The complex nature of constitutional de novo apparently balanced translocations in patients presenting with abnormal phenotypes

S M Gribble, E Prigmore, D C Burford, K M Porter, Bee Ling Ng, E J Douglas, H Fiegler, P Carr, D Kalaitzopoulos, S Clegg, R Sandstrom, I K Temple, S A Youings, N S Thomas, N R Dennis, P A Jacobs, J A Crolla, N P Carter, S M Gribble, E Prigmore, D C Burford, K M Porter, Bee Ling Ng, E J Douglas, H Fiegler, P Carr, D Kalaitzopoulos, S Clegg, R Sandstrom, I K Temple, S A Youings, N S Thomas, N R Dennis, P A Jacobs, J A Crolla, N P Carter

Abstract

Objective: To describe the systematic analysis of constitutional de novo apparently balanced translocations in patients presenting with abnormal phenotypes, characterise the structural chromosome rearrangements, map the translocation breakpoints, and report detectable genomic imbalances.

Methods: DNA microarrays were used with a resolution of 1 Mb for the detailed genome-wide analysis of the patients. Array CGH was used to screen for genomic imbalance and array painting to map chromosome breakpoints rapidly. These two methods facilitate rapid analysis of translocation breakpoints and screening for cryptic chromosome imbalance. Breakpoints of rearrangements were further refined (to the level of spanning clones) using fluorescence in situ hybridisation where appropriate.

Results: Unexpected additional complexity or genome imbalance was found in six of 10 patients studied. The patients could be grouped according to the general nature of the karyotype rearrangement as follows: (A) three cases with complex multiple rearrangements including deletions, inversions, and insertions at or near one or both breakpoints; (B) three cases in which, while the translocations appeared to be balanced, microarray analysis identified previously unrecognised imbalance on chromosomes unrelated to the translocation; (C) four cases in which the translocation breakpoints appeared simple and balanced at the resolution used.

Conclusions: This high level of unexpected rearrangement complexity, if generally confirmed in the study of further patients, will have an impact on current diagnostic investigations of this type and provides an argument for the more widespread adoption of microarray analysis or other high resolution genome-wide screens for chromosome imbalance and rearrangement.

References

    1. J Med Genet. 2002 Jun;39(6):391-9
    1. Hum Mol Genet. 2000 May 22;9(9):1415-23
    1. J Med Genet. 2003 Mar;40(3):169-74
    1. J Med Genet. 2003 Sep;40(9):664-70
    1. Genes Chromosomes Cancer. 2003 Nov;38(3):260-4
    1. Am J Hum Genet. 2003 Dec;73(6):1261-70
    1. Nat Genet. 2004 Mar;36(3):299-303
    1. Genet Med. 2004 Mar-Apr;6(2):81-9
    1. J Med Genet. 2004 Apr;41(4):241-8
    1. Eur J Hum Genet. 2000 Sep;8(9):661-8
    1. Am J Med Genet. 2001 Feb 1;98(4):317-9
    1. Curr Opin Neurobiol. 2002 Feb;12(1):57-63
    1. Hum Genet. 2002 Mar;110(3):244-50
    1. Nat Genet. 1999 Feb;21(2):169-75
    1. J Med Genet. 1999 Apr;36(4):271-8
    1. Clin Genet. 1999 Jun;55(6):466-72
    1. Clin Dysmorphol. 1999 Jul;8(3):157-63
    1. J Med Genet. 1992 Feb;29(2):103-8
    1. Lancet. 1971 Oct 30;2(7731):971-2
    1. J Med Genet. 1986 Apr;23(2):171-3
    1. Am J Hum Genet. 1991 Nov;49(5):995-1013
    1. Am J Hum Genet. 1992 Apr;50(4):725-41
    1. Hum Genet. 1992 Dec;90(4):407-12
    1. Hum Reprod. 1994 Jul;9(7):1328-32
    1. J Biol Chem. 1995 Jan 6;270(1):431-6
    1. Am J Hum Genet. 1995 Aug;57(2):329-36
    1. Nat Genet. 1996 Jul;13(3):361-5
    1. Hum Mol Genet. 1997 Mar;6(3):357-67
    1. Hum Mol Genet. 1997 Aug;6(8):1241-50
    1. Hum Mol Genet. 1998;7(10):1611-8
    1. Hum Genet. 1998 Aug;103(2):173-8
    1. Hum Genet. 1998 Aug;103(2):189-92
    1. Genomics. 1998 Dec 1;54(2):231-40
    1. Hum Mol Genet. 2000 Jan 1;9(1):101-8
    1. Genomics. 2000 Apr 1;65(1):67-9
    1. Genes Chromosomes Cancer. 2003 Apr;36(4):361-74

Source: PubMed

3
Abonnieren