Optic Disc, Macula, and Retinal Nerve Fiber Layer Measurements Obtained by OCT in Thyroid-Associated Ophthalmopathy

Osman Sayın, Volkan Yeter, Nurşen Arıtürk, Osman Sayın, Volkan Yeter, Nurşen Arıtürk

Abstract

Aim. To compare the measurements of retinal nerve fiber layer (RNFL), macula and optic disc parameters obtained by optical coherence tomography (OCT), and intraocular pressure (IOP) between the patients with thyroid-associated ophthalmopathy (TAO) and healthy controls. Methods. One hundred and thirty-two eyes of 66 patients with TAO and 72 eyes of 36 healthy controls were included in the study. Proptosis level was determined by Hertel exophthalmometer. Optic disc, peripapillary retinal nerve fiber layer, and macula parameters were measured by OCT. All measurements of the patients were compared with those of age- and sex-matched healthy controls. Results. No statistically significant difference was found between the patients with TAO and control group in terms of demographic characteristics (P > 0.05). Exophthalmometer measurements and IOP were higher in TAO group (P < 0.05). Mean macula thicknesses in TAO and control groups were 239.3 ± 29.8 μm and 246.6 ± 31.8 μm, respectively, and the difference between the groups was statistically significant (P = 0.000). TAO group had thinner inferior RNFL thickness and macular thicknesses (superior, inferior, temporal, and nasal) and higher disc area and C/D ratio when compared with the control group (P < 0.05). Conclusion. IOP, disc area, and C/D area ratio were higher in the patients with TAO and the thicknesses of macula and inferior RNFL were thinner when compared with healthy controls. This trial is registered with registration number at clinicaltrials.gov NCT02766660.

References

    1. Menconi F., Marcocci C., Marinò M. Diagnosis and classification of Graves' disease. Autoimmunity Reviews. 2014;13(4-5):398–402. doi: 10.1016/j.autrev.2014.01.013.
    1. Smith T. J. Insights into the role of fibroblasts in human autoimmune diseases. Clinical and Experimental Immunology. 2005;141(3):388–397. doi: 10.1111/j.1365-2249.2005.02824.x.
    1. Anderson R. L., Tweeten J. P., Patrinely J. R., Garland P. E., Thiese S. M. Dysthyroid optic neuropathy without extraocular muscle involvement. Ophthalmic Surgery. 1989;20(8):568–574.
    1. Beden Ü., Kaya S., Yeter V., Erkan D. Contrast sensitivity of thyroid associated ophthalmopathy patients without obvious optic neuropathy. The Scientific World Journal. 2013;2013:6. doi: 10.1155/2013/943789.943789
    1. Hallin E. S., Feldon S. E., Luttrell J. Graves' ophthalmopathy: III. Effect of transantral orbital decompression on optic neuropathy. British Journal of Ophthalmology. 1988;72(9):683–687. doi: 10.1136/bjo.72.9.683.
    1. Kennerdell J. S., Rosenbaum A. E., El-Hoshy M. H. Apical optic nerve compression of dysthyroid optic neuropathy on computed tomography. Archives of Ophthalmology. 1981;99(5):807–809. doi: 10.1001/archopht.1981.03930010807002.
    1. Wei Y. H., Chi M. C., Liao S. L. Predictability of visual function and nerve fiber layer thickness by cross-sectional areas of extraocular muscles in graves ophthalmopathy. American Journal of Ophthalmology. 2011;151(5):901–906. doi: 10.1016/j.ajo.2010.11.001.
    1. Forte R., Bonavolontà P., Vassallo P. Evaluation of retinal nerve fiber layer with optic nerve tracking optical coherence tomography in thyroid-associated orbitopathy. Ophthalmologica. 2010;224(2):116–121. doi: 10.1159/000235925.
    1. Sen E., Berker D., Elgin U., Tutuncu Y., Ozturk F., Guler S. Comparison of optic disc topography in the cases with graves disease and healthy controls. Journal of Glaucoma. 2012;21(9):586–589. doi: 10.1097/IJG.0b013e31822e8c4f.
    1. Subekti I., Boedisantoso A., Moeloek N. D., Waspadji S., Mansyur M. Association of TSH receptor antibody, thyroid stimulating antibody, and thyroid blocking antibody with clinical activity score and degree of severity of Graves ophthalmopathy. Acta Medica Indonesiana. 2012;44(2):114–121.
    1. Soroudi A. E., Goldberg R. A., McCann J. D. Prevalence of asymmetric exophthalmos in Graves orbitopathy. Ophthalmic Plastic and Reconstructive Surgery. 2004;20(3):224–225. doi: 10.1097/01.IOP.0000124675.80763.5A.
    1. Kashkouli M. B., Kaghazkanani R., Heidari I., et al. Bilateral versus unilateral thyroid eye disease. Indian Journal of Ophthalmology. 2011;59(5):363–366. doi: 10.4103/0301-4738.83612.
    1. Liu X., Huang J., Ge J., Ling Y., Zheng X. The study of retinal nerve fiber layer thickness of normal eyes using scanning laser polarimetry. Yan Ke Xue Bao. 2006;22(3):175–183.
    1. Feuer W. J., Budenz D. L., Anderson D. R., et al. Topographic differences in the age-related changes in the retinal nerve fiber layer of normal eyes measured by Stratus optical coherence tomography. Journal of Glaucoma. 2011;20(3):133–138. doi: 10.1097/ijg.0b013e3181e079b2.
    1. Behrouzi Z., Rabei H. M., Azizi F., et al. Prevalence of open-angle glaucoma, glaucoma suspect, and ocular hypertension in thyroid-related immune orbitopathy. Journal of Glaucoma. 2007;16(4):358–362. doi: 10.1097/IJG.0b013e31802e644b.
    1. Berthout A., Vignal C., Jacomet P. V., Galatoire O., Morax S. Intraorbital pressure measured before, during, and after surgical decompression in Graves' orbitopathy. Journal Français d'Ophtalmologie. 2010;33(9):623–629. doi: 10.1016/j.jfo.2010.08.004.
    1. Ozturk B. T., Kerimoglu H., Dikbas O., Pekel H., Gonen M. S. Ocular changes in primary hypothyroidism. BMC Research Notes. 2009;2, article 266 doi: 10.1186/1756-0500-2-266.
    1. Bahçeci U. A., Özdek Ş., Pehlivanli Z., Yetkin I., Önol M. Changes in intraocular pressure and corneal and retinal nerve fiber layer thicknesses in hypothyroidism. European Journal of Ophthalmology. 2005;15(5):556–561.
    1. Takagi S. T., Kita Y., Yagi F., Tomita G. Macular retinal ganglion cell complex damage in the apparently normal visual field of glaucomatous eyes with hemifield defects. Journal of Glaucoma. 2012;21(5):318–325. doi: 10.1097/IJG.0b013e31820d7e9d.
    1. Kita Y., Kita R., Nitta A., Nishimura C., Tomita G. Glaucomatous eye macular ganglion cell complex thickness and its relation to temporal circumpapillary retinal nerve fiber layer thickness. Japanese Journal of Ophthalmology. 2011;55(3):228–234. doi: 10.1007/s10384-011-0017-3.
    1. Sesar A., Ćavar I., Sesar A. P., et al. Macular thickness after glaucoma filtration surgery. Collegium Antropologicum. 2013;37(3):841–845.
    1. Tan O., Chopra V., Lu A. T.-H., et al. Detection of macular ganglion cell loss in glaucoma by fourier-domain optical coherence tomography. Ophthalmology. 2009;116(12):2305–2314. doi: 10.1016/j.ophtha.2009.05.025.
    1. Arvanitaki V., Tsilimbaris M., Pallikaris A., et al. Macular retinal and nerve fiber layer thickness in early glaucoma: clinical correlations. Middle East African Journal of Ophthalmology. 2012;19(2):204–210. doi: 10.4103/0974-9233.95251.
    1. Tan O., Li G., Lu A. T.-H., Varma R., Huang D. Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis. Ophthalmology. 2008;115(6):949–956. doi: 10.1016/j.ophtha.2007.08.011.
    1. Moreno P. A. M., Konno B., Lima V. C., et al. Spectral-domain optical coherence tomography for early glaucoma assessment: analysis of macular ganglion cell complex versus peripapillary retinal nerve fiber layer. Canadian Journal of Ophthalmology. 2011;46(6):543–547. doi: 10.1016/j.jcjo.2011.09.006.
    1. Poostchi A., Wong T., Chan K. C. Y., et al. Optic disc diameter increases during acute elevations of intraocular pressure. Investigative Ophthalmology and Visual Science. 2010;51(5):2313–2316. doi: 10.1167/iovs.09-3756.
    1. Chu C. H., Lee J. K., Keng H. M., et al. Hyperthyroidism is associated with higher plasma endothelin-1 concentrations. Experimental Biology and Medicine. 2006;231(6):1040–1043.
    1. Mozaffarieh M., Grieshaber M. C., Orgül S., Flammer J. The potential value of natural antioxidative treatment in glaucoma. Survey of Ophthalmology. 2008;53(5):479–505. doi: 10.1016/j.survophthal.2008.06.006.

Source: PubMed

3
Abonnieren