Large-Vessel Sealing in Laparoscopic Colectomy with an Ultrasonic Device

Gustavo Plasencia, Kurt Van der Speeten, Piet Hinoul, Jennifer A Kelch, Jonathan Batiller, Kimberley S Severin, Michael L Schwiers, Tim Rockall, Gustavo Plasencia, Kurt Van der Speeten, Piet Hinoul, Jennifer A Kelch, Jonathan Batiller, Kimberley S Severin, Michael L Schwiers, Tim Rockall

Abstract

Background and objective: The Harmonic ACE+7 Shears with Advanced Hemostasis Mode (Ethicon, Somerville, NJ, USA) is an ultrasonic device designed to transect and seal vessels up to 7 mm in diameter. The device applies an algorithm that optimizes ultrasonic energy delivery combined with a longer sealing cycle. The purpose of this study was to assess the initial clinical experience with the Harmonic device by evaluating large-vessel sealing during laparoscopic colectomy in consecutive cases.

Methods: This prospective, multicenter, observational series involved 40 adult patients who were to undergo elective laparoscopic colectomy where dissection and transection of the inferior mesenteric artery was indicated. The primary study endpoint was first-pass hemostasis, defined as a single activation of the Advanced Hemostasis Mode to transect and seal the inferior mesenteric artery. The use of any additional energy device or hemostatic product to establish or maintain hemostasis was noted. Patients were observed after surgery for ∼4 weeks for adverse events that were considered to be related to the study procedure or study device. Descriptive statistical analyses were performed for study endpoints.

Results: Forty patients underwent the laparoscopic colectomy procedure. First-pass hemostasis of the inferior mesenteric artery was achieved and maintained in all 40 patients, with no required additional hemostatic measures. Exposure of the vessel was reported as skeletonized in 22 of 40 (55%) patients. Mean transection time was 21.9 ± 7.4 s. One adverse event (postoperative anemia) was considered possibly related to the study device.

Conclusion: In this initial clinical consecutive series, the device demonstrated successful transection and sealing of the large mesenteric vessels during laparoscopic colorectal surgery.

Keywords: Colectomy; Colorectal surgery; Hemostasis; Inferior mesenteric artery.

References

    1. Blackmore AE, Wong MT, Tang CL. Evolution of laparoscopy in colorectal surgery: an evidence-based review. World J Gastroenterol. 2014;20:4926–4933.
    1. Schwenk W, Haase O, Neudecker J, Müller JM. Short term benefits for laparoscopic colorectal resection. Cochrane Database Syst Rev. 2005:CD003145.
    1. Abraham NS, Young JM, Solomon MJ. Meta-analysis of short-term outcomes after laparoscopic resection for colorectal cancer. Br J Surg. 2004;91:1111–1124.
    1. Braga M, Frasson M, Zuliani W, Vignali A, Pecorelli N, Di Carlo V. Randomized clinical trial of laparoscopic versus open left colonic resection. Br J Surg. 2010;97:1180–1186.
    1. Veldkamp R, Kuhry E, Hop WC, et al. for the COlon cancer Laparoscopic or Open Resection Study Group (COLOR). Laparoscopic surgery versus open surgery for colon cancer: short-term outcomes of a randomised trial. Lancet Oncol. 2005;6:477–484.
    1. Clinical Outcomes of Surgical Therapy Study Group. A comparison of laparoscopically assisted and open colectomy for colon cancer. N Engl J Med. 2004;350:2050–2059.
    1. Sista F, Abruzzese V, Schietroma M, Cecilia EM, Mattei A, Amicucci G. New harmonic scalpel versus conventional hemostasis in right colon surgery: a prospective randomized controlled clinical trial. Dig Surg. 2013;30:355–361.
    1. Targarona EM, Balague C, Marin J, et al. Energy sources for laparoscopic colectomy: a prospective randomized comparison of conventional electrosurgery, bipolar computer-controlled electrosurgery and ultrasonic dissection: operative outcome and costs analysis. Surg Innov. 2005;12:339–344.
    1. Morino M, Rimonda R, Allaix ME, Giraudo G, Garrone C. Ultrasonic versus standard electric dissection in laparoscopic colorectal surgery: a prospective randomized clinical trial. Ann Surg. 2005;242:897–901.
    1. Mahabaleshwar V, Kaman L, Iqbal J, Singh R. Monopolar electrocautery versus ultrasonic dissection of the gallbladder from the gallbladder bed in laparoscopic cholecystectomy: a randomized controlled trial. Can J Surg. 2012;55:307–311.
    1. Miccoli P, Materazzi G, Miccoli M, Frustaci G, Fosso A, Berti P. Evaluation of a new ultrasonic device in thyroid surgery: comparative randomized study. Am J Surg. 2010;199:736–740.
    1. Newcomb WL, Hope WW, Schmelzer TM, et al. Comparison of blood vessel sealing among new electrosurgical and ultrasonic devices. Surg Endosc. 2009;23:90–96.
    1. Lamberton GR, Hsi RS, Jin DH, Lindler TU, Jellison FC, Baldwin DD. Prospective comparison of four laparoscopic vessel ligation devices. J Endourol. 2008;22:2307–2312.
    1. Hart SG. NASA Task Load Index (NASA-TLX); 20 years later. NASA-Ames Research Center; Moffett Field, CA; 2006.
    1. Murono K, Kawai K, Kazama S, et al. Anatomy of the inferior mesenteric artery evaluated using 3-dimensional CT angiography. Dis Colon Rectum. 2015;58:214–219.
    1. Panagouli E, Lolis E, Venieratos D. A morphometric study concerning the branching points of the main arteries in humans: relationships and correlations. Ann Anat. 2011;193:86–99.
    1. Wallwiener CW, Rajab TK, Zubke W, et al. Thermal conduction, compression, and electrical current: an evaluation of major parameters of electrosurgical vessel sealing in a porcine in vitro model. J Min Invasive Gynecol. 2008;15:605–610.
    1. Reyes DA, Brown SI, Cochrane L, Motta LS, Cuschieri A. Thermal fusion: effects and interactions of temperature, compression, and duration variables. Surg Endosc. 2012;26:3626–3633.
    1. Laine L, Long GL, Bakos GJ, Vakharia OJ, Cunningham C. Optimizing bipolar electrocoagulation for endoscopic hemostasis: assessment of factors influencing energy delivery and coagulation. Gastrointest Endosc. 2008;67:502–508.
    1. Timm RW, Asher RM, Tellio KR, Welling AL, Clymer JW, Amaral JF. Sealing vessels up to 7 mm in diameter solely with ultrasonic technology. Med Devices (Auckl). 2014;7:263–271.

Source: PubMed

3
Abonnieren