Gait and Balance Changes with Investigational Peripheral Nerve Cell Therapy during Deep Brain Stimulation in People with Parkinson's Disease

Geetanjali Gera, Zain Guduru, Tritia Yamasaki, Julie A Gurwell, Monica J Chau, Anna Krotinger, Frederick A Schmitt, John T Slevin, Greg A Gerhardt, Craig van Horne, Jorge E Quintero, Geetanjali Gera, Zain Guduru, Tritia Yamasaki, Julie A Gurwell, Monica J Chau, Anna Krotinger, Frederick A Schmitt, John T Slevin, Greg A Gerhardt, Craig van Horne, Jorge E Quintero

Abstract

Background: The efficacy of deep brain stimulation (DBS) and dopaminergic therapy is known to decrease over time. Hence, a new investigational approach combines implanting autologous injury-activated peripheral nerve grafts (APNG) at the time of bilateral DBS surgery to the globus pallidus interna.

Objectives: In a study where APNG was unilaterally implanted into the substantia nigra, we explored the effects on clinical gait and balance assessments over two years in 14 individuals with Parkinson's disease.

Methods: Computerized gait and balance evaluations were performed without medication, and stimulation was in the off state for at least 12 h to best assess the role of APNG implantation alone. We hypothesized that APNG might improve gait and balance deficits associated with PD.

Results: While people with a degenerative movement disorder typically worsen with time, none of the gait parameters significantly changed across visits in this 24 month study. The postural stability item in the UPDRS did not worsen from baseline to the 24-month follow-up. However, we measured gait and balance improvements in the two most affected individuals, who had moderate PD. In these two individuals, we observed an increase in gait velocity and step length that persisted over 6 and 24 months.

Conclusions: Participants did not show worsening of gait and balance performance in the off therapy state two years after surgery, while the two most severely affected participants showed improved performance. Further studies may better address the long-term maintanenace of these results.

Keywords: Parkinson’s disease; balance; cell therapy; deep brain stimulation; gait.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Participants inclusion flowchart.
Figure 2
Figure 2
(A) UPDRS III (B) UPDRS III Item-29 (Gait) (C) Hoehn and Yahr and (D) UPDRS III Item-30 (Postural Stability) clinical scales at baseline (0 month), 6 and 24 months post-surgery. Group means (SE), and example subjects: Parkinson’s disease (PD) subject 1 (UPDRS = 54), and PD subject 2 (UPDRS = 39).
Figure 3
Figure 3
(A) Cadence (B) Velocity (C) Step length (less) and (D) Step length (more) affected sides at baseline(0 month), 6 and 24 months post-surgery. Group means (SE), and example subjects: Parkinson’s disease (PD) subject 1 (UPDRS = 54), and PD subject 2 (UPDRS = 39).

References

    1. Delamarre A., Meissner W.G. Epidemiology, environmental risk factors and genetics of Parkinson’s disease. Presse Med. 2017;46:175–181. doi: 10.1016/j.lpm.2017.01.001.
    1. Georgem J.L., Mok S., Moses D., Wilkins S., Bush A.I., Cherny R.A., Finkelstein D.I. Targeting the progression of Parkinson’s disease. Curr. Neuropharmacol. 2009;7:9–36. doi: 10.2174/157015909787602814.
    1. Morrish P.K., Rakshi J.S., Bailey D.L., Sawle G.V., Brooks D.J. Measuring the rate of progression and estimating the preclinical period of Parkinson’s disease with [18F]dopa PET. J. Neurol. Neurosurg. Psychiatry. 1998;64:314–319. doi: 10.1136/jnnp.64.3.314.
    1. George R.J.S., Nutt J.G., Burchiel K.J., Horak F.B. A meta-regression of the long-term effects of deep brain stimulation on balance and gait in PD. Neurology. 2010;75:1292–1299. doi: 10.1212/WNL.0b013e3181f61329.
    1. Mirelman A., Bonato P., Camicioli R., Ellis T.D., Giladi N., Hamilton J.L., Hass C.J., Hausdorff J.M., Pelosin E., Almeida Q.J. Gait impairments in Parkinson’s disease. Lancet Neurol. 2019;18:697–708. doi: 10.1016/S1474-4422(19)30044-4.
    1. Collomb-Clerc A., Welter M.L. Effects of deep brain stimulation on balance and gait in patients with Parkinson’s disease: A systematic neurophysiological review. Neurophysiol. Clin. 2015;45:371–388. doi: 10.1016/j.neucli.2015.07.001.
    1. Krack P., Batir A., Van Blercom N., Chabardes S., Fraix V., Ardouin C., Koudsie A., Limousin P.D., Benazzouz A., LeBas J.F., et al. Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N. Engl. J. Med. 2003;349:1925–1934. doi: 10.1056/NEJMoa035275.
    1. van Horne C.G., Quintero J.E., Gurwell J.A., Wagner R.P., Slevin J.T., Gerhardt G.A. Implantation of autologous peripheral nerve grafts into the substantia nigra of subjects with idiopathic Parkinson’s disease treated with bilateral STN DBS: A report of safety and feasibility. J. Neurosurg. 2017;126:1140–1147. doi: 10.3171/2016.2.JNS151988.
    1. van Horne C.G., Quintero J.E., Slevin J.T., Anderson-Mooney A., Gurwell J.A., Welleford A.S., Lamm J.R., Wagner R.P., Gerhardt G.A. Peripheral nerve grafts implanted into the substantia nigra in patients with Parkinson’s disease during deep brain stimulation surgery: 1-year follow-up study of safety, feasibility, and clinical outcome. J. Neurosurg. 2018;129:1550–1561. doi: 10.3171/2017.8.JNS163222.
    1. Jessen K.R., Arthur-Farraj P. Repair Schwann cell update: Adaptive reprogramming, EMT, and stemness in regenerating nerves. Glia. 2019;67:421–437. doi: 10.1002/glia.23532.
    1. Jessen K.R., Mirsky R. The repair Schwann cell and its function in regenerating nerves. J. Physiol. 2016;594:3521–3531. doi: 10.1113/JP270874.
    1. Jessen K.R., Mirsky R. The Success and Failure of the Schwann Cell Response to Nerve Injury. Front Cell Neurosci. 2019;13:33. doi: 10.3389/fncel.2019.00033.
    1. Jessen K.R., Mirsky R., Lloyd A.C. Schwann Cells: Development and Role in Nerve Repair. Cold Spring Harb. Perspect. Biol. 2015;7:a020487. doi: 10.1101/cshperspect.a020487.
    1. Fontana X., Hristova M., Da Costa C., Patodia S., Thei L., Makwana M., Spencer-Dene B., Latouche M., Mirsky R., Jessen K.R., et al. c-Jun in Schwann cells promotes axonal regeneration and motoneuron survival via paracrine signaling. J. Cell Biol. 2012;198:127–141. doi: 10.1083/jcb.201205025.
    1. Naveilhan P., ElShamy W.M., Ernfors P. Differential regulation of mRNAs for GDNF and its receptors Ret and GDNFR alpha after sciatic nerve lesion in the mouse. Eur. J. Neurosci. 1997;9:1450–1460. doi: 10.1111/j.1460-9568.1997.tb01499.x.
    1. Heumann R., Korsching S., Bandtlow C., Thoenen H. Changes of nerve growth factor synthesis in nonneuronal cells in response to sciatic nerve transection. J. Cell Biol. 1987;104:1623–1631. doi: 10.1083/jcb.104.6.1623.
    1. Brushart T.M., Aspalter M., Griffin J.W., Redett R., Hameed H., Zhou C., Wright M., Vyas A., Höke A. Schwann cell phenotype is regulated by axon modality and central–peripheral location, and persists in vitro. Exp. Neurol. 2013;247:272–281. doi: 10.1016/j.expneurol.2013.05.007.
    1. Meyer M., Matsuoka I., Wetmore C., Olson L., Thoenen H. Enhanced synthesis of brain-derived neurotrophic factor in the lesioned peripheral nerve: Different mechanisms are responsible for the regulation of BDNF and NGF mRNA. J. Cell Biol. 1992;119:45–54. doi: 10.1083/jcb.119.1.45.
    1. Welleford A.S., Quintero J.E., El Seblani N., Blalock E., Gunewardena S., Shapiro S.M., Riordan S.M., Huettl P., Guduru Z., Stanford J.A., et al. RNA Sequencing of Human Peripheral Nerve in Response to Injury: Distinctive Analysis of the Nerve Repair Pathways. Cell Transplant. 2020;29:963689720926157. doi: 10.1177/0963689720926157.
    1. Allert N., Volkmann J., Dotse S., Hefter H., Sturm V., Freund H.J. Effects of bilateral pallidal or subthalamic stimulation on gait in advanced Parkinson’s disease. Mov. Disord. 2001;16:1076–1085. doi: 10.1002/mds.1222.
    1. Faist M., Xie J., Kurz D., Berger W., Maurer C., Pollak P., Lücking C.H. Effect of bilateral subthalamic nucleus stimulation on gait in Parkinson’s disease. Brain. 2001;124:1590–1600. doi: 10.1093/brain/124.8.1590.
    1. Ferrarin M., Lopiano L., Rizzone M., Lanotte M., Bergamasco B., Recalcati M., Pedotti A. Quantitative analysis of gait in Parkinson’s disease: A pilot study on the effects of bilateral sub-thalamic stimulation. Gait Posture. 2002;16:135–148. doi: 10.1016/S0966-6362(01)00204-1.
    1. Ferrarin M., Rizzone M., Bergamasco B., Lanotte M., Recalcati M., Pedotti A., Lopiano L. Effects of bilateral subthalamic stimulation on gait kinematics and kinetics in Parkinson’s disease. Exp. Brain Res. 2004;160:517–527. doi: 10.1007/s00221-004-2036-5.
    1. Liu W., McIntire K., Kim S.H., Zhang J., Dascalos S., Lyons K.E., Pahwa R. Quantitative assessments of the effect of bilateral subthalamic stimulation on multiple aspects of sensorimotor function for patients with Parkinson’s disease. Parkinsonism. Relat. Disord. 2005;11:503–508. doi: 10.1016/j.parkreldis.2005.07.001.
    1. Stolze H., Klebe S., Poepping M., Lorenz D., Herzog J., Hamel W., Schrader B., Raethjen J., Wenzelburger R., Mehdorn H.M., et al. Effects of bilateral subthalamic nucleus stimulation on parkinsonian gait. Neurology. 2001;57:144–146. doi: 10.1212/WNL.57.1.144.
    1. Xie J., Krack P., Benabid A.-L., Pollak P. Effect of bilateral subthalamic nucleus stimulation on parkinsonian gait. J. Neurol. 2001;248:1068–1072. doi: 10.1007/s004150170027.
    1. Hausdorff J.M., Gruendlinger L., Scollins L., O’Herron S., Tarsy D. Deep brain stimulation effects on gait variability in Parkinson’s disease. Mov. Disord. 2009;24:1688–1692. doi: 10.1002/mds.22554.
    1. Johnsen E.L., Mogensen P.H., Sunde N.A., Østergaard K. Improved asymmetry of gait in Parkinson’s disease with DBS: Gait and postural instability in Parkinson’s disease treated with bilateral deep brain stimulation in the subthalamic nucleus. Mov. Disord. 2009;24:590–597. doi: 10.1002/mds.22419.
    1. Johnsen E.L., Sunde N., Mogensen P.H., Østergaard K. MRI verified STN stimulation site-gait improvement and clinical outcome. Eur. J. Neurol. 2010;17:746–753. doi: 10.1111/j.1468-1331.2010.02962.x.
    1. Lubik S., Fogel W., Tronnier V., Krause M., König J., Jost W.H. Gait analysis in patients with advanced Parkinson disease: Different or additive effects on gait induced by levodopa and chronic STN stimulation. J. Neural Transm. 2005;113:163–173. doi: 10.1007/s00702-005-0310-8.
    1. Vallabhajosula S., Haq I.U., Hwynn N., Oyama G., Okun M., Tillman M.D., Hass C.J. Low-frequency versus high-frequency subthalamic nucleus deep brain stimulation on postural control and gait in Parkinson’s disease: A quantitative study. Brain Stimul. 2015;8:64–75. doi: 10.1016/j.brs.2014.10.011.
    1. Defebvre L.J., Krystkowiak P., Blatt J.L., Duhamel A., Bourriez J.L., Périna M., Blond S., Guieu J.D., Destée A. Influence of pallidal stimulation and levodopa on gait and preparatory postural adjustments in Parkinson’s disease. Mov. Disord. 2002;17:76–83. doi: 10.1002/mds.1262.

Source: PubMed

3
Abonnieren