Antihypertensive Effect of Long-Term Monotherapy with Esaxerenone in Patients with Essential Hypertension: Relationship Between Baseline Urinary Sodium Excretion and Its Antihypertensive Effect

Shuichi Ichikawa, Junko Tsutsumi, Kotaro Sugimoto, Satoru Yamakawa, Shuichi Ichikawa, Junko Tsutsumi, Kotaro Sugimoto, Satoru Yamakawa

Abstract

Introduction: The blood pressure (BP) control mechanism for mineralocorticoid receptor blockers is unclear, and analysis of their use as a single agent in the clinical setting is required to resolve this uncertainty. There is a paucity of data on esaxerenone monotherapy assessing its long-term antihypertensive effect and urinary biomarkers.

Methods: This post hoc exploratory substudy of a long-term phase 3 study evaluated the effect of esaxerenone monotherapy (2.5 or 5 mg/day) in treatment-naïve patients who continued the therapy during the 52-week study period (n = 25). In addition to blood biomarkers, urinary biomarkers were also assessed in 24-h urine collection samples.

Results: Esaxerenone monotherapy was associated with consistent reductions in systolic/diastolic BP in the substudy population (- 23.5/- 13.1 mmHg at week 52, p < 0.001 vs baseline). Plasma aldosterone concentrations and plasma renin activity significantly increased during esaxerenone monotherapy at all time points. On the basis of the observations that both urine volume and urinary sodium excretion also decreased up to the end of the study, and were significantly lower at 12 weeks, patients were further categorized into higher/lower urinary sodium excretion subgroups according to whether their baseline values were above or below the median. In the group with higher baseline urinary sodium excretion, esaxerenone exhibited a significantly greater decrease in systolic/diastolic BP compared to the lower baseline group.

Conclusion: Esaxerenone exhibited sustained and stable antihypertensive activity even when administered as a single agent for 52 weeks in patients with essential hypertension. The additional urinary biomarker analysis suggests that the BP-lowering effects of esaxerenone may be partly exerted via mechanisms related to salt and water retention, and that the effect is particularly pronounced in patients with hypertension and higher baseline urinary sodium excretion, which may reflect a state of excessive salt intake.

Trial registration: NCT02722265.

Keywords: Esaxerenone; Excessive salt intake; Long-term monotherapy; Mineralocorticoid receptor blocker; Urinary sodium excretion.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Mean (standard deviation) sitting blood pressure in the main study and the esaxerenone monotherapy substudy. DBP diastolic blood pressure, SBP systolic blood pressure. †p < 0.001 vs baseline
Fig. 2
Fig. 2
Changes in urine volume (a), urinary sodium (b), urinary sodium excretion (c), urinary potassium (d), urinary potassium excretion (e), and urinary sodium/potassium ratio (f) from baseline to 12, 28, and 52 weeks (individual patient data). Na sodium, K potassium, SD standard deviation
Fig. 3
Fig. 3
Mean (standard deviation) change in sitting blood pressure from baseline stratified by baseline urinary sodium excretion. DBP diastolic blood pressure, SBP systolic blood pressure. *p < 0.05 vs baseline, †p < 0.001 vs baseline, ‡p < 0.05 vs subgroup with lower baseline urinary sodium excretion

References

    1. Terker AS, Ellison DH. Renal mineralocorticoid receptor and electrolyte homeostasis. Am J Physiol Regul Integr Comp Physiol. 2015;309:R1068–R1070. doi: 10.1152/ajpregu.00135.2015.
    1. Esteras R, Perez-Gomez MV, Rodriguez-Osorio L, Ortiz A, Fernandez-Fernandez B. Combination use of medicines from two classes of renin-angiotensin system blocking agents: risk of hyperkalemia, hypotension, and impaired renal function. Ther Adv Drug Saf. 2015;6:166–176. doi: 10.1177/2042098615589905.
    1. Ando K, Fujita T. Pathophysiology of salt sensitivity hypertension. Ann Med. 2012;44(1 Suppl):S119–S126. doi: 10.3109/07853890.2012.671538.
    1. Shibata S, Mu S, Kawarazaki H, et al. Rac1 GTPase in rodent kidneys is essential for salt-sensitive hypertension via a mineralocorticoid receptor-dependent pathway. J Clin Invest. 2011;121:3233–3243. doi: 10.1172/JCI43124.
    1. Arai K, Tsuruoka H, Homma T. CS-3150, a novel non-steroidal mineralocorticoid receptor antagonist, prevents hypertension and cardiorenal injury in Dahl salt-sensitive hypertensive rats. Eur J Pharmacol. 2015;769:266–273. doi: 10.1016/j.ejphar.2015.11.028.
    1. Arai K, Morikawa Y, Ubukata N, Tsuruoka H, Homma T. CS-3150, a novel nonsteroidal mineralocorticoid receptor antagonist, shows preventive and therapeutic effects on renal injury in deoxycorticosterone acetate/salt-induced hypertensive rats. J Pharmacol Exp Ther. 2016;358:548–557. doi: 10.1124/jpet.116.234765.
    1. Li L, Guan Y, Kobori H, et al. Effects of the novel nonsteroidal mineralocorticoid receptor blocker, esaxerenone (CS-3150), on blood pressure and urinary angiotensinogen in low-renin Dahl salt-sensitive hypertensive rats. Hypertens Res. 2019;42:769–778. doi: 10.1038/s41440-018-0187-1.
    1. Bhuiyan AS, Rafiq K, Kobara H, Masaki T, Nakano D, Nishiyama A. Effect of a novel nonsteroidal selective mineralocorticoid receptor antagonist, esaxerenone (CS-3150), on blood pressure and renal injury in high salt-treated type 2 diabetic mice. Hypertens Res. 2019;42:892–902. doi: 10.1038/s41440-019-0211-0.
    1. Nishimoto M, Ohtsu H, Marumo T, et al. Mineralocorticoid receptor blockade suppresses dietary salt-induced ACEI/ARB-resistant albuminuria in non-diabetic hypertension: a sub-analysis of evaluate study. Hypertens Res. 2019;42:514–521. doi: 10.1038/s41440-018-0201-7.
    1. Hood SJ, Taylor KP, Ashby MJ, Brown MJ. The spironolactone, amiloride, losartan, and thiazide (SALT) double-blind crossover trial in patients with low-renin hypertension and elevated aldosterone-renin ratio. Circulation. 2007;116:268–275. doi: 10.1161/CIRCULATIONAHA.107.690396.
    1. Ghazi L, Dudenbostel T, Lin CP, Oparil S, Calhoun DA. Urinary sodium excretion predicts blood pressure response to spironolactone in patients with resistant hypertension independent of aldosterone status. J Hypertens. 2016;34:1005–1010. doi: 10.1097/HJH.0000000000000870.
    1. Minnebro® (esaxerenone) tablets 1.25 mg, 2.5 mg, 5 mg [package insert]. Japan: Daiichi-Sankyo; 2021. Accessed 17 Jan 2021 . Japanese.
    1. Duggan S. Esaxerenone: first global approval. Drugs. 2019;79:477–481. doi: 10.1007/s40265-019-01073-5.
    1. Ito S, Itoh H, Rakugi H, Okuda Y, Yoshimura M, Yamakawa S. Double-blind randomized phase 3 study comparing esaxerenone (CS-3150) and eplerenone in patients with essential hypertension (ESAX-HTN study) Hypertension. 2020;75:51–58. doi: 10.1161/HYPERTENSIONAHA.119.13569.
    1. Rakugi H, Ito S, Itoh H, Okuda Y, Yamakawa S. Long-term phase 3 study of esaxerenone as mono or combination therapy with other antihypertensive drugs in patients with essential hypertension. Hypertens Res. 2019;42:1932–1941. doi: 10.1038/s41440-019-0314-7.
    1. Rakugi H, Ito S, Ito H, Okuda Y, Iijima S. The efficacy and safety of esaxerenone for patients with grade III hypertension. Prog Med. 2020;40:755–760.
    1. Ito S, Itoh H, Rakugi H, Okuda Y, Iijima S. Antihypertensive effects and safety of esaxerenone in patients with moderate kidney dysfunction. Hypertens Res. 2021;44:489–497. doi: 10.1038/s41440-020-00585-y.
    1. Itoh H, Ito S, Rakugi H, Okuda Y, Nishioka S. Efficacy and safety of dosage-escalation of low-dosage esaxerenone added to a RAS inhibitor in hypertensive patients with type 2 diabetes and albuminuria: a single-arm, open-label study. Hypertens Res. 2019;42:1572–1581. doi: 10.1038/s41440-019-0270-2.
    1. Satoh F, Ito S, Itoh H, et al. Efficacy and safety of esaxerenone (CS-3150), a newly available nonsteroidal mineralocorticoid receptor blocker, in hypertensive patients with primary aldosteronism. Hypertens Res. 2021;44:464–472. doi: 10.1038/s41440-020-00570-5.
    1. Williams B, MacDonald TM, Morant S, et al. Spironolactone versus placebo, bisoprolol, and doxazosin to determine the optimal treatment for drug-resistant hypertension (PATHWAY-2): a randomised, double-blind, crossover trial. Lancet. 2015;386:2059–2068. doi: 10.1016/S0140-6736(15)00257-3.
    1. Graudal NA, Hubeck-Graudal T, Jurgens G. Effects of low sodium diet versus high sodium diet on blood pressure, renin, aldosterone, catecholamines, cholesterol, and triglyceride. Cochrane Database Syst Rev. 2020;12:4022. doi: 10.1002/14651858.CD004022.pub3.
    1. Laragh JH, Sealey JE. The plasma renin test reveals the contribution of body sodium-volume content (V) and renin-angiotensin (R) vasoconstriction to long-term blood pressure. Am J Hypertens. 2011;24:1164–1180. doi: 10.1038/ajh.2011.171.
    1. He FJ, Markandu ND, MacGregor GA. Importance of the renin system for determining blood pressure fall with acute salt restriction in hypertensive and normotensive whites. Hypertension. 2001;38:321–325. doi: 10.1161/01.hyp.38.3.321.
    1. Ayuzawa N, Fujita T. The mineralocorticoid receptor in salt-sensitive hypertension and renal injury. J Am Soc Nephrol. 2021;32:279–289. doi: 10.1681/ASN.2020071041.
    1. Rakugi H, Yamakawa S, Sugimoto K. Management of hyperkalemia during treatment with mineralocorticoid receptor blockers: findings from esaxerenone. Hypertens Res. 2021;44:371–385. doi: 10.1038/s41440-020-00569-y.
    1. Arai K, Homma T, Morikawa Y, et al. Pharmacological profile of CS-3150, a novel, highly potent and selective non-steroidal mineralocorticoid receptor antagonist. Eur J Pharmacol. 2015;761:226–234. doi: 10.1016/j.ejphar.2015.06.015.
    1. Volpe M, Carnovali M, Mastromarino V. The natriuretic peptides system in the pathophysiology of heart failure: from molecular basis to treatment. Clin Sci. 2016;130:57–77. doi: 10.1042/CS20150469.
    1. Kogure M, Nakaya N, Hirata T, et al. Sodium/potassium ratio change was associated with blood pressure change: possibility of population approach for sodium/potassium ratio reduction in health checkup. Hypertens Res. 2021;44:225–231. doi: 10.1038/s41440-020-00536-7.
    1. Okayama A, Okuda N, Miura K, et al. Dietary sodium-to-potassium ratio as a risk factor for stroke, cardiovascular disease and all-cause mortality in Japan: the NIPPON DATA80 cohort study. BMJ Open. 2016;6:e011632. doi: 10.1136/bmjopen-2016-011632.
    1. Cook NR, Obarzanek E, Cutler JA, et al. Joint effects of sodium and potassium intake on subsequent cardiovascular disease: the Trials of Hypertension Prevention follow-up study. Arch of Intern Med. 2009;169:32–40. doi: 10.1001/archinternmed.2008.523.
    1. Sato N, Ajioka M, Yamada T, et al. A randomized controlled study of finerenone vs. eplerenone in Japanese patients with worsening chronic heart failure and diabetes and/or chronic kidney disease. Circ J. 2016;80:1113–1122. doi: 10.1253/circj.CJ-16-0122.
    1. Ibaraki A, Goto W, Iura R, Tominaga M, Tsuchihashi T. Current prescription status of antihypertensive drugs with special reference to the use of diuretics in Japan. Hypertens Res. 2017;40:203–206. doi: 10.1038/hr.2016.120.
    1. Kai H. Antihypertensive drug therapy for salt-sensitive hypertension. Prog Med. 2012;32:1047–1050.
    1. Kimura G, Deguchi F, Kojima S, et al. Antihypertensive drugs and sodium restriction. Analysis of their interaction based on pressure-natriuresis relationship. Am J Hypertens. 1988;1:372–379. doi: 10.1093/ajh/1.4.372.
    1. Hasegawa H, Kanozawa K, Asakura J, et al. Significance of estimated salt excretion as a possible predictor of the efficacy of concomitant angiotensin receptor blocker (ARB) and low-dose thiazide in patients with ARB resistance. Hypertens Res. 2013;36:776–782. doi: 10.1038/hr.2013.41.
    1. Umemura S, Arima H, Arima S, et al. The Japanese Society of Hypertension guidelines for the management of hypertension (JSH 2019) Hypertens Res. 2019;42:1235–1481. doi: 10.1038/s41440-019-0284-9.
    1. Yoshimura H. Seasonal changes in human body fluids. Jpn J Physiol. 1958;8:165–179. doi: 10.2170/jjphysiol.8.165.

Source: PubMed

3
Abonnieren