Comparisons of different neoadjuvant chemotherapy regimens with or without stereotactic body radiation therapy for borderline resectable pancreatic cancer: study protocol of a prospective, randomized phase II trial (BRPCNCC-1)

Suizhi Gao, Xiaofei Zhu, Xiaohan Shi, Kai Cao, Yun Bian, Hui Jiang, Kaixuan Wang, Shiwei Guo, Huojun Zhang, Gang Jin, Suizhi Gao, Xiaofei Zhu, Xiaohan Shi, Kai Cao, Yun Bian, Hui Jiang, Kaixuan Wang, Shiwei Guo, Huojun Zhang, Gang Jin

Abstract

Background: Few patients with pancreatic cancer may be candidates for immediate surgical resection at the initial diagnosis. Even if patients with borderline resectable pancreatic cancer (BRPC), micrometastases may occur before surgery. Therefore, neoadjuvant therapy is vital for improved survival, which has been confirmed in previous studies that neoadjuvant chemotherapy with or without radiotherapy provides superior overall compared with upfront surgery. However, question of whether the addition of radiotherapy to neoadjuvant chemotherapy can improve prognosis compared with chemotherapy alone is a challenging matter. Moreover, most of previous studies only adopted conventional radiotherapy as the neoadjuvant modality though stereotactic body radiation therapy (SBRT) has been proven effective and commonly employed in pancreatic cancer. Also, no studies have evaluated the efficacy of S-1 as the neoadjuvant chemotherapy regimen for BRPC albeit similar prognosis has been found between S-1 and gemcitabine in advanced pancreatic cancer. Hence, the aim of this study is to investigate whether neoadjuvant chemotherapy plus SBRT results in better outcomes compared with neoadjuvant chemotherapy alone and also compare the efficacy of gemcitabine plus nab-paclitaxel with SBRT and S-1 plus nab-paclitaxel with SBRT.

Methods: Patients with biopsy and radiographically confirmed BRPC, no prior treatment and severe morbidities are enrolled. They will be randomly allocated into three groups: neoadjuvant gemcitabine plus nab-paclitaxel, neoadjuvant gemcitabine plus nab-paclitaxel with SBRT and neoadjuvant S-1 plus nab-paclitaxel with SBRT. Standard doses of gemcitabine and nab-paclitaxel are used. The radiation dose of SBRT is 7.5-8Gy/f for 5 fractions. Surgical resection will be performed 3 weeks after SBRT. Artery first approach pancreaticoduodenectomy or radical antegrade modular pancreatosplenectomy will be used for the tumor in the head or body and tail of the pancreas, respectively. The primary endpoint is overall survival. The secondary outcomes are disease free survival, pathological complete response rate, R0 resection rate and incidence of adverse effects.

Discussion: If results show the survival benefits of neoadjuvant chemotherapy plus SBRT and similar outcomes between S-1 and gemcitabine, it may provide evidence of clinical practice of this modality for BRPC.

Trial registration: The study has been registered in ClinicalTrial.gov ( NCT03777462 ).

Keywords: Borderline resectable pancreatic cancer; Chemotherapy; Gemcitabine; Neoadjuvant; S-1; Stereotactic body radiation therapy.

Conflict of interest statement

Ethics approval and consent to participate

The protocol has been reviewed and approved by the institutional review board of our hospital (CHEC2018–176). The study has also been registered in ClinicalTrial.gov (NCT03777462).

Consent for publication

The consents for publication of data have been obtained from patients.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Flow diagram of the study

References

    1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68:7–30. doi: 10.3322/caac.21442.
    1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018. 10.3322/caac.21492.
    1. Ferlay J, Partensky C, Bray F. More deaths from pancreatic cancer than breast cancer in the EU by 2017. Acta Oncol. 2016;55:1158–1160. doi: 10.1080/0284186X.2016.1197419.
    1. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66:115–132. doi: 10.3322/caac.21338.
    1. Winter JM, Brennan MF, Tang LH, D'Angelica MI, Dematteo RP, Fong Y, et al. Survival after resection of pancreatic adenocarcinoma: results from a single institution over three decades. Ann Surg Oncol. 2012;19:169–175. doi: 10.1245/s10434-011-1900-3.
    1. Jang JY, Han Y, Lee H, Kim SW, Kwon W, Lee KH, et al. Oncological benefits of neoadjuvant chemoradiation with gemcitabine versus upfront surgery in patients with borderline resectable pancreatic cancer: a prospective, randomized, open-label, multicenter phase 2/3 trial. Ann Surg. 2018;268:215–222. doi: 10.1097/SLA.0000000000002705.
    1. Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M, et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med. 2013;369:1691–1703. doi: 10.1056/NEJMoa1304369.
    1. Ueno H, Ioka T, Ikeda M, Ohkawa S, Yanagimoto H, Boku N, et al. Randomized phase III study of gemcitabine plus S-1, S-1 alone, or gemcitabine alone in patients with locally advanced and metastatic pancreatic cancer in Japan and Taiwan: GEST study. J Clin Oncol. 2013;31:1640–1648. doi: 10.1200/JCO.2012.43.3680.
    1. Sudo K, Yamaguchi T, Nakamura K, Denda T, Hara T, Ishihara T, et al. Phase II study of S-1 in patients with gemcitabine-resistant advanced pancreatic cancer. Cancer Chemother Pharmacol. 2011;67:249–254. doi: 10.1007/s00280-010-1311-3.
    1. Zhu X, Li F, Shi D, Ju X, Cao Y, Shen Y, et al. Health-related quality of life for gemcitabine and nab-paclitaxel plus radiotherapy versus gemcitabine and S-1 plus radiotherapy in patients with metastatic pancreatic cancer. Cancer Manag Res. 2018;10:4805–4815. doi: 10.2147/CMAR.S166713.
    1. Zhu X, Li F, Ju X, Shen Y, Cao Y, Cao F, et al. Prediction of overall survival after re-irradiation with stereotactic body radiation therapy for pancreatic cancer with a novel prognostic model (the SCAD score) Radiother Oncol. 2018;129:313–318. doi: 10.1016/j.radonc.2018.08.012.
    1. Zhu X, Shi D, Li F, Ju X, Cao Y, Shen Y, et al. Prospective analysis of different combined regimens of stereotactic body radiation therapy and chemotherapy for locally advanced pancreatic cancer. Cancer Med. 2018. 10.1002/cam4.1553.
    1. Zhu X, Li F, Liu W, Shi D, Ju X, Cao Y, et al. Stereotactic body radiation therapy plus induction or adjuvant chemotherapy for early stage but medically inoperable pancreatic cancer: a propensity score-matched analysis of a prospectively collected database. Cancer Manag Res. 2018;10:1295–1304. doi: 10.2147/CMAR.S163655.
    1. Benedict SH, Yenice KM, Followill D, Galvin JM, Hinson W, Kavanagh B, et al. Stereotactic body radiation therapy: the report of AAPM task group 101. Med Phys. 2010;37:4078–4101. doi: 10.1118/1.3438081.
    1. Hirono S, Kawai M, Okada KI, Miyazawa M, Shimizu A, Kitahata Y, et al. Mesenteric approach during pancreaticoduodenectomy for pancreatic ductal adenocarcinoma. Ann Gastroenterol Surg 2017;1:208–218.
    1. Hirono S, Kawai M, Okada KI, Fujii T, Sho M, Satoi S, et al. MAPLE-PD trial (mesenteric approach vs. conventional approach for pancreatic Cancer during Pancreaticoduodenectomy): study protocol for a multicenter randomized controlled trial of 354 patients with pancreatic ductal adenocarcinoma. Trials. 2018;19:613.
    1. Chun YS. Role of radical antegrade modular pancreatosplenectomy (RAMPS) and pancreatic cancer. Ann Surg Oncol. 2018;25:46–50. doi: 10.1245/s10434-016-5675-4.
    1. Strasberg SM, Drebin JA, Linehan D. Radical antegrade modular pancreatosplenectomy. Surgery. 2003;133:521–527. doi: 10.1067/msy.2003.146.
    1. Stessin AM, Meyer JE, Sherr DL. Neoadjuvant radiation is associated with improved survival in patients with resectable pancreatic cancer: an analysis of data from the surveillance, epidemiology, and end results (SEER) registry. Int J Radiat Oncol Biol Phys. 2008;72:1128–1133. doi: 10.1016/j.ijrobp.2008.02.065.
    1. Gillen S, Schuster T, Meyer Zum Büschenfelde C, Friess H, Kleeff J. Preoperative/neoadjuvant therapy in pancreatic cancer: a systematic review and meta-analysis of response and resection percentages. PLoS Med. 2010;7(4):e1000267. doi: 10.1371/journal.pmed.1000267.
    1. Artinyan A, Anaya DA, McKenzie S, Ellenhorn JD, Kim J. Neoadjuvant therapy is associated with improved survival in resectable pancreatic adenocarcinoma. Cancer. 2011;117:2044–2049. doi: 10.1002/cncr.25763.
    1. Murphy JE, Wo JY, Ryan DP, Jiang W, Yeap BY, Drapek LC, et al. Total neoadjuvant therapy with FOLFIRINOX followed by individualized chemoradiotherapy for borderline resectable pancreatic adenocarcinoma: a phase 2 clinical trial. JAMA Oncol. 2018;4:963–969. doi: 10.1001/jamaoncol.2018.0329.
    1. Versteijne E, Vogel JA, Besselink MG, Busch ORC, Wilmink JW, Daams JG, et al. Meta-analysis comparing upfront surgery with neoadjuvant treatment in patients with resectable or borderline resectable pancreatic cancer. Br J Surg. 2018;105:946–958. doi: 10.1002/bjs.10870.
    1. Isaji S, Mizuno S, Windsor JA, Bassi C, Fernández-Del Castillo C, Hackert T, et al. International consensus on definition and criteria of borderline resectable pancreatic ductal adenocarcinoma 2017. Pancreatology. 2018;18:2–11. doi: 10.1016/j.pan.2017.11.011.

Source: PubMed

3
Abonnieren