Accuracy of the Dexcom G6 Glucose Sensor during Aerobic, Resistance, and Interval Exercise in Adults with Type 1 Diabetes

Florian H Guillot, Peter G Jacobs, Leah M Wilson, Joseph El Youssef, Virginia B Gabo, Deborah L Branigan, Nichole S Tyler, Katrina Ramsey, Michael C Riddell, Jessica R Castle, Florian H Guillot, Peter G Jacobs, Leah M Wilson, Joseph El Youssef, Virginia B Gabo, Deborah L Branigan, Nichole S Tyler, Katrina Ramsey, Michael C Riddell, Jessica R Castle

Abstract

The accuracy of continuous glucose monitoring (CGM) sensors may be significantly impacted by exercise. We evaluated the impact of three different types of exercise on the accuracy of the Dexcom G6 sensor. Twenty-four adults with type 1 diabetes on multiple daily injections wore a G6 sensor. Participants were randomized to aerobic, resistance, or high intensity interval training (HIIT) exercise. Each participant completed two in-clinic 30-min exercise sessions. The sensors were applied on average 5.3 days prior to the in-clinic visits (range 0.6-9.9). Capillary blood glucose (CBG) measurements with a Contour Next meter were performed before and after exercise as well as every 10 min during exercise. No CGM calibrations were performed. The median absolute relative difference (MARD) and median relative difference (MRD) of the CGM as compared with the reference CBG did not differ significantly from the start of exercise to the end exercise across all exercise types (ranges for aerobic MARD: 8.9 to 13.9% and MRD: -6.4 to 0.5%, resistance MARD: 7.7 to 14.5% and MRD: -8.3 to -2.9%, HIIT MARD: 12.1 to 16.8% and MRD: -14.3 to -9.1%). The accuracy of the no-calibration Dexcom G6 CGM was not significantly impacted by aerobic, resistance, or HIIT exercise.

Keywords: aerobic exercise; continuous glucose monitoring; exercise; glucose sensor accuracy; high intensity interval training; resistance exercise; type 1 diabetes.

Conflict of interest statement

J.R.C. and P.G.J. have a financial interest in Pacific Diabetes Technologies, Inc., a company that may have a commercial interest in the results of this type of research and technology. J.R.C. has also consulted for Dexcom, Inc. and has been on advisory panels for Adocia, AstraZeneca, Novo Nordisk, and Zealand Pharma. P.G.J. has received honorarium and research support from Dexcom, Inc. OHSU manages the conflict of interest for P.G.J. and J.R.C. M.C.R. has received speakers’ honoraria from Eli Lilly, Novo Nordisk, Medtronic, Insulet and Dexcom. The authors F.H.G., L.M.W., J.E.Y., V.B.G., D.L.B., N.S.T., and K.R. declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
(a) Absolute relative differences (ARD, %) and (b) relative differences (RD, %) for aerobic, resistance and high intensity interval training (HIIT) exercise. Median values that are statistically significant from baseline are indicated by an asterisk (*), with the corresponding p-value listed above.
Figure 2
Figure 2
Clarke error grid analysis showing paired continuous glucose monitoring (CGM) and capillary (reference) glucose during (a) aerobic, (b) resistance and (c) high intensity interval training (HIIT) exercise. In these scatterplots, the diagonal represents perfect agreement between capillary and sensed glucose. The regions (or zones) labelled A through E represent varying degrees of accuracy of glucose estimations. Zone A contains values within 20% of the reference sensor. Zone B values deviate more than 20% but would not lead to inappropriate treatment. Values within zone C would lead to overcorrecting while those in zone D represent a potentially “dangerous failure to detect and treat”. Lastly, zone E would result in opposite treatment decisions (e.g., treatment of hypoglycemia for hyperglycemia and vice versa) [38].
Figure 3
Figure 3
Clarke error grid analysis showing paired CGM and capillary (reference) glucose for all exercise types combined.

References

    1. Riddell M.C., Gallen I.W., Smart C.E., Taplin C.E., Adolfsson P., Lumb A.N., Kowalski A., Rabasa-Lhoret R., McCrimmon R.J., Hume C., et al. Exercise management in type 1 diabetes: A consensus statement. Lancet Diabetes Endocrinol. 2017;5:377–390. doi: 10.1016/S2213-8587(17)30014-1.
    1. Bohn B., Herbst A., Pfeifer M., Krakow D., Zimny S., Kopp F., Melmer A., Steinacker J.M., Holl R.W. Impact of physical activity on glycemic control and prevalence of cardiovascular risk factors in adults with type 1 diabetes: A cross-sectional multicenter study of 18,028 patients. Diabetes Care. 2015;38:1536–1543. doi: 10.2337/dc15-0030.
    1. Chimen M., Kennedy A., Nirantharakumar K., Pang T.T., Andrews R., Narendran P. What are the health benefits of physical activity in type 1 diabetes mellitus? A literature review. Diabetologia. 2012;55:542–551. doi: 10.1007/s00125-011-2403-2.
    1. McCarthy M.M., Funk M., Grey M. Cardiovascular health in adults with type 1 diabetes. Prev. Med. 2016;91:138–143. doi: 10.1016/j.ypmed.2016.08.019.
    1. Brazeau A.-S., Rabasa-Lhoret R., Strychar I., Mircescu H. Barriers to physical activity among patients with type 1 diabetes. Diabetes Care. 2008;31:2108–2109. doi: 10.2337/dc08-0720.
    1. Riddell M.C., Zaharieva D.P., Tansey M., Tsalikian E., Admon G., Li Z., Kollman C., Beck R.W. Individual glucose responses to prolonged moderate intensity aerobic exercise in adolescents with type 1 diabetes: The higher they start, the harder they fall. Pediatric Diabetes. 2019;20:99–106. doi: 10.1111/pedi.12799.
    1. Colberg S.R., Sigal R.J., Yardley J.E., Riddell M.C., Dunstan D.W., Dempsey P.C., Horton E.S., Castorino K., Tate D.F. Physical activity/exercise and diabetes: A position statement of the American diabetes association. Diabetes Care. 2016;39:2065–2079. doi: 10.2337/dc16-1728.
    1. Marliss E.B., Vranic M. Intense exercise has unique effects on both insulin release and its roles in Glucoregulation: Implications for diabetes. Diabetes. 2002;51:S271–S283. doi: 10.2337/diabetes.51.2007.S271.
    1. Turner D., Gray B.J., Luzio S., Dunseath G., Bain S.C., Hanley S., Richards A., Rhydderch D.C., Ayles M., Kilduff L.P., et al. Similar magnitude of post-exercise hyperglycemia despite manipulating resistance exercise intensity in type 1 diabetes individuals. Scand. J. Med. Sci. Sports. 2016;26:404–412. doi: 10.1111/sms.12472.
    1. Colberg S.R., Hernandez M.J., Shahzad F. Blood glucose responses to type, intensity, duration, and timing of exercise. Diabetes Care. 2013;36:e177. doi: 10.2337/dc13-0965.
    1. Foster N.C., Beck R.W., Miller K.M., Clements M.A., Rickels M.R., DiMeglio L.A., Maahs D.M., Tamborlane W.V., Bergenstal R., Smith E., et al. State of type 1 diabetes management and outcomes from the T1D exchange in 2016–2018. Diabetes Technol. Ther. 2019;21:66–72. doi: 10.1089/dia.2018.0384.
    1. DeSalvo D.J., Miller K.M., Hermann J.M., Maahs D.M., Hofer S.E., Clements M.A., Lilienthal E., Sherr J.L., Tauschmann M., Holl R.W. Continuous glucose monitoring and glycemic control among youth with type 1 diabetes: International comparison from the T1D Exchange and DPV Initiative. Pediatr. Diabetes. 2018;19:1271–1275. doi: 10.1111/pedi.12711.
    1. Beck R.W., Riddlesworth T., Ruedy K., Ahmann A., Bergenstal R., Haller S., Kollman C., Kruger D., McGill J.B., Polonsky W., et al. Effect of continuous glucose monitoring on glycemic control in adults with type 1 diabetes using insulin injections: The DIAMOND randomized clinical trial. JAMA. 2017;317:371–378. doi: 10.1001/jama.2016.19975.
    1. Haak T., Hanaire H., Ajjan R., Hermanns N., Riveline J.-P., Rayman G. Flash glucose-sensing technology as a replacement for blood glucose monitoring for the management of insulin-treated type 2 diabetes: A multicenter, open-label randomized controlled trial. Diabetes Ther. 2017;8:55–73. doi: 10.1007/s13300-016-0223-6.
    1. Ólafsdóttir A.F., Polonsky W., Bolinder J., Hirsch I.B., Dahlqvist S., Wedel H., Nyström T., Wijkman M., Schwarcz E., Hellman J., et al. A randomized clinical trial of the effect of continuous glucose monitoring on nocturnal hypoglycemia, daytime hypoglycemia, glycemic variability, and hypoglycemia confidence in persons with type 1 diabetes treated with multiple daily insulin injections (GOLD-3) Diabetes Technol. Ther. 2018;20:274–284. doi: 10.1089/dia.2017.0363.
    1. Maiorino M.I., Signoriello S., Maio A., Chiodini P., Bellastella G., Scappaticcio L., Longo M., Giugliano D., Esposito K. Effects of continuous glucose monitoring on metrics of glycemic control in diabetes: A systematic review with meta-analysis of randomized controlled trials. Diabetes Care. 2020;43:1146–1156. doi: 10.2337/dc19-1459.
    1. Brown S.A., Kovatchev B.P., Raghinaru D., Lum J.W., Buckingham B.A., Kudva Y.C., Laffel L.M., Levy C.J., Pinsker J.E., Wadwa R.P., et al. Six-month randomized, multicenter trial of closed-loop control in type 1 diabetes. N. Engl. J. Med. 2019;381:1707–1717. doi: 10.1056/NEJMoa1907863.
    1. Kumareswaran K., Elleri D., Allen J.M., Caldwell K., Nodale M., Wilinska M.E., Amiel S.A., Hovorka R., Murphy H.R. Accuracy of continuous glucose monitoring during exercise in type 1 diabetes pregnancy. Diabetes Technol. Ther. 2013;15:223–229. doi: 10.1089/dia.2012.0292.
    1. Herrington S.J., Gee D.L., Dow S.D., Monosky K.A., Davis E., Pritchett K.L. Comparison of glucose monitoring methods during steady-state exercise in women. Nutrients. 2012;4:1282–1292. doi: 10.3390/nu4091282.
    1. Pleus S., Schoemaker M., Morgenstern K., Schmelzeisen-Redeker G., Haug C., Link M., Zschornack E., Freckmann G. Rate-of-change dependence of the performance of two CGM systems during induced glucose swings. J. Diabetes Sci. Technol. 2015;9:801–807. doi: 10.1177/1932296815578716.
    1. Facchinetti A., Del Favero S., Sparacino G., Cobelli C. Model of glucose sensor error components: Identification and assessment for new Dexcom G4 generation devices. Med. Biol. Eng. Comput. 2015;53:1259–1269. doi: 10.1007/s11517-014-1226-y.
    1. Cobelli C., Schiavon M., Dalla Man C., Basu A., Basu R. Interstitial fluid glucose is not just a shifted-in-time but a distorted mirror of blood glucose: Insight from an in Silico study. Diabetes Technol. Ther. 2016;18:505–511. doi: 10.1089/dia.2016.0112.
    1. Basu A., Dube S., Slama M., Errazuriz I., Amezcua J.C., Kudva Y.C., Peyser T., Carter R.E., Cobelli C., Basu R. Time lag of glucose from intravascular to interstitial compartment in humans. Diabetes. 2013;62:4083–4087. doi: 10.2337/db13-1132.
    1. Moser O., Yardley J.E., Bracken R.M. Interstitial glucose and physical exercise in type 1 diabetes: Integrative physiology, technology, and the gap in-between. Nutrients. 2018;10:93. doi: 10.3390/nu10010093.
    1. Basu R., Johnson M.L., Kudva Y.C., Basu A. Exercise, hypoglycemia, and type 1 diabetes. Diabetes Technol. Ther. 2014;16:331–337. doi: 10.1089/dia.2014.0097.
    1. Castle J.R., Rodbard D. How well do continuous glucose monitoring systems perform during exercise? Diabetes Technol. Ther. 2019;21:305–309. doi: 10.1089/dia.2019.0132.
    1. Li A., Riddell M.C., Potashner D., Brown R.E., Aronson R. Time lag and accuracy of continuous glucose monitoring during high intensity interval training in adults with type 1 diabetes. Diabetes Technol. Ther. 2019;21:286–294. doi: 10.1089/dia.2018.0387.
    1. Larose S., Rabasa-Lhoret R., Roy-Fleming A., Suppère C., Tagougui S., Messier V., Taleb N. Changes in accuracy of continuous glucose monitoring using Dexcom G4 platinum over the course of moderate intensity aerobic exercise in type 1 diabetes. Diabetes Technol. Ther. 2019;21:364–369. doi: 10.1089/dia.2018.0400.
    1. Zaharieva D.P., Turksoy K., McGaugh S.M., Pooni R., Vienneau T., Ly T., Riddell M.C. Lag time remains with newer real-time continuous glucose monitoring technology during aerobic exercise in adults living with type 1 diabetes. Diabetes Technol. Ther. 2019;21:313–321. doi: 10.1089/dia.2018.0364.
    1. Nakamura K., Balo A. The accuracy and efficacy of the dexcom g4 platinum continuous glucose monitoring system. J. Diabetes Sci. Technol. 2015;9:1021–1026. doi: 10.1177/1932296815577812.
    1. Matuleviciene V., Joseph J.I., Andelin M., Hirsch I.B., Attvall S., Pivodic A., Dahlqvist S., Klonoff D., Haraldsson B., Lind M. A clinical trial of the accuracy and treatment experience of the Dexcom G4 sensor (Dexcom G4 System) and enlite sensor (Guardian REAL-Time System) tested simultaneously in ambulatory patients with type 1 diabetes. Diabetes Technol. Ther. 2014;16:759–767. doi: 10.1089/dia.2014.0238.
    1. Shah V.N., Laffel L.M., Wadwa R.P., Garg S.K. Performance of a factory-calibrated real-time continuous glucose monitoring system utilizing an automated sensor applicator. Diabetes Technol. Ther. 2018;20:428–433. doi: 10.1089/dia.2018.0143.
    1. Castorino K., Polsky S., O’Malley G., Levister C., Nelson K., Farfan C., Brackett S., Puhr S., Levy C. Performance of the Dexcom G6 continuous glucose monitoring system in pregnant women with diabetes. Diabetes Technol. Ther. 2020 doi: 10.1089/dia.2020.0085.
    1. Castle J.R., Guillot F., Gabo V., Branigan D., Tyler N., Riddell M., Jacobs P.G. Proceedings of the Official Journal of ATTD Advanced Technologies & Treatments for Diabetes Conference, Madrid, Spain, 19–22 February 2020. Volume 22 Diabetes Technologies & Therpeutics; Madrid, Spain: 2020. Accuracy of the Dexcom G6 system during aerobic, resistance, and interval exercise in adults with type 1 diabetes.
    1. Tyler N.S., Mosquera-Lopez C.M., Wilson L.M., Dodier R.H., Branigan D.L., Gabo V.B., Guillot F.H., Hilts W.W., El Youssef J., Castle J.R., et al. An artificial intelligence decision support system for the management of type 1 diabetes. Nat. Metab. 2020:1–8. doi: 10.1038/s42255-020-0212-y.
    1. Ekhlaspour L., Mondesir D., Lautsch N., Balliro C., Hillard M., Magyar K., Radocchia L.G., Esmaeili A., Sinha M., Russell S.J. Comparative accuracy of 17 point-of-care glucose meters. J. Diabetes Sci. Technol. 2017;11:558–566. doi: 10.1177/1932296816672237.
    1. Wilcoxon F. Individual comparisons by ranking methods. Biom. Bull. 1945;1:80–83. doi: 10.2307/3001968.
    1. Clarke W.L., Cox D., Gonder-Frederick L.A., Carter W., Pohl S.L. Evaluating clinical accuracy of systems for self-monitoring of blood glucose. Diabetes Care. 1987;10:622–628. doi: 10.2337/diacare.10.5.622.
    1. Richardson J.T.E. The analysis of 2 × 2 contingency tables—Yet again. Stat. Med. 2011;30:890. doi: 10.1002/sim.4116.
    1. Campbell I. Chi-squared and Fisher-Irwin tests of two-by-two tables with small sample recommendations. Stat. Med. 2007;26:3661–3675. doi: 10.1002/sim.2832.
    1. Schmelzeisen-Redeker G., Schoemaker M., Kirchsteiger H., Freckmann G., Heinemann L., del Re L. Time delay of CGM sensors. J. Diabetes Sci. Technol. 2015;9:1006–1015. doi: 10.1177/1932296815590154.
    1. MATLAB . Version 9.7.0.1296695 (R2019b) The MathWorks Inc.; Natick, MA, USA: 2020.
    1. StataCorp . Stata Statistical Software: Release 15. StataCorp LLC; College Station, TX, USA: 2017.
    1. Taleb N., Emami A., Suppere C., Messier V., Legault L., Chiasson J.-L., Rabasa-Lhoret R., Haidar A. Comparison of two continuous glucose monitoring systems, Dexcom G4 Platinum and Medtronic Paradigm Veo Enlite System, at rest and during exercise. Diabetes Technol. Ther. 2016;18:561–567. doi: 10.1089/dia.2015.0394.
    1. Bally L., Zueger T., Pasi N., Carlos C., Paganini D., Stettler C. Accuracy of continuous glucose monitoring during differing exercise conditions. Diabetes Res. Clin. Pract. 2016;112:1–5. doi: 10.1016/j.diabres.2015.11.012.
    1. Moser O., Eckstein M.L., Mueller A., Birnbaumer P., Aberer F., Koehler G., Sourij C., Kojzar H., Holler P., Simi H., et al. Impact of physical exercise on sensor performance of the FreeStyle Libre intermittently viewed continuous glucose monitoring system in people with Type 1 diabetes: A randomized crossover trial. Diabet. Med. 2019;36:606–611. doi: 10.1111/dme.13909.
    1. Yardley J.E., Sigal R.J., Kenny G.P., Riddell M.C., Lovblom L.E., Perkins B.A. Point accuracy of interstitial continuous glucose monitoring during exercise in type 1 diabetes. Diabetes Technol. Ther. 2013;15:46–49. doi: 10.1089/dia.2012.0182.
    1. Emhoff C.-A.W., Messonnier L.A., Horning M.A., Fattor J.A., Carlson T.J., Brooks G.A. Gluconeogenesis and hepatic glycogenolysis during exercise at the lactate threshold. J. Appl. Physiol. 2013;114:297–306. doi: 10.1152/japplphysiol.01202.2012.
    1. Bergman B.C., Horning M.A., Casazza G.A., Wolfel E.E., Butterfield G.E., Brooks G.A. Endurance training increases gluconeogenesis during rest and exercise in men. Am. J. Physiol. Endocrinol. Metab. 2000;278:E244–E251. doi: 10.1152/ajpendo.2000.278.2.E244.
    1. Diabetes Research in Children Network (DirecNet) Study Group The effects of aerobic exercise on glucose and counterregulatory hormone concentrations in children with type 1 diabetes. Diabetes Care. 2006;29:20–25. doi: 10.2337/diacare.29.01.06.dc05-1192.
    1. Guelfi K.J., Jones T.W., Fournier P.A. The decline in blood glucose levels is less with intermittent high-intensity compared with moderate exercise in individuals with type 1 diabetes. Diabetes Care. 2005;28:1289–1294. doi: 10.2337/diacare.28.6.1289.
    1. Biagi L., Bertachi A., Quirós C., Giménez M., Conget I., Bondia J., Vehí J. Accuracy of continuous glucose monitoring before, during, and after aerobic and anaerobic exercise in patients with type 1 diabetes mellitus. Biosensors. 2018;8:22. doi: 10.3390/bios8010022.

Source: PubMed

3
Abonnieren