective Ther. 2021;1(3):159–172.
    1. Pikuleva IA, Cartier N. Cholesterol hydroxylating cytochrome P450 46A1: from mechanisms of action to clinical applications. Front Aging Neurosci. 2021;13(400):696778. doi: 10.3389/fnagi.2021.696778.
    1. El-Darzi N, Mast N, Buchner DA, Saadane A, Dailey B, Trichonas G, et al. Low-dose anti-HIV drug efavirenz mitigates retinal vascular lesions in a mouse model of Alzheimer’s disease. Front Pharmacol. 2022;13:902254. doi: 10.3389/fphar.2022.902254.
    1. Reagan-Shaw S, Nihal M, Ahmad N. Dose translation from animal to human studies revisited. FASEB J. 2008;22(3):659–661. doi: 10.1096/fj.07-9574LSF.
    1. Dietschy JM, Turley SD. Thematic review series: brain Lipids. Cholesterol metabolism in the central nervous system during early development and in the mature animal. J Lipid Res. 2004;45(8):1375–97. doi: 10.1194/jlr.R400004-JLR200.
    1. Dietschy JM. Central nervous system: cholesterol turnover, brain development and neurodegeneration. Biol Chem. 2009;390(4):287–293. doi: 10.1515/BC.2009.035.
    1. Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–98. doi: 10.1016/0022-3956(75)90026-6.
    1. Hughes CP, Berg L, Danziger WL, Coben LA, Martin RL. A new clinical scale for the staging of dementia. Br J Psychiatry. 1982;140:566–572. doi: 10.1192/bjp.140.6.566.
    1. Fanara P, Wong PY, Husted KH, Liu S, Liu VM, Kohlstaedt LA, et al. Cerebrospinal fluid-based kinetic biomarkers of axonal transport in monitoring neurodegeneration. J Clin Invest. 2012;122(9):3159–3169. doi: 10.1172/JCI64575.
    1. Lee WN, Bassilian S, Guo Z, Schoeller D, Edmond J, Bergner EA, et al. Measurement of fractional lipid synthesis using deuterated water (2H2O) and mass isotopomer analysis. Am J Physiol. 1994;266(3 Pt 1):E372–E383.
    1. Lin JB, Mast N, Bederman IR, Li Y, Brunengraber H, Bjorkhem I, et al. Cholesterol in mouse retina originates primarily from in situ de novo biosynthesis. J Lipid Res. 2016;57(2):258–264. doi: 10.1194/jlr.M064469.
    1. Mast N, Reem R, Bederman I, Huang S, DiPatre PL, Björkhem I, et al. Cholestenoic acid is an important elimination product of cholesterol in the retina: comparison of retinal cholesterol metabolism with that in the brain. Invest Ophthalmol Vis Sci. 2011;52(1):594–603. doi: 10.1167/iovs.10-6021.
    1. Dzeletovic S, Breuer O, Lund E, Diczfalusy U. Determination of cholesterol oxidation products in human plasma by isotope dilution-mass spectrometry. Anal Biochem. 1995;225(1):73–80. doi: 10.1006/abio.1995.1110.
    1. Li M, Wang W, Li Y, Wang L, Shen X, Tang Z. CYP46A1 intron-2T/C polymorphism and Alzheimer’s disease: an updated meta-analysis of 16 studies including 3,960 cases and 3,828 controls. Neurosci Lett. 2013;549:18–23. doi: 10.1016/j.neulet.2013.06.011.
    1. Apostolova N, Funes HA, Blas-Garcia A, Galindo MJ, Alvarez A, Esplugues JV. Efavirenz and the CNS: what we already know and questions that need to be answered. J Antimicrob Chemother. 2015;70(10):2693–2708. doi: 10.1093/jac/dkv183.
    1. Dalwadi DA, Ozuna L, Harvey BH, Viljoen M, Schetz JA. Adverse neuropsychiatric events and recreational use of efavirenz and other HIV-1 antiretroviral drugs. Pharmacol Rev. 2018;70(3):684–711. doi: 10.1124/pr.117.013706.
    1. London IM, Rittenberg D. Deuterium studies in normal man. I. The rate of synthesis of serum cholesterol. II. Measurement of total body water and water absorption. J Biol Chem. 1950;184(2):687–91. doi: 10.1016/S0021-9258(19)51002-X.
    1. Jones PJ, Leitch CA, Li ZC, Connor WE. Human cholesterol synthesis measurement using deuterated water. Theoretical and procedural considerations. Arterioscler Thromb Vasc Biol. 1993;13(2):247–53. doi: 10.1161/01.ATV.13.2.247.
    1. Dietschy JM, Spady DK. Measurement of rates of cholesterol synthesis using tritiated water. J Lipid Res. 1984;25(13):1469–1476. doi: 10.1016/S0022-2275(20)34420-5.
    1. Thelen KM, Laaksonen R, Päivä H, Lehtimäki T, Lütjohann D. High-dose statin treatment does not alter plasma marker for brain cholesterol metabolism in patients with moderately elevated plasma cholesterol levels. J Clin Pharmacol. 2006;46(7):812–816. doi: 10.1177/0091270006289851.
    1. Nemaura T, Nhachi C, Masimirembwa C. Impact of gender, weight and CYP2B6 genotype on efavirenz exposure in patients on HIV/AIDS and TB treatment: Implications for individualising therapy. Afr J Pharm Pharmacol. 2012;6(29):2188–2193.
    1. Jones PJ. Use of deuterated water for measurement of short-term cholesterol synthesis in humans. Can J Physiol Pharmacol. 1990;68(7):955–959. doi: 10.1139/y90-145.

Source: PubMed

3
Abonnieren