Meta-analysis identifies five novel loci associated with endometriosis highlighting key genes involved in hormone metabolism

Yadav Sapkota, Valgerdur Steinthorsdottir, Andrew P Morris, Amelie Fassbender, Nilufer Rahmioglu, Immaculata De Vivo, Julie E Buring, Futao Zhang, Todd L Edwards, Sarah Jones, Dorien O, Daniëlle Peterse, Kathryn M Rexrode, Paul M Ridker, Andrew J Schork, Stuart MacGregor, Nicholas G Martin, Christian M Becker, Sosuke Adachi, Kosuke Yoshihara, Takayuki Enomoto, Atsushi Takahashi, Yoichiro Kamatani, Koichi Matsuda, Michiaki Kubo, Gudmar Thorleifsson, Reynir T Geirsson, Unnur Thorsteinsdottir, Leanne M Wallace, iPSYCH-SSI-Broad Group, Jian Yang, Digna R Velez Edwards, Mette Nyegaard, Siew-Kee Low, Krina T Zondervan, Stacey A Missmer, Thomas D'Hooghe, Grant W Montgomery, Daniel I Chasman, Kari Stefansson, Joyce Y Tung, Dale R Nyholt, Thomas M Werge, Wesley K Thompson, Yadav Sapkota, Valgerdur Steinthorsdottir, Andrew P Morris, Amelie Fassbender, Nilufer Rahmioglu, Immaculata De Vivo, Julie E Buring, Futao Zhang, Todd L Edwards, Sarah Jones, Dorien O, Daniëlle Peterse, Kathryn M Rexrode, Paul M Ridker, Andrew J Schork, Stuart MacGregor, Nicholas G Martin, Christian M Becker, Sosuke Adachi, Kosuke Yoshihara, Takayuki Enomoto, Atsushi Takahashi, Yoichiro Kamatani, Koichi Matsuda, Michiaki Kubo, Gudmar Thorleifsson, Reynir T Geirsson, Unnur Thorsteinsdottir, Leanne M Wallace, iPSYCH-SSI-Broad Group, Jian Yang, Digna R Velez Edwards, Mette Nyegaard, Siew-Kee Low, Krina T Zondervan, Stacey A Missmer, Thomas D'Hooghe, Grant W Montgomery, Daniel I Chasman, Kari Stefansson, Joyce Y Tung, Dale R Nyholt, Thomas M Werge, Wesley K Thompson

Abstract

Endometriosis is a heritable hormone-dependent gynecological disorder, associated with severe pelvic pain and reduced fertility; however, its molecular mechanisms remain largely unknown. Here we perform a meta-analysis of 11 genome-wide association case-control data sets, totalling 17,045 endometriosis cases and 191,596 controls. In addition to replicating previously reported loci, we identify five novel loci significantly associated with endometriosis risk (P<5 × 10-8), implicating genes involved in sex steroid hormone pathways (FN1, CCDC170, ESR1, SYNE1 and FSHB). Conditional analysis identified five secondary association signals, including two at the ESR1 locus, resulting in 19 independent single nucleotide polymorphisms (SNPs) robustly associated with endometriosis, which together explain up to 5.19% of variance in endometriosis. These results highlight novel variants in or near specific genes with important roles in sex steroid hormone signalling and function, and offer unique opportunities for more targeted functional research efforts.

Conflict of interest statement

V.S., G.T., U.T. and K.S. are employees of the biotechnology firm deCODE Genetics, a subsidiary of AMGEN. The remaining authors declare no competing financial interests.

Figures

Figure 1. Manhattan plot for genome-wide associations…
Figure 1. Manhattan plot for genome-wide associations with endometriosis.
Data are based on GWA meta-analysis of all endometriosis cases. The horizontal axis shows the chromosomal position, and the vertical axis shows the significance of tested markers combined in a fixed-effects meta-analysis. Markers that reached genome-wide significance (P<5 × 10−8) are highlighted.
Figure 2. LocusZoom plots of five genome-wide…
Figure 2. LocusZoom plots of five genome-wide significant endometriosis loci.
Association with endometriosis is expressed as −log10(P value) for five new genome-wide significant loci: FN1 2q35 (2a), CCDC170 on 6q25.1 (2b), SYNE1 on 6q25.1 (2c), 7p12.3 (2d), and near FSHB on 11p14.1 (2e). Results for 2q35 and 7p12.3 are based on analysis including only moderate-to-severe ('Grade B') endometriosis cases. SNPs are shown as circles, diamonds or squares (filled or unfilled), with the top SNP represented by purple colour. All other SNPs are colour coded according to the strength of LD with the top SNP (as measured by r2 in the European 1000 Genomes data).
Figure 3. Forest plots showing risk allele…
Figure 3. Forest plots showing risk allele effects for five endometriosis loci.
Risk allele effects for the five new genome-wide significant loci in the individual case-control data sets and GWA meta-analysis: FN1 2q35 (3a), CCDC170 on 6q25.1 (3b), SYNE1 on 6q25.1 (3c), 7p12.3 (3d), and near FSHB on 11p14.1 (3e). Results for 2q35 and 7p12.3 are based on analysis including only moderate-to-severe ('Grade B') endometriosis cases. Risk allele effects of the remaining three SNPs are from analysis including all endometriosis cases.

References

    1. Treloar S. A., O'Connor D. T., O'Connor V. M. & Martin N. G. Genetic influences on endometriosis in an Australian twin sample. Fertil. Steril. 71, 701–710 (1999).
    1. Gao X. et al.. Economic burden of endometriosis. Fertil. Steril. 86, 1561–1572 (2006).
    1. Saha R. et al.. Heritability of endometriosis. Fertil. Steril. 104, 947–952 (2015).
    1. Lee S. H. et al.. Estimation and partitioning of polygenic variation captured by common SNPs for Alzheimer's disease, multiple sclerosis and endometriosis. Hum. Mol. Genet. 22, 832–841 (2013).
    1. Uno S. et al.. A genome-wide association study identifies genetic variants in the CDKN2BAS locus associated with endometriosis in Japanese. Nat. Genet. 42, 707–710 (2010).
    1. Albertsen H. M., Chettier R., Farrington P. & Ward K. Genome-wide association study link novel loci to endometriosis. PLoS ONE 8, e58257 (2013).
    1. Painter J. N. et al.. Genome-wide association study identifies a locus at 7p15.2 associated with endometriosis. Nat. Genet. 43, 51–54 (2010).
    1. Nyholt D. R. et al.. Genome-wide association meta-analysis identifies new endometriosis risk loci. Nat. Genet. 44, 1355–1359 (2012).
    1. Steinthorsdottir V. et al.. Common variants upstream of KDR encoding VEGFR2 and in TTC39B associate with endometriosis. Nat. Commun. 7, 12350 (2016).
    1. Sapkota Y. et al.. Independent replication and meta-analysis for endometriosis risk loci. Twin Res. Hum. Genet. 18, 518–525 (2015).
    1. Sapkota Y. et al.. Association between endometriosis and the interleukin 1A (IL1A) locus. Hum. Reprod. 30, 239–248 (2014).
    1. Rahmioglu N. et al.. Genetic variants underlying risk of endometriosis: insights from meta-analysis of eight genome-wide association and replication datasets. Hum. Reprod. Update 20, 702–716 (2014).
    1. Willer C. J., Li Y. & Abecasis G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).
    1. Adachi S. et al.. Meta-analysis of genome-wide association scans for genetic susceptibility to endometriosis in Japanese population. J. Hum. Genet. 55, 816–821 (2010).
    1. Painter J. N. et al.. Common variants in the CYP2C19 gene are associated with susceptibility to endometriosis. Fertil. Steril. 102, 496–502.e5 (2014).
    1. Revised American Society for Reproductive Medicine classification of endometriosis: 1996. Fertil. Steril. 67, 817–821 (1997).
    1. Han B. & Eskin E. Random-effects model aimed at discovering associations in meta-analysis of genome-wide association studies. Am. J. Hum. Genet. 88, 586–598 (2011).
    1. Yang J., Lee S. H., Goddard M. E. & Visscher P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).
    1. Risch N. J. Searching for genetic determinants in the new millennium. Nature 405, 847–856 (2000).
    1. Welter D. et al.. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res. 42, D1001–D1006 (2014).
    1. Pearce C. L. et al.. Association between endometriosis and risk of histological subtypes of ovarian cancer: a pooled analysis of case-control studies. Lancet Oncol. 13, 385–394 (2012).
    1. Global Lipids Genetics, C.. et al.. Discovery and refinement of loci associated with lipid levels. Nat. Genet. 45, 1274–1283 (2013).
    1. Lu X. et al.. Genome-wide association study in Han Chinese identifies four new susceptibility loci for coronary artery disease. Nat. Genet. 44, 890–894 (2012).
    1. Ruth K. S. et al.. Genome-wide association study with 1000 genomes imputation identifies signals for nine sex hormone-related phenotypes. Eur. J. Hum. Genet. 24, 284–290 (2016).
    1. Bulik-Sullivan B. K. et al.. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).
    1. Zheng J. et al.. LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis. Bioinformatics 33, 272–279 (2016).
    1. Dunning A. M. et al.. Breast cancer risk variants at 6q25 display different phenotype associations and regulate ESR1, RMND1 and CCDC170. Nat. Genet. 48, 374–386 (2016).
    1. Mishra A. & Macgregor S. VEGAS2: Software for More Flexible Gene-Based Testing. Twin Res. Hum. Genet. 18, 86–91 (2015).
    1. Consortium, G. T. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648–660 (2015).
    1. Zhu Z. et al.. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat. Genet. 48, 481–487 (2016).
    1. Westra H. J. et al.. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat. Genet. 45, 1238–1243 (2013).
    1. Pers T. H. et al.. Biological interpretation of genome-wide association studies using predicted gene functions. Nat. Commun. 6, 5890 (2015).
    1. Nyholt D. R. et al.. Genome-wide association meta-analysis identifies new endometriosis risk loci. Nat. Genet. 44, 1355–1359 (2012).
    1. Zondervan K. T. et al.. Beyond Endometriosis Genome-Wide Association Study: from genomics to phenomics to the patient. Semin. Reprod. Med. 34, 242–254 (2016).
    1. Kuchenbaecker K. B. et al.. Identification of six new susceptibility loci for invasive epithelial ovarian cancer. Nat. Genet. 47, 164–171 (2015).
    1. Powell J. E. et al.. Endometriosis risk alleles at 1p36.12 act through inverse regulation of CDC42 and LINC00339. Hum. Mol. Genet. 25, 5046–5058 (2016).
    1. Fung J. N. et al.. Functional evaluation of genetic variants associated with endometriosis near GREB1. Hum. Reprod. 30, 1263–1275 (2015).
    1. Holdsworth-Carson S. J. et al.. Endometrial vezatin and its association with endometriosis risk. Hum. Reprod. 31, 999–1013 (2016).
    1. Sugino N., Kashida S., Karube-Harada A., Takiguchi S. & Kato H. Expression of vascular endothelial growth factor (VEGF) and its receptors in human endometrium throughout the menstrual cycle and in early pregnancy. Reproduction 123, 379–387 (2002).
    1. Brenner R. M., Nayak N. R., Slayden O. D., Critchley H. O. & Kelly R. W. Premenstrual and menstrual changes in the macaque and human endometrium: relevance to endometriosis. Ann. NY Acad. Sci. 955, 60–74 discussion 86-8, 396-406 (2002).
    1. Bulun S. E. et al.. Role of estrogen receptor-beta in endometriosis. Semin. Reprod. Med. 30, 39–45 (2012).
    1. Burney R. O. & Giudice L. C. Pathogenesis and pathophysiology of endometriosis. Fertil. Steril. 98, 511–519 (2012).
    1. Cai Q. et al.. Replication and functional genomic analyses of the breast cancer susceptibility locus at 6q25.1 generalize its importance in women of chinese, Japanese, and European ancestry. Cancer Res. 71, 1344–1355 (2011).
    1. Zheng W. et al.. Genome-wide association study identifies a new breast cancer susceptibility locus at 6q25.1. Nat. Genet. 41, 324–328 (2009).
    1. Ruth K. S. et al.. Genetic evidence that lower circulating FSH levels lengthen menstrual cycle, increase age at menopause and impact female reproductive health. Hum. Reprod. 31, 473–481 (2016).
    1. Gougeon A. Human ovarian follicular development: from activation of resting follicles to preovulatory maturation. Ann. Endocrinol. (Paris) 71, 132–143 (2010).
    1. Jones M. R. & Goodarzi M. O. An update on the genetics of polycystic ovary syndrome: progress and future directions. Fertil. Steril. 106, 25–32 (2016).
    1. Mbarek H. et al.. Identification of common genetic variants influencing spontaneous dizygotic twinning and female fertility. Am. J. Hum. Genet. 98, 898–908 (2016).
    1. Ghosh M. G., Thompson D. A. & Weigel R. J. PDZK1 and GREB1 are estrogen-regulated genes expressed in hormone-responsive breast cancer. Cancer Res. 60, 6367–6375 (2000).
    1. Deschenes J., Bourdeau V., White J. H. & Mader S. Regulation of GREB1 transcription by estrogen receptor alpha through a multipartite enhancer spread over 20 kb of upstream flanking sequences. J. Biol. Chem. 282, 17335–17339 (2007).
    1. Sun J., Nawaz Z. & Slingerland J. M. Long-range activation of GREB1 by estrogen receptor via three distal consensus estrogen-responsive elements in breast cancer cells. Mol. Endocrinol. 21, 2651–2662 (2007).
    1. Mohammed H. et al.. Endogenous purification reveals GREB1 as a key estrogen receptor regulatory factor. Cell Rep. 3, 342–349 (2013).
    1. Soikkeli J. et al.. Metastatic outgrowth encompasses COL-I, FN1, and POSTN up-regulation and assembly to fibrillar networks regulating cell adhesion, migration, and growth. Am. J. Pathol. 177, 387–403 (2010).
    1. Nakaoka H. et al.. Allelic Imbalance in Regulation of ANRIL through Chromatin Interaction at 9p21 Endometriosis Risk Locus. PLoS Genet. 12, e1005893 (2016).
    1. Holdt L. M. & Teupser D. From genotype to phenotype in human atherosclerosis–recent findings. Curr. Opin. Lipidol. 24, 410–418 (2013).
    1. Chen H. H., Almontashiri N. A., Antoine D. & Stewart A. F. Functional genomics of the 9p21.3 locus for atherosclerosis: clarity or confusion? Curr. Cardiol. Rep. 16, 502 (2014).
    1. Sapkota Y. et al.. Genetic burden associated with varying degrees of disease severity in endometriosis. Mol. Hum. Reprod. 21, 594–602 (2015).
    1. Li Y., Willer C., Sanna S. & Abecasis G. Genotype imputation. Annu. Rev. Genomics Hum. Genet. 10, 387–406 (2009).
    1. Li Y., Willer C. J., Ding J., Scheet P. & Abecasis G. R. MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet. Epidemiol. 34, 816–834 (2010).
    1. Howie B. N., Donnelly P. & Marchini J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 5, e1000529 (2009).
    1. Purcell S. et al.. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).
    1. Marchini J., Howie B., Myers S., McVean G. & Donnelly P. A new multipoint method for genome-wide association studies by imputation of genotypes. Nat. Genet. 39, 906–913 (2007).
    1. Aulchenko Y. S., Struchalin M. V. & van Duijn C. M. ProbABEL package for genome-wide association analysis of imputed data. BMC Bioinformatics 11, 134 (2010).
    1. Cochran W. G. The Combination of Estimates from Different Experiments. Biometrics 10, 101 (1954).
    1. Ioannidis J. P., Patsopoulos N. A. & Evangelou E. Heterogeneity in meta-analyses of genome-wide association investigations. PLoS ONE 2, e841 (2007).
    1. Yang J. et al.. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat. Genet. 44, 369–375 S1-3 (2012).
    1. Li M. X., Yeung J. M., Cherny S. S. & Sham P. C. Evaluating the effective numbers of independent tests and significant p-value thresholds in commercial genotyping arrays and public imputation reference datasets. Hum. Genet. 131, 747–756 (2012).
    1. Wellcome Trust Case Control, C.. et al.. Bayesian refinement of association signals for 14 loci in 3 common diseases. Nat. Genet. 44, 1294–1301 (2012).
    1. Wakefield J. A Bayesian measure of the probability of false discovery in genetic epidemiology studies. Am. J. Hum. Genet. 81, 208–227 (2007).
    1. Zondervan K. T., Cardon L. R. & Kennedy S. H. The genetic basis of endometriosis. Curr. Opin. Obstet. Gynecol. 13, 309–314 (2001).
    1. Janssen E. B., Rijkers A. C., Hoppenbrouwers K., Meuleman C. & D'Hooghe T. M. Prevalence of endometriosis diagnosed by laparoscopy in adolescents with dysmenorrhea or chronic pelvic pain: a systematic review. Hum. Reprod. Update 19, 570–582 (2013).
    1. Replication, D. I. G.. et al.. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat. Genet. 46, 234–244 (2014).

Source: PubMed

3
Abonnieren