Metformin and high-sensitivity cardiac troponin I and T trajectories in type 2 diabetes patients: a post-hoc analysis of a randomized controlled trial

Johanna M G Stultiens, Wiebe M C Top, Dorien M Kimenai, Philippe Lehert, Otto Bekers, Coen D A Stehouwer, Adriaan Kooy, Steven J R Meex, Johanna M G Stultiens, Wiebe M C Top, Dorien M Kimenai, Philippe Lehert, Otto Bekers, Coen D A Stehouwer, Adriaan Kooy, Steven J R Meex

Abstract

Background: Metformin has favorable effects on cardiovascular outcomes in both newly onset and advanced type 2 diabetes, as previously reported findings from the UK Prospective Diabetes Study and the HOME trial have demonstrated. Patients with type 2 diabetes present with chronically elevated circulating cardiac troponin levels, an established predictor of cardiovascular endpoints and prognostic marker of subclinical myocardial injury. It is unknown whether metformin affects cardiac troponin levels. The study aimed to evaluate cardiac troponin I and T trajectories in patients with diabetes treated either with metformin or placebo.

Methods: This study is a post-hoc analysis of a randomized controlled trial (HOME trial) that included 390 patients with advanced type 2 diabetes randomized to 850 mg metformin or placebo up to three times daily concomitant to continued insulin treatment. Cardiac troponin I and T concentrations were measured at baseline and after 4, 17, 30, 43 and 52 months. We evaluated cardiac troponin trajectories by linear mixed-effects modeling, correcting for age, sex, smoking status and history of cardiovascular disease.

Results: This study enrolled 390 subjects, of which 196 received metformin and 194 received placebo. In the treatment and placebo groups, mean age was 64 and 59 years; with 50% and 58% of subjects of the female sex, respectively. Despite the previously reported reduction of macrovascular disease risk in this cohort by metformin, linear mixed-effects regression modelling did not reveal evidence for an effect on cardiac troponin I and cardiac troponin T levels [- 8.4% (- 18.6, 3.2), p = 0.150, and - 4.6% (- 12, 3.2), p = 0.242, respectively]. A statistically significant time-treatment interaction was found for troponin T [- 1.6% (- 2.9, - 0.2), p = 0.021] but not troponin I concentrations [- 1.5% (- 4.2, 1.2), p = 0.263].

Conclusions: In this post-hoc analysis of a 4.3-year randomized controlled trial, metformin did not exert a clinically relevant effect on cardiac troponin I and cardiac troponin T levels when compared to placebo. Cardioprotective effects of the drug observed in clinical studies are not reflected by a reduction in these biomarkers of subclinical myocardial injury. Trial registration ClinicalTrials.gov identifier NCT00375388.

Keywords: Biomarker; Cardiac; Cardioprotective; Longitudinal; Mechanism; Metformin; Troponin.

Conflict of interest statement

SJRM received research grants, speaking honoraria, and consulting fees from Abbott Laboratories and Roche Diagnostics. The other authors declare that they have no competing interests.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
HOME trial schedule and flow diagram
Fig. 2
Fig. 2
Trajectories of cardiac troponin I (A) and T (B) with 95% confidence intervals (shaded)

References

    1. Bailey CJ. Metformin: historical overview. Diabetologia. 2017;60(9):1566–1576. doi: 10.1007/s00125-017-4318-z.
    1. Kulkarni AS, Gubbi S, Barzilai N. Benefits of metformin in attenuating the hallmarks of aging. Cell Metab. 2020;32(1):15–30. doi: 10.1016/j.cmet.2020.04.001.
    1. UK Prospective Diabetes Study (UKPDS) Group Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34) Lancet. 1998;352(9131):854–65. doi: 10.1016/S0140-6736(98)07037-8.
    1. Goldberg RB, Aroda VR, Bluemke DA, Barrett-Connor E, Budoff M, Crandall JP, et al. Effect of long-term metformin and lifestyle in the diabetes prevention program and its outcome study on coronary artery calcium. Circulation. 2017;136(1):52–64. doi: 10.1161/CIRCULATIONAHA.116.025483.
    1. Kooy A, de Jager J, Lehert P, Bets D, Wulffele MG, Donker AJ, et al. Long-term effects of metformin on metabolism and microvascular and macrovascular disease in patients with type 2 diabetes mellitus. Arch Intern Med. 2009;169(6):616–625. doi: 10.1001/archinternmed.2009.20.
    1. Willeit P, Welsh P, Evans JDW, Tschiderer L, Boachie C, Jukema JW, et al. High-sensitivity cardiac troponin concentration and risk of first-ever cardiovascular outcomes in 154,052 participants. J Am Coll Cardiol. 2017;70(5):558–568. doi: 10.1016/j.jacc.2017.05.062.
    1. Welsh P, Preiss D, Hayward C, Shah ASV, McAllister D, Briggs A, et al. Cardiac troponin T and troponin I in the general population. Circulation. 2019;139(24):2754–2764. doi: 10.1161/CIRCULATIONAHA.118.038529.
    1. Chesnaye NC, Szummer K, Barany P, Heimburger O, Magin H, Almquist T, et al. Association between renal function and troponin T over time in stable chronic kidney disease patients. J Am Heart Assoc. 2019;8(21):e013091. doi: 10.1161/JAHA.119.013091.
    1. van der Linden N, Cornelis T, Kimenai DM, Klinkenberg LJJ, Hilderink JM, Luck S, et al. Origin of cardiac troponin T elevations in chronic kidney disease. Circulation. 2017;136(11):1073–1075. doi: 10.1161/CIRCULATIONAHA.117.029986.
    1. Nagarajan V, Hernandez AV, Tang WH. Prognostic value of cardiac troponin in chronic stable heart failure: a systematic review. Heart. 2012;98(24):1778–1786. doi: 10.1136/heartjnl-2012-301779.
    1. Rorth R, Jhund PS, Kristensen SL, Desai AS, Kober L, Rouleau JL, et al. The prognostic value of troponin T and N-terminal pro B-type natriuretic peptide, alone and in combination, in heart failure patients with and without diabetes. Eur J Heart Fail. 2019;21(1):40–49. doi: 10.1002/ejhf.1359.
    1. Giannitsis E, Katus HA. Cardiac troponin level elevations not related to acute coronary syndromes. Nat Rev Cardiol. 2013;10(11):623–634. doi: 10.1038/nrcardio.2013.129.
    1. Witkowski M, Wu Y, Hazen SL, Tang WHW. Prognostic value of subclinical myocardial necrosis using high-sensitivity cardiac troponin T in patients with prediabetes. Cardiovasc Diabetol. 2021;20(1):171. doi: 10.1186/s12933-021-01365-9.
    1. Tang O, Daya N, Matsushita K, Coresh J, Sharrett AR, Hoogeveen R, et al. Performance of high-sensitivity cardiac troponin assays to reflect comorbidity burden and improve mortality risk stratification in older adults with diabetes. Diabetes Care. 2020;43(6):1200–1208. doi: 10.2337/dc19-2043.
    1. Wulffele MG, Kooy A, Lehert P, Bets D, Ogterop JC, van der Burg BB, et al. Combination of insulin and metformin in the treatment of type 2 diabetes. Diabetes Care. 2002;25(12):2133–40. doi: 10.2337/diacare.25.12.2133.
    1. Grund S, Ludtke O, Robitzsch A. Multiple imputation of missing covariate values in multilevel models with random slopes: a cautionary note. Behav Res Methods. 2016;48(2):640–649. doi: 10.3758/s13428-015-0590-3.
    1. Omland T, Pfeffer MA, Solomon SD, de Lemos JA, Rosjo H, Saltyte Benth J, et al. Prognostic value of cardiac troponin I measured with a highly sensitive assay in patients with stable coronary artery disease. J Am Coll Cardiol. 2013;61(12):1240–1249. doi: 10.1016/j.jacc.2012.12.026.
    1. Kimenai DM, Martens RJH, Kooman JP, Stehouwer CDA, Tan FES, Schaper NC, et al. Troponin I and T in relation to cardiac injury detected with electrocardiography in a population-based cohort—the Maastricht Study. Sci Rep. 2017;7(1):6610. doi: 10.1038/s41598-017-06978-3.
    1. Srivastava PK, Pradhan AD, Cook NR, Ridker PM, Everett BM. Randomized trial of the effects of insulin and metformin on myocardial injury and stress in diabetes mellitus: a post hoc exploratory analysis. J Am Heart Assoc. 2017 doi: 10.1161/JAHA.117.007268.
    1. Hillis GS, Welsh P, Chalmers J, Perkovic V, Chow CK, Li Q, et al. The relative and combined ability of high-sensitivity cardiac troponin T and N-terminal pro-B-type natriuretic peptide to predict cardiovascular events and death in patients with type 2 diabetes. Diabetes Care. 2014;37(1):295–303. doi: 10.2337/dc13-1165.
    1. Lyons MR, Peterson LR, McGill JB, Herrero P, Coggan AR, Saeed IM, et al. Impact of sex on the heart’s metabolic and functional responses to diabetic therapies. Am J Physiol Heart Circ Physiol. 2013;305(11):H1584–H1591. doi: 10.1152/ajpheart.00420.2013.
    1. Peterson LR, Soto PF, Herrero P, Mohammed BS, Avidan MS, Schechtman KB, et al. Impact of gender on the myocardial metabolic response to obesity. JACC Cardiovasc Imaging. 2008;1(4):424–433. doi: 10.1016/j.jcmg.2008.05.004.
    1. Top WMC, Lehert P, Schalkwijk CG, Stehouwer CDA, Kooy A. Metformin and N-terminal pro B-type natriuretic peptide in type 2 diabetes patients, a post-hoc analysis of a randomized controlled trial. PLoS ONE. 2021;16(4):e0247939. doi: 10.1371/journal.pone.0247939.
    1. Rena G, Lang CC. Repurposing metformin for cardiovascular disease. Circulation. 2018;137(5):422–424. doi: 10.1161/CIRCULATIONAHA.117.031735.
    1. Klinkenberg LJ, Wildi K, van der Linden N, Kouw IW, Niens M, Twerenbold R, et al. Diurnal rhythm of cardiac troponin: consequences for the diagnosis of acute myocardial infarction. Clin Chem. 2016;62(12):1602–1611. doi: 10.1373/clinchem.2016.257485.
    1. Florez JC. It’s not black and white: individualizing metformin treatment in type 2 diabetes. J Clin Endocrinol Metab. 2014;99(9):3125–3128. doi: 10.1210/jc.2014-2733.
    1. Giannitsis E, Katus HA. Concerns about the stability of hsTnI assay after 20 years of storage. J Am Coll Cardiol. 2017;69(22):2772–2773. doi: 10.1016/j.jacc.2017.01.077.
    1. Basit M, Bakshi N, Hashem M, Allebban Z, Lawson N, Rosman HS, et al. The effect of freezing and long-term storage on the stability of cardiac troponin T. Am J Clin Pathol. 2007;128(1):164–167. doi: 10.1309/LR7FC0LUGLHT8X6J.

Source: PubMed

3
Abonnieren