MicroRNAs in cervical cancer: evidences for a miRNA profile deregulated by HPV and its impact on radio-resistance

Abraham Pedroza-Torres, Eduardo López-Urrutia, Verónica García-Castillo, Nadia Jacobo-Herrera, Luis A Herrera, Oscar Peralta-Zaragoza, César López-Camarillo, David Cantú De Leon, Jorge Fernández-Retana, Jorge F Cerna-Cortés, Carlos Pérez-Plasencia, Abraham Pedroza-Torres, Eduardo López-Urrutia, Verónica García-Castillo, Nadia Jacobo-Herrera, Luis A Herrera, Oscar Peralta-Zaragoza, César López-Camarillo, David Cantú De Leon, Jorge Fernández-Retana, Jorge F Cerna-Cortés, Carlos Pérez-Plasencia

Abstract

Cervical carcinoma (CC) is one of the most common cancers and a leading cause of mortality in women worldwide. Epidemiologic and experimental data have clearly demonstrated a causal role of high-risk Human Papillomavirus (HR-HPV) types in CC initiation and progression, affecting the cellular processes by targeting and inactivating p53 and pRB host proteins. HR-HPV E5, E6 and E7 oncoproteins have the ability to deregulate several cellular processes, mostly apoptosis, cell cycle control, migration, immune evasion, and induction of genetic instability, which promote the accumulation of mutations and aneuploidy. In this scenario, genomic profiles have shown that aberrant expression of cellular oncogenic and tumor suppressive miRNAs have an important role in CC carcinogenesis. It has been stated that HPV infection and E6/E7 expression are essential but not sufficient to lead to CC development; hence other genetic and epigenetic factors have to be involved in this complex disease. Recent evidence suggests an important level of interaction among E6/E7 viral proteins and cellular miRNA, and other noncoding RNAs. The aim of the current review is to analyze recent data that mainly describe the interaction between HR-HPV established infections and specific cellular miRNAs; moreover, to understand how those interactions could affect radio-therapeutic response in tumor cells.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Expression of miRNAs through the cervical cancer progression. Human papillomavirus infects epithelial basal cells through mechanical microabrassions or by infecting directly the transformation zone, an abrupt transition from columnar to squamous epithelium. Infected parabasal cells actively express the early genes E1, E2, E4, and E5, E6 and E7 are expressed in limited quantities due to transcriptional modulation exerted by E2, which allows cells to have a higher cell-cycle progression. Infected basal cells migrate to the lumen as they differentiate expressing the late capsid genes L1 and L2. Several miRNAs have been associated with different clinical stages, including normal tissue, premalignant lesions (low and high grade squamous intraepithelial lesion, LSIL and HSIL, respectively) and invasive cancer represented at the bottom of the figure.
Figure 2
Figure 2
Canonical and non-canonical miRNA biogenesis pathways. RNA pol II transcribes a primary transcript called pri-miRNA which contains a 7-methylguanosine cap and poly(A) tail. Subsequently, this structure is degraded into the nucleus by an RNase type III known as Drosha; producing 70 nt long pre-miRNAs, which are exported to the cytoplasm by exportin-5. Once in the cytoplasm, pre-miRNAs are cleaved by RNase III endonuclease known as Dicer and associated proteins TRBP and PACT, resulting in a double stranded molecule called miRNA duplex. Then, the level of complementarity between miRNAs with their target mRNA could affect the following mechanism: if presented a total complementarity, mRNA degradation is carried out; on the contrary, if complementarity is partial, the inhibition of mRNA translation occurs.
Figure 3
Figure 3
Major molecular process regulated in radioresistant tumor cells.

References

    1. Ferlay J., Shin H.-R., Bray F., Forman D., Mathers C., Parkin D.M. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer. 2010;127:2893–2917. doi: 10.1002/ijc.25516.
    1. Zur Hausen H. Papillomaviruses and cancer: From basic studies to clinical application. Nat. Rev. Cancer. 2002;2:342–350. doi: 10.1038/nrc798.
    1. Walboomers J.M., Jacobs M.V., Manos M.M., Bosch F.X., Kummer J.A., Shah K.V., Snijders P.J., Peto J., Meijer C.J., Muñoz N. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J. Pathol. 1999;189:12–19. doi: 10.1002/(SICI)1096-9896(199909)189:1<12::AID-PATH431>;2-F.
    1. Haverkos H., Rohrer M., Pickworth W. The cause of invasive cervical cancer could be multifactorial. Biomed. Pharmacother. 2000;54:54–59.
    1. Perez-Plasencia C., Duenas-Gonzalez A., Alatorre-Tavera B. Second hit in cervical carcinogenesis process: Involvement of wnt/beta catenin pathway. Int. Arch. Med. 2008;1:10. doi: 10.1186/1755-7682-1-10.
    1. Landoni F., Maneo A., Colombo A., Placa F., Milani R., Perego P., Favini G., Ferri L., Mangioni C. Randomised study of radical surgery versus radiotherapy for stage Ib-IIa cervical cancer. Lancet. 1997;350:535–540. doi: 10.1016/S0140-6736(97)02250-2.
    1. Quinn M.A., Benedet J.L., Odicino F., Maisonneuve P., Beller U., Creasman W.T., Heintz A.P.M., Ngan H.Y.S., Pecorelli S. Carcinoma of the cervix uteri. FIGO 26th annual report on the results of treatment in gynecological cancer. Int. J. Gynaecol. Obstet. 2006;95(Suppl. 1):S43–S103. doi: 10.1016/S0020-7292(06)60030-1.
    1. Chemoradiotherapy for Cervical Cancer Meta-Analysis Collaboration. Reducing uncertainties about the effects of chemoradiotherapy for cervical cancer: A systematic review and meta-analysis of individual patient data from 18 randomized trials. J. Clin. Oncol. 2008;26:5802–5812. doi: 10.1200/JCO.2008.16.4368.
    1. Hart K., Han I., Deppe G., Malviya V., Malone J., Jr., Christensen C., Chuba P., Porter A. Postoperative radiation for cervical cancer with pathologic risk factors. Int. J. Radiat. Oncol. Biol. Phys. 1997;37:833–838. doi: 10.1016/S0360-3016(96)00560-3.
    1. Keys H., Gibbons S.K. Optimal management of locally advanced cervical carcinoma. J. Natl. Cancer Inst. Monogr. 1996;21:89–92.
    1. Bartel D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–297. doi: 10.1016/S0092-8674(04)00045-5.
    1. Macfarlane L.-A., Murphy P.R. MicroRNA: Biogenesis, function and role in cancer. Curr. Genomics. 2010;11:537–561. doi: 10.2174/138920210793175895.
    1. Berezikov E., Guryev V., van de Belt J., Wienholds E., Plasterk R.H.A., Cuppen E. Phylogenetic shadowing and computational identification of human microRNA genes. Cell. 2005;120:21–24. doi: 10.1016/j.cell.2004.12.031.
    1. Dai R., Ahmed S.A. MicroRNA, a new paradigm for understanding immunoregulation, inflammation, and autoimmune diseases. Transl. Res. 2011;157:163–179.
    1. Ruby J.G., Jan C.H., Bartel D.P. Intronic microRNA precursors that bypass Drosha processing. Nature. 2007;448:83–86. doi: 10.1038/nature05983.
    1. Miranda K.C., Huynh T., Tay Y., Ang Y.-S., Tam W.-L., Thomson A.M., Lim B., Rigoutsos I. A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell. 2006;126:1203–1217. doi: 10.1016/j.cell.2006.07.031.
    1. Cai X., Hagedorn C.H., Cullen B.R. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA. 2004;10:1957–1966. doi: 10.1261/rna.7135204.
    1. Chendrimada T.P., Gregory R.I., Kumaraswamy E., Norman J., Cooch N., Nishikura K., Shiekhattar R. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature. 2005;436:740–744. doi: 10.1038/nature03868.
    1. Sedani A., Cooper D.N., Upadhyaya M. An emerging role for microRNAs in NF1 tumorigenesis. Hum. Genomics. 2012;6:23. doi: 10.1186/1479-7364-6-23.
    1. Hwang H.-W., Mendell J.T. MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br. J. Cancer. 2006;94:776–780. doi: 10.1038/sj.bjc.6603023.
    1. Vasudevan S., Tong Y., Steitz J.A. Switching from repression to activation: MicroRNAs can up-regulate translation. Science. 2007;318:1931–1934. doi: 10.1126/science.1149460.
    1. Eulalio A., Behm-Ansmant I., Izaurralde E. P bodies: At the crossroads of post-transcriptional pathways. Nat. Rev. Mol. Cell Biol. 2007;8:9–22. doi: 10.1038/nrm2080.
    1. Liu J., Rivas F.V., Wohlschlegel J., Yates J.R., III, Parker R., Hannon G.J. A role for the P-body component GW182 in microRNA function. Nat. Cell Biol. 2005;7:1261–1266. doi: 10.1038/ncb1333.
    1. Sen G.L., Blau H.M. Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies. Nat. Cell Biol. 2005;7:633–636. doi: 10.1038/ncb1265.
    1. Davis B.N., Hilyard A.C., Nguyen P.H., Lagna G., Hata A. Induction of microRNA-221 by platelet-derived growth factor signaling is critical for modulation of vascular smooth muscle phenotype. J. Biol. Chem. 2009;284:3728–3738.
    1. Takyar S., Vasavada H., Zhang J., Ahangari F., Niu N., Liu Q., Lee C.G., Cohn L., Elias J.A. VEGF controls lung Th2 inflammation via the miR-1-Mpl (myeloproliferative leukemia virus oncogene)-P-selectin axis. J. Exp. Med. 2013;210:1993–2010. doi: 10.1084/jem.20121200.
    1. Tamura M., Uyama M., Sugiyama Y., Sato M. Canonical Wnt signaling activates miR-34 expression during osteoblastic differentiation. Mol. Med. Rep. 2013;8:1807–1811.
    1. Saito Y., Liang G., Egger G., Friedman J.M., Chuang J.C., Coetzee G.A., Jones P.A. Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell. 2006;9:435–443. doi: 10.1016/j.ccr.2006.04.020.
    1. Scott G.K., Mattie M.D., Berger C.E., Benz S.C., Benz C.C. Rapid alteration of microRNA levels by histone deacetylase inhibition. Cancer Res. 2006;66:1277–1281. doi: 10.1158/0008-5472.CAN-05-3632.
    1. Bandres E., Agirre X., Bitarte N., Ramirez N., Zarate R., Roman-Gomez J., Prosper F., Garcia-Foncillas J. Epigenetic regulation of microRNA expression in colorectal cancer. Int. J. Cancer. 2009;125:2737–2743. doi: 10.1002/ijc.24638.
    1. Kumar M.S., Lu J., Mercer K.L., Golub T.R., Jacks T. Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat. Genet. 2007;39:673–677. doi: 10.1038/ng2003.
    1. Calin G.A., Dumitru C.D., Shimizu M., Bichi R., Zupo S., Noch E., Aldler H., Rattan S., Keating M., Rai K., et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. USA. 2002;99:15524–15529. doi: 10.1073/pnas.242606799.
    1. Lu J., Getz G., Miska E.A., Alvarez-Saavedra E., Lamb J., Peck D., Sweet-Cordero A., Ebert B.L., Mak R.H., Ferrando A.A., et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435:834–838. doi: 10.1038/nature03702.
    1. Lee J.-W., Choi C.H., Choi J.-J., Park Y.-A., Kim S.-J., Hwang S.Y., Kim W.Y., Kim T.-J., Lee J.-H., Kim B.-G. Altered MicroRNA expression in cervical carcinomas. Clin. Cancer Res. 2008;14:2535–2542. doi: 10.1158/1078-0432.CCR-07-1231.
    1. Hu X., Schwarz J.K., Lewis J.S., Jr., Huettner P.C., Rader J.S., Deasy J.O., Grigsby P.W., Wang X. A microRNA expression signature for cervical cancer prognosis. Cancer Res. 2010;70:1441–1448. doi: 10.1158/0008-5472.CAN-09-3289.
    1. Pereira P.M., Marques J.P., Soares A.R., Carreto L., Santos M.A. MicroRNA expression variability in human cervical tissues. PLoS One. 2010;5:e11780.
    1. Li B.H., Zhou J.S., Ye F., Cheng X.D., Zhou C.Y., Lu W.G., Xie X. Reduced miR-100 expression in cervical cancer and precursors and its carcinogenic effect through targeting PLK1 protein. Eur. J. Cancer. 2011;47:2166–2174.
    1. Li Y., Wang F., Xu J., Ye F., Shen Y., Zhou J., Lu W., Wan X., Ma D., Xie X. Progressive miRNA expression profiles in cervical carcinogenesis and identification of HPV-related target genes for miR-29. J. Pathol. 2011;224:484–495. doi: 10.1002/path.2873.
    1. Cortese M.S., Ashrafi G.H., Campo M.S. All 4 di-leucine motifs in the first hydrophobic domain of the E5 oncoprotein of human papillomavirus type 16 are essential for surface MHC class I downregulation activity and E5 endomembrane localization. Int. J. Cancer. 2010;126:1675–1682.
    1. Li B., Hu Y., Ye F., Li Y., Lv W., Xie X. Reduced miR-34a expression in normal cervical tissues and cervical lesions with high-risk human papillomavirus infection. Int. J. Gynecol. Cancer. 2010;20:597–604. doi: 10.1111/IGC.0b013e3181d63170.
    1. Wang X., Meyers C., Guo M., Zheng Z.M. Upregulation of p18Ink4c expression by oncogenic HPV E6 via p53-miR-34a pathway. Int. J. Cancer. 2011;129:1362–1372. doi: 10.1002/ijc.25800.
    1. Martinez I., Gardiner A.S., Board K.F., Monzon F.A., Edwards R.P., Khan S.A. Human papillomavirus type 16 reduces the expression ofmicroRNA-218 in cervical carcinoma cells. Oncogene. 2008;27:2575–2582. doi: 10.1038/sj.onc.1210919.
    1. Gregory P.A., Bert A.G., Paterson E.L., Barry S.C., Tsykin A., Farshid G., Vadas M.A., Khew-Goodall Y., Goodall G.J. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat. Cell Biol. 2008;10:593–601. doi: 10.1038/ncb1722.
    1. Tian R.Q., Wang X.H., Hou L.J., Jia W.H., Yang Q., Li Y.X., Liu M., Li X., Tang H. MicroRNA-372 is down-regulated and targets cyclin-dependent kinase 2 (CDK2) and cyclin A1 in human cervical cancer, which may contribute to tumorigenesis. J. Biol. Chem. 2011;286:25556–25563.
    1. Melar-New M., Laimins L.A. Human papillomaviruses modulate expression of microRNA 203 upon epithelial differentiation to control levels of p63 proteins. J. Virol. 2010;84:5212–5221. doi: 10.1128/JVI.00078-10.
    1. Li J.H., Xiao X., Zhang Y.-N., Wang Y.-M., Feng L.-M., Wu Y.-M., Zhang Y.-X. MicroRNA miR-886–5p inhibits apoptosis by down-regulating Bax expression in human cervical carcinoma cells. Gynecol. Oncol. 2011;120:145–151. doi: 10.1016/j.ygyno.2010.09.009.
    1. Straight S.W., Hinkle P.M., Jewers R.J., McCance D.J. The E5 oncoprotein of human papillomavirus type 16 transforms fibroblasts and effects the downregulation of the epidermal growth factor receptor in keratinocytes. J. Virol. 1993;67:4521–4532.
    1. Mittal K.R., Chan W., Demopoulos R.I. Sensitivity and specificity of various morphological features of cervical condylomas. An in situ hybridization study. Arch. Pathol. Lab. Med. 1990;114:1038–1041.
    1. Prasad C.J., Sheets E., Selig A.M., McArthur M.C., Crum C.P. The binucleate squamous cell: Histologic spectrum and relationship to low-grade squamous intraepithelial lesions. Mod. Pathol. 1993;6:313–317.
    1. Kabsch K., Alonso A. The human papillomavirus type 16 E5 protein impairs TRAIL- and FasL-mediated apoptosis in HaCaT cells by different mechanisms. J. Virol. 2002;76:12162–12172. doi: 10.1128/JVI.76.23.12162-12172.2002.
    1. Greco D., Kivi N., Qian K., Leivonen S.K., Auvinen P., Auvinen E. Human papillomavirus 16 E5 modulates the expression of host microRNAs. PLoS One. 2011;6:e21646.
    1. Zheng Z.M., Wang X. Regulation of cellular miRNA expression by human papillomaviruses. Biochim. Biophys. Acta. 2011;1809:668–677. doi: 10.1016/j.bbagrm.2011.05.005.
    1. Au Yeung C.L., Tsang T.Y., Yau P.L., Kwok T.T. Human papillomavirus type 16 E6 induces cervical cancer cell migration through the p53/microRNA-23b/urokinase-type plasminogen activator pathway. Oncogene. 2011;30:2401–2410. doi: 10.1038/onc.2010.613.
    1. Wang P., Zhang J., Zhang L., Zhu Z., Fan J., Chen L., Zhuang L., Luo J., Chen H., Liu L., et al. MicroRNA 23b regulates autophagy associated with radioresistance of pancreatic cancer cells. Gastroenterology. 2013;145:1133–1143. doi: 10.1053/j.gastro.2013.07.048.
    1. Myklebust M.P., Bruland O., Fluge Ø., Skarstein A., Balteskard L., Dahl O. MicroRNA-15b is induced with E2F-controlled genes in HPV-related cancer. Br. J. Cancer. 2011;105:1719–1725. doi: 10.1038/bjc.2011.457.
    1. Chang T.-C., Wentzel E.A., Kent O.A., Ramachandran K., Mullendore M., Lee K.H., Feldmann G., Yamakuchi M., Ferlito M., Lowenstein C.J., et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol. Cell. 2007;26:745–752. doi: 10.1016/j.molcel.2007.05.010.
    1. He L., He X., Lim L.P., de Stanchina E., Xuan Z., Liang Y., Xue W., Zender L., Magnus J., Ridzon D., et al. A microRNA component of the p53 tumour suppressor network. Nature. 2007;447:1130–1134. doi: 10.1038/nature05939.
    1. Bommer G.T., Gerin I., Feng Y., Kaczorowski A.J., Kuick R., Love R.E., Zhai Y., Giordano T.J., Qin Z.S., Moore B.B., et al. P53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr. Biol. 2007;17:1298–1307. doi: 10.1016/j.cub.2007.06.068.
    1. Tazawa H., Tsuchiya N., Izumiya M., Nakagama H. Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc. Natl. Acad. Sci. USA. 2007;104:15472–15477.
    1. Welch C., Chen Y., Stallings R.L. MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene. 2007;26:5017–5022. doi: 10.1038/sj.onc.1210293.
    1. Kang J., Kim E., Kim W., Seong K.M., Youn H., Kim J.W., Kim J., Youn B. Rhamnetin and cirsiliol induce radiosensitization and inhibition of epithelial-mesenchymal transition (EMT) by miR-34a-mediated suppression of Notch-1 expression in non-small cell lung cancer cell lines. J. Biol. Chem. 2013;288:27343–27357.
    1. Lena A.M., Shalom-Feuerstein R., di Cervo R.V.P., Aberdam D., Knight R.A., Melino G., Candi E. miR-203 represses “stemness” by repressing DeltaNp63. Cell Death Differ. 2008;15:1187–95. doi: 10.1038/cdd.2008.69.
    1. Yi R., Poy M.N., Stoffel M., Fuchs E. A skin microRNA promotes differentiation by repressing “stemness”. Nature. 2008;452:225–229. doi: 10.1038/nature06642.
    1. Ju S.-Y., Chiou S.-H., Su Y. Maintenance of the stemness in CD44(+) HCT-15 and HCT-116 human colon cancer cells requires miR-203 suppression. Stem Cell Res. 2014;12:86–100. doi: 10.1016/j.scr.2013.09.011.
    1. Gao X., McDonald J.T., Hlatky L., Enderling H. Acute and fractionated irradiation differentially modulate glioma stem cell division kinetics. Cancer Res. 2013;73:1481–1490. doi: 10.1158/0008-5472.CAN-12-3429.
    1. Diehn M., Cho R.W., Lobo N.A., Kalisky T., Dorie M.J., Kulp A.N., Qian D., Lam J.S., Ailles L.E., Wong M., et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature. 2009;458:780–783. doi: 10.1038/nature07733.
    1. Wang W.-J., Wu S.-P., Liu J.-B., Shi Y.-S., Huang X., Zhang Q.-B., Yao K.-T. MYC regulation of CHK1 and CHK2 promotes radioresistance in a stem cell-like population of nasopharyngeal carcinoma cells. Cancer Res. 2013;73:1219–1231. doi: 10.1158/0008-5472.CAN-12-1408.
    1. Marie-Egyptienne D.T., Lohse I., Hill R.P. Cancer stem cells, the epithelial to mesenchymal transition (EMT) and radioresistance: Potential role of hypoxia. Cancer Lett. 2013;341:63–72.
    1. Rose P.G., Bundy B.N., Watkins E.B., Thigpen J.T., Deppe G., Maiman M.A., Clarke-Pearson D.L., Insalaco S. Concurrent cisplatin-based radiotherapy and chemotherapy for locally advanced cervical cancer. N. Engl. J. Med. 1999;340:1144–1153. doi: 10.1056/NEJM199904153401502.
    1. Kim S.J. Multimodal treatment for the locally advanced stage IB, IIA, IIB patients of cervical cancer. Int. J. Gynaecol. Obstet. 1995;49:S49–S57. doi: 10.1016/0020-7292(95)02410-E.
    1. Satpute P.S., Hazarey V., Ahmed R., Yadav L. Cancer stem cells in head and neck squamous cell carcinoma: A review. Asian Pac. J. Cancer Prev. 2013;14:5579–5587.
    1. Jameel J.K.A., Rao V.S.R., Cawkwell L., Drew P.J. Radioresistance in carcinoma of the breast. Breast. 2004;13:452–460. doi: 10.1016/j.breast.2004.08.004.
    1. Yamamori T., Yasui H., Yamazumi M., Wada Y., Nakamura Y., Nakamura H., Inanami O. Ionizing radiation induces mitochondrial reactive oxygen species production accompanied by upregulation of mitochondrial electron transport chain function and mitochondrial content under control of the cell cycle checkpoint. Free Radic. Biol. Med. 2012;53:260–270. doi: 10.1016/j.freeradbiomed.2012.04.033.
    1. Storr S.J., Woolston C.M., Martin S.G. Base excision repair, the redox environment and therapeutic implications. Curr. Mol. Pharmacol. 2012;5:88–101. doi: 10.2174/1874467211205010088.
    1. Ray P.D., Huang B.-W., Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal. 2012;24:981–990. doi: 10.1016/j.cellsig.2012.01.008.
    1. Kitahara O., Katagiri T., Tsunoda T., Harima Y., Nakamura Y. Classification of sensitivity or resistance of cervical cancers to ionizing radiation according to expression profiles of 62 genes selected by cDNA microarray analysis. Neoplasia. 2002;4:295–303. doi: 10.1038/sj.neo.7900251.
    1. Tewari D., Monk B.J., Al-Ghazi M.S., Parker R., Heck J.D., Burger R.A., Fruehauf J.P. Gene expression profiling of in vitro radiation resistance in cervical carcinoma: A feasibility study. Gynecol. Oncol. 2005;99:84–91. doi: 10.1016/j.ygyno.2005.05.043.
    1. Wong Y.F., Selvanayagam Z.E., Wei N., Porter J., Vittal R., Hu R., Lin Y., Liao J., Shih J.W., Cheung T.H., et al. Expression genomics of cervical cancer: Molecular classification and prediction of radiotherapy response by DNA microarray. Clin. Cancer Res. 2003;9:5486–5492.
    1. Shin S., Cha H.J., Lee E.-M., Lee S.-J., Seo S.-K., Jin H.-O., Park I.-C., Jin Y.-W., An S. Alteration of miRNA profiles by ionizing radiation in A549 human non-small cell lung cancer cells. Int. J. Oncol. 2009;35:81–86.
    1. Niemoeller O.M., Niyazi M., Corradini S., Zehentmayr F., Li M., Lauber K., Belka C. MicroRNA expression profiles in human cancer cells after ionizing radiation. Radiat. Oncol. 2011;6:29. doi: 10.1186/1748-717X-6-29.
    1. Zhang B., Chen J., Ren Z., Chen Y., Li J., Miao X., Song Y., Zhao T., Li Y., Shi Y., et al. A specific miRNA signature promotes radioresistance of human cervical cancer cells. Cancer Cell Int. 2013;13:118. doi: 10.1186/1475-2867-13-118.
    1. Xi Y., Shalgi R., Fodstad O., Pilpel Y., Ju J. Differentially regulated micro-RNAs and actively translated messenger RNA transcripts by tumor suppressor p53 in colon cancer. Clin. Cancer Res. 2006;12:2014–2024. doi: 10.1158/1078-0432.CCR-05-1853.
    1. Mansour W.Y., Bogdanova N.V., Kasten-Pisula U., Rieckmann T., Köcher S., Borgmann K., Baumann M., Krause M., Petersen C., Hu H., et al. Aberrant overexpression of miR-421 downregulates ATM and leads to a pronounced DSB repair defect and clinical hypersensitivity in SKX squamous cell carcinoma. Radiother. Oncol. 2013;106:147–154. doi: 10.1016/j.radonc.2012.10.020.
    1. Yamakuchi M., Lowenstein C.J. MiR-34, SIRT1 and p53: The feedback loop. Cell Cycle. 2009;8:712–715. doi: 10.4161/cc.8.5.7753.
    1. Ivanovska I., Ball A.S., Diaz R.L., Magnus J.F., Kibukawa M., Schelter J.M., Kobayashi S.V., Lim L., Burchard J., Jackson A.L., et al. MicroRNAs in the miR-106b family regulate p21/CDKN1A and promote cell cycle progression. Mol. Cell. Biol. 2008;28:2167–2174. doi: 10.1128/MCB.01977-07.
    1. Wu S., Huang S., Ding J., Zhao Y., Liang L., Liu T., Zhan R., He X. Multiple microRNAs modulate p21Cip1/Waf1 expression by directly targeting its 3' untranslated region. Oncogene. 2010;29:2302–2308. doi: 10.1038/onc.2010.34.

Source: PubMed

3
Abonnieren